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Advanced model checking

TCTL model checking
e TCTL model-checking problem: TA = @ for non-Zeno TA

TAE® iff TS(TA) = @
Lol N U

timed automaton infinite transition system

— timelocks in TA are irrelevant as their presence can be checked

e |dea: consider a finite quotient of TS(TA) wrt. a bisimulation

— TS(TA)/ = is a region transition system and denoted RG(TA)
— dependence on & is ignored

e Transform TCTL formula ¢ into an “equivalent” CTL-formula o

® Then TA ‘:TCTL d |ff RG(TA) ):CTL EI\)
N—_——

finite transition system
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Advanced model checking

Clock equivalence

Impose an equivalence, denoted =, on the clock valuations such that:

(A) Equivalent clock valuations satisfy the same clock constraints ¢ in TA
and o:

n=n = (nEg it v E=g)

— no diagonal clock constraints are considered
— all the constraints in TA and & are thus either of the formz < corx < ¢

(B) Time-divergent paths emanating from equivalent states are
“equivalent”

— this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under = is finite
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Advanced model checking

Clock equivalence

e Correctness criteria (A) and (B) are ensured if equivalent states:

— agree on the integer parts of all clock values, and
— agree on the ordering of the fractional parts of all clocks

= This yields a denumerable infinite set of equivalence classes

e Observe that:

— if clocks exceed the maximal constant with which they are compared their
precise value is not of interest

= The number of equivalence classes is then finite (C)
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Advanced model checking

Clock equivalence

Clock valuations 7, " € Eval(C') are equivalent, denoted n = 7/, if:
(1) forany z € C: (n(z) > cz) A (n'(x) > cz) or (n(x) <) A (7 (x) < ¢p)

(2) forany x € C: if n(x),n'(z) < ¢, then:

[n(z)] = n'(x)] and  frac(n(z)) = 0iff frac(nz(x)) = 0

(3) forany z,y € C: if n(x),n' (z) < ¢, and n(y),n'(y) < ¢y, then:
frac(n(x)) < frac(n(y)) iff - frac(n'(z)) < frac(n'(y)).

s=s iff £=4 and n=n
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Advanced model checking

Regions

e The clock region of n € Eval(C'), denoted |7], is defined by:

m = {n eEval(C) |n=n}

e The state region of s = (¢,n) € TS(TA) is defined by:

[s] = (&) = {{s;n) [0 €n]'}
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Advanced model checking

Canonical representation of regions

e Each clock region can be uniquely represented

e For each clock x a term of the form (where n € IN and n < ¢,):

- Tr =mn,0r
—-—n<zxz<ntl, or
— I > Cyq

e For each pair of clocks z,y a term of the form:

—x—y <O0,or

— T —1Yy=mn,0r
-—n<x—y<ntl,or
_m_y>cx
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Advanced model checking

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP’
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Advanced model checking

Unbounded and successor regions

e Clock region ro, = {1 € Eval(C) | Vx € C.n(z) > ¢, } is unbounded

e 1’ is the successor (clock) region of r, denoted " = succ(r), if either:

1. r=randr =17/, or
2. 1 £rs,r#r andforalln e r:
dd € Rug. (n+der’ and VO d <d.n+d € rur’)
e The successor region: succ({(¢,r)) = (¢,succ(r))

e Note: the location invariants are ignored so far!
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Advanced model checking

Region automaton
For non-Zeno TA with TS(TA) = (S, Act,—, I, AP, L) let:

RG(TA,®) = (8", Actu {7},—',I,AP’ L") with
e S'=5/=={[s]|seS}tand I'={]s] | s € I}, the state regions
o L'((t,r))=L(£) U{g e AP'\AP |1 =g}

gD =g resetDinr = Inv({)

and
(l,ry =" (¢, reset D inr)

e —'is defined by:

r = Inv(¢) succ(r) = Inv(4)
(0, r) " (£,succ(r))
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Advanced model checking

Example: simple light switch

off off off off off
Xx=0 O<x<l1 x=1 1<x<?2

P
I
N

X
Il
o
JO OTINS

on
X> 2
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Advanced model checking

Number of regions

The number of clock regions is bounded from below and above by:

Ol ] e < | Eval(C)/= | < [C]-2191 ] (2e0 +2)

