

Zones and Difference Bound Matrices

Lecture #18 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 15, 2006

TCTL model checking

- TCTL model-checking problem: $TA \models \Phi$ for non-Zeno TA

$$\underbrace{TA \models \Phi}_{\text{timed automaton}} \quad \text{iff} \quad \underbrace{TS(TA) \models \Phi}_{\text{infinite transition system}}$$

- timelocks in TA are irrelevant as their presence can be checked
- Idea: consider a finite quotient of $TS(TA)$ wrt. a bisimulation
 - $TS(TA) / \cong$ is a *region* transition system and denoted $RG(TA)$
 - dependence on Φ is ignored
- Transform TCTL formula Φ into an “equivalent” CTL-formula $\widehat{\Phi}$
- Then: $TA \models_{\text{TCTL}} \Phi$ iff $\underbrace{RG(TA)}_{\text{finite transition system}} \models_{\text{CTL}} \widehat{\Phi}$

Clock equivalence

Impose an equivalence, denoted \cong , on the clock valuations such that:

- (A) Equivalent clock valuations satisfy the same clock constraints g in TA and Φ :

$$\eta \cong \eta' \Rightarrow (\eta \models g \text{ iff } \eta' \models g)$$

- **no** diagonal clock constraints are considered
- all the constraints in TA and Φ are thus either of the form $x \leq c$ or $x < c$

- (B) Time-divergent paths emanating from equivalent states are “equivalent”

- this property guarantees that equivalent states satisfy the same path formulas

- (C) The number of equivalence classes under \cong is finite

Clock equivalence

- Correctness criteria (A) and (B) are ensured if equivalent states:
 - agree on the integer parts of all clock values, and
 - agree on the ordering of the fractional parts of all clocks
- ⇒ This yields a denumerable infinite set of equivalence classes
- Observe that:
 - if clocks exceed the maximal constant with which they are compared their precise value is not of interest
- ⇒ The number of equivalence classes is then finite (C)

Clock equivalence

Clock valuations $\eta, \eta' \in \text{Eval}(C)$ are *equivalent*, denoted $\eta \cong \eta'$, if:

- (1) for any $x \in C$: $(\eta(x) > c_x) \wedge (\eta'(x) > c_x)$ or $(\eta(x) \leq c_x) \wedge (\eta'(x) \leq c_x)$
- (2) for any $x \in C$: if $\eta(x), \eta'(x) \leq c_x$ then:

$$\lfloor \eta(x) \rfloor = \lfloor \eta'(x) \rfloor \quad \text{and} \quad \text{frac}(\eta(x)) = 0 \text{ iff } \text{frac}(\eta'(x)) = 0$$

- (3) for any $x, y \in C$: if $\eta(x), \eta'(x) \leq c_x$ and $\eta(y), \eta'(y) \leq c_y$, then:

$$\text{frac}(\eta(x)) \leq \text{frac}(\eta(y)) \quad \text{iff} \quad \text{frac}(\eta'(x)) \leq \text{frac}(\eta'(y)).$$

$$s \cong s' \quad \text{iff} \quad \ell = \ell' \quad \text{and} \quad \eta \cong \eta'$$

Regions

- The *clock region* of $\eta \in \text{Eval}(C)$, denoted $[\eta]$, is defined by:

$$[\eta] = \{ \eta' \in \text{Eval}(C) \mid \eta \cong \eta' \}$$

- The *state region* of $s = \langle \ell, \eta \rangle \in \text{TS(TA)}$ is defined by:

$$[s] = \langle \ell, [\eta] \rangle = \{ \langle s, \eta' \rangle \mid \eta' \in [\eta] \}$$

Canonical representation of regions

- Each clock region can be uniquely represented
- For each clock x a term of the form (where $n \in \mathbb{N}$ and $n < c_x$):
 - $x = n$, or
 - $n < x < n+1$, or
 - $x > c_x$
- For each pair of clocks x, y a term of the form:
 - $x - y < 0$, or
 - $x - y = n$, or
 - $n < x - y < n+1$, or
 - $x - y > c_x$