Ve

zeC number of regions zeC

where for the upper bound it is assumed that ¢, > 1 forany x € C

the number of state regions is |Loc| times larger

a more compact representation is obtained by zones
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Advanced model checking

Zones

e Clock constraints are conjunctions of atomic constraints

—rz<candzx —y <cfor<e {<,<,=,>2,>}
— restrict to TA with only conjunctive clock constraints
— and (as before) assume no difference clock constraints

e A clock zone is the set of clock valuations that satisfy a clock
constraint

— aclock zone for g is the maximal set of clock valuations satisfying g

e Clock zoneof g: [g] ={neEval(lC) |nE=g}

— use z, z' and so on to range over Zzones

e The state zone of s = (¢,n) € TS(TA) is (¢, z) withn € 2
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Advanced model checking

Zone automaton: intuition
R N r:=1

= <2 x =2
O—0O0——=0—+0
3 3 3
2 2 2
1 1 1
071 2 3 071 2 3 071 2 3
leaving initial entering first leaving first
3 3 3
2 2 2 '
1 1 1
00— 5 3 0 5 3 0712 3
entering second leaving second entering third
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Advanced model checking

Normalization: intuition

symbolic semantics has infinitely many zones:

30 30 30 30
20 20 20 20
Q 10 10 10 10
{z,y} 090 20 30 9 10 20 30 9 10 20 30 9 10 20 20
x = 10 . . . . .
v s 12@{@ normalization yields a finite zone graph:
T =

{z,y}

O

30 30 30 30 ’
20 20 20 20

10 10 10 10

010 20 30 9 10 20 3 9 10 20 30 0710 20 =20

more about normalization later
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Advanced model checking

Successor and reset zones

e 2’ is the successor (clock) zone of z, denoted 2’ = 21, if:

-zl = {n+d|nezdeRy}

e 2’ is the zone obtained from z by resetting clocks D:

—resetDinz = {resetDinn|n €z}
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Advanced model checking

Some operations on zones

2 4 6
initial zone

reset X

up

2 4 6
norm(0.3)

2 4 6
free x
6
4I
2
07 % 1 6
and(x <= 2)
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Advanced model checking

Zone automaton

For non-Zeno TA (without difference clock constraints) let:
ZG(TA, ®) = (S,Actu {7}, —,I,AP’,L) with

e S=Locx Zone(C)and I ={ (¢, zy) | £ € Locy }

o L({{,z)) =L() U{glgez;

e — isdefined by: (¢,2) = (¢,21 Alnv(¢)) and

o, D
gg/% 6/

(l,z) = ({';reset Din (zAg) N Inv({))
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Advanced model checking

Correctness (1)

For timed automaton TA and any initial state (¢, ng):

e Soundness:

(,{no}) == (¢',2) implies (£, o) _j (¢',n") forally’ € 2’
20 in TS(TA)

\ 7

in ZG(TA)

e Completeness:

{Cmo) =" (,n') implies (¢, {ng}) =~ (¢',2") for some 2" withn € 2’
in TS(TA) in ZG(TA)
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Advanced model checking

Example
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Advanced model checking

Zone normalization

e To obtain a finite representation, zone normalization is employed

e Forzone z, norm(z) = {n|n=rn,n €z}

— where = is the clock equivalence
e There can only be finitely many normalized zones

o ({.2) —uorm (U',norm(2")if (£, z) — (£ 2")
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Advanced model checking

Correctness (2)
For timed automaton TA and any initial state (¢, 7):

e Soundness:
(0470} = for (€.2') implies (¢, m0) —* (¢, 7)
— foralln’ € 2’ such that Vz. n'(x) < ¢,
e Completeness:
(€.mo) =" (€', n") withVa.n(z) < ¢ implies (¢, {no}) — 7o (¢, 2)
— for some z’ such that ' € 2’

e Finiteness: the transition relation — ,,,,.,, IS finite
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Advanced model checking

Example
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Advanced model checking

Forward reachability algorithm

PASSED := J; Il explored states so far

WAIT : = { (Yo, 20) };
while WAIT # &

do select and remove (¢, z) from WAIT;
if (¢ =goal A z N z4u # @)then return “reachable”! fi ;

I states to be explored

// still states to go

if =(3(¢, 2") € PASSED. z C 2’) /I no “super’state explored yet

then add (¢, z) to PASSED Il (£, z) is a new state
foreach (¢, 2") with (£, z) — ,orm (£, 2')
do add (¢, 2) to WAIT; /I add symbolic successors
fi
od

return “not reachable”!
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Advanced model checking

Representing zones

e Let 0 be a clock with constant value O; let Co = C U {0}

e Any zone z € Zone(C') can be written as:

— conjunction of constraints x —y < norx —y < nformn e Z,xz,y € Cy
— whenz —y <nandz —y <X mtakeonly x — y < min(n, m)
= this yields at most |Cy|-|Cy| constraints

e Example:

r—0<20 N y—0<200 N y—2z <10 N z—y< —10 AN 0—2 <5

e Store each such constraint in a matrix

— this yields a difference bound matrix
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Advanced model checking

Difference bound matrices

e Zone z over C'is represented by DBM Z of cardinality |C+1|-|C'+1]
— forC =x1,...,z,, 1€t Cy = { x0, 1, ...,2, } Withaxg =0
— Z(t,5) = (¢, <) ifandonly ifz;, — z; < ¢

e Definition of Z for zone z:

— forz, —xz; < cletZ(i,j) = (¢, <)
— if z; — x; isunbounded in z, set Z(i, j) = oo
B Z(O,’L) — (<,0) and Z(Zafl’) — (<7O)

e Operations on bounds:

- (¢, %) <00, (¢, <) < (¢,5),and (¢, X) < (¢, 2N ife <
—c+oo =00, (c,;<)+ (,<) = (c+, <) and (¢, <) + (¢, <) = (c+, )
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Advanced model checking

Example
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Advanced model checking

The need for canonicity

© JPK

27



Advanced model checking

Canonical DBMs

e A zone z is in canonical form if and only if:

— no constraint in z can be strengthened without reducing [z] = {n | n € z }

e For each zone z: d a unique and equivalent zone in canonical form

e Represent zone z by a weighted digraph G = (V, E, w) where

— V = C) is the set of vertices
— (zi,x;) € E whenever z; — x; < cis aconstraintin z
— w(z;, x;) = (X, c) whenever x; — x; < cis aconstraintin z

e Zone z iIs in canonical form if and only if DBM Z satisfies:
— Z(i,5) < Z(i, k) +Z(k,y) forany z;, x;, xr € Cy
e Compute canonical zone?

— use Floyd-Warshall’s all-pairs SP algorithm (time O(|Co|?))
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Advanced model checking

Example
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Advanced model checking

Minimal constraint systems

e A zone may contain redundant constraints

—eg.,inz—y < 2,y—z < 5,and z—z < 7, constraint xt—z < 7 is redundant

e Reduce memory usage: consider minimal constraint systems
—eg,z—y<0,y—2<0,z—x<0,z—0<3,and 00—z < —2
— is a minimal representation of a zone in canonical form with 12 constraints

e For each zone: d a unique and equivalent minimal constraint system

e Determining minimal representations of canonical zones:

L IR x; is redundant if an alternative path from x; to x; has weight at most

(n, <)
— it suffices to consider alternative paths of length two

zero cycles require a special treatment
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Advanced model checking

Main operations on DBMs (1)

e Nonemptiness: is [Z] # 97?

— search for negative cycles in the graph representation of Z, or
— mark Z when upper bound of some clock is set to value < its lower bound

e Inclusiontest:iis [Z] C [Z']?

— for DBMs in canonical form, test whether Z(i, ) < Z'(4, ), forall i, j € Cj

e Delay: determine Z!

— remove the upper bounds on any clock, i.e.,
— Z'(i,0) = ccand Z' (4, j) = Z(i, ) for j # 0
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Advanced model checking

Main operations on DBMs (2)

e Conjunction: z A (z; — x; 2 n)

— if (n, X) < Z(i,7) then Z(i, 5) := (n, X) else do nothing
— put Z back into canonical form (in time O(|Cy|?) using that only Z(i, 5)

changed)

e Clock reset: z; :=d

— Z(i,7) = (d,<) + Z(0, j) and Z(j, i) := Z(4,0) + (—d, <)

e Normalization

remove all bounds x—y < m for which (m, <) > (¢, <), and
set all bounds z—y < m with (m, X) < (—c¢,, <) to (—c¢y, <)
put the DBM back into canonical form (Floyd-Warshall)
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