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP'

Unbounded and successor regions

- Clock region $r_\infty = \{ \eta \in \text{Eval}(C) \mid \forall x \in C. \eta(x) > c_x \}$ is *unbounded*
- r' is the *successor (clock) region* of r , denoted $r' = \text{succ}(r)$, if either:
 1. $r = r_\infty$ and $r = r'$, or
 2. $r \neq r_\infty$, $r \neq r'$ and for all $\eta \in r$:

$$\exists \textcolor{blue}{d} \in \mathbb{R}_{>0}. (\eta + \textcolor{blue}{d} \in r' \quad \text{and} \quad \forall 0 \leq d' \leq \textcolor{blue}{d}. \eta + d' \in r \cup r')$$

- The *successor region*: $\text{succ}(\langle \ell, r \rangle) = \langle \ell, \text{succ}(r) \rangle$
- Note: the location invariants are ignored so far!

Region automaton

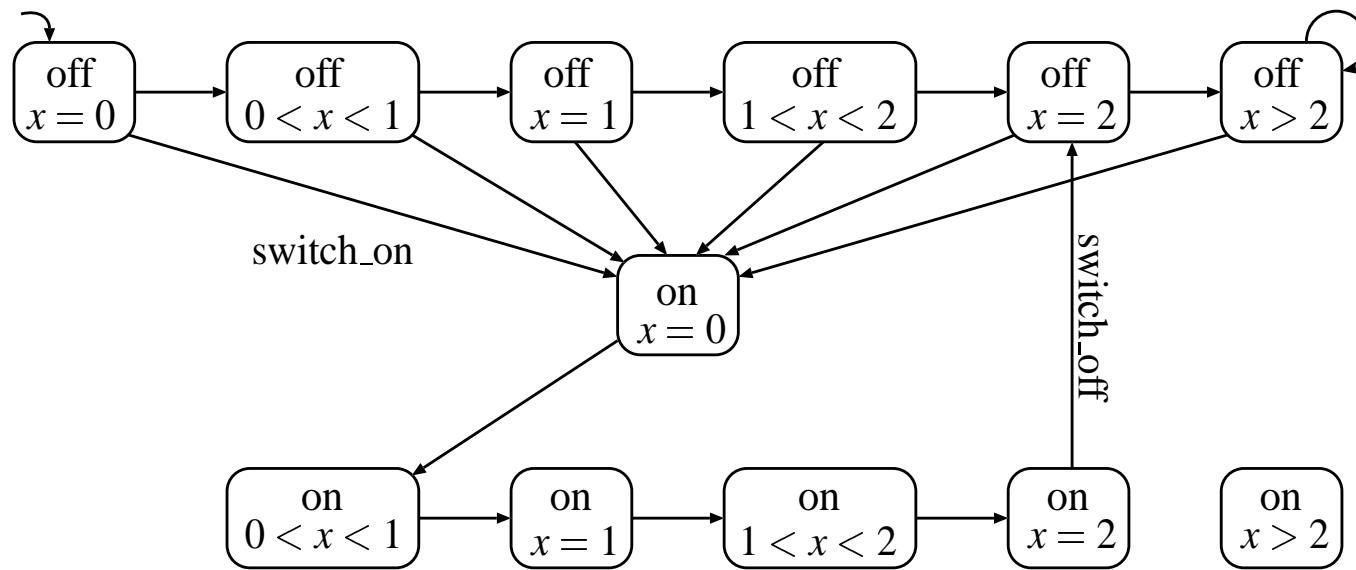
For non-Zeno TA with $TS(TA) = (S, Act, \rightarrow, I, AP, L)$ let:

$$RG(TA, \Phi) = (S', Act \cup \{\tau\}, \rightarrow', I, AP', L') \quad \text{with}$$

- $S' = S / \cong = \{ [s] \mid s \in S \}$ and $I' = \{ [s] \mid s \in I \}$, the state regions
- $L'(\langle \ell, r \rangle) = L(\ell) \cup \{ g \in AP' \setminus AP \mid r \models g \}$
- \rightarrow' is defined by:
$$\frac{\ell \xrightarrow{g:\alpha, D} \ell' \quad r \models g \quad \text{reset } D \text{ in } r \models Inv(\ell')}{\langle \ell, r \rangle \xrightarrow{\alpha} \langle \ell', \text{reset } D \text{ in } r \rangle} \quad \text{and}$$

$$\frac{r \models Inv(\ell) \quad succ(r) \models Inv(\ell)}{\langle \ell, r \rangle \xrightarrow{\tau} \langle \ell, succ(r) \rangle}$$

Example: simple light switch



Number of regions

The *number of clock regions* is bounded from below and above by:

$$|C|! \cdot \prod_{x \in C} c_x \leq \underbrace{|\text{Eval}(C)/\cong|}_{\text{number of regions}} \leq |C|! \cdot 2^{|C|-1} \cdot \prod_{x \in C} (2c_x + 2)$$

where for the upper bound it is assumed that $c_x \geq 1$ for any $x \in C$

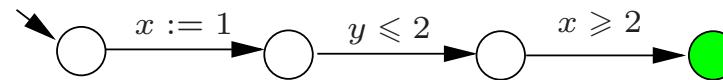
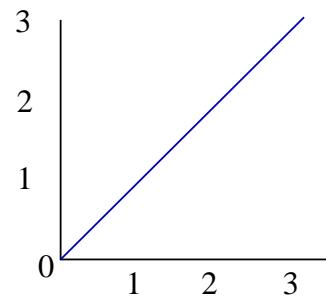
the number of state regions is $|Loc|$ times larger

a more compact representation is obtained by zones

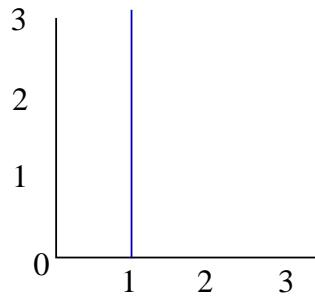
Zones

- Clock constraints are *conjunctions* of atomic constraints
 - $x \prec c$ and $x - y \prec c$ for $\prec \in \{ <, \leq, =, \geq, > \}$
 - restrict to *TA* with *only conjunctive clock constraints*
 - and (as before) assume no difference clock constraints
- A *clock zone* is the set of clock valuations that satisfy a clock constraint
 - a clock zone for g is the maximal set of clock valuations satisfying g
- Clock zone of g : $\llbracket g \rrbracket = \{ \eta \in \mathbf{Eval}(C) \mid \eta \models g \}$
 - use z, z' and so on to range over zones
- The *state zone* of $s = \langle \ell, \eta \rangle \in \mathbf{TS}(\mathbf{TA})$ is $\langle \ell, z \rangle$ with $\eta \in z$

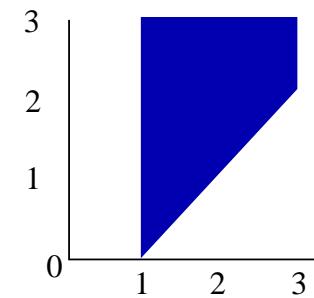
Zone automaton: intuition



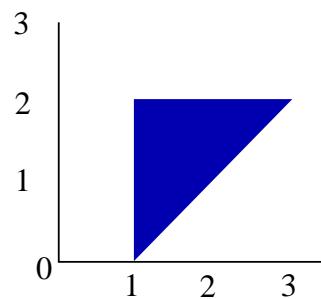
leaving initial



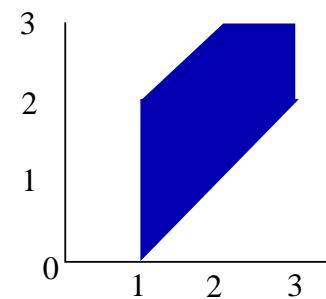
entering first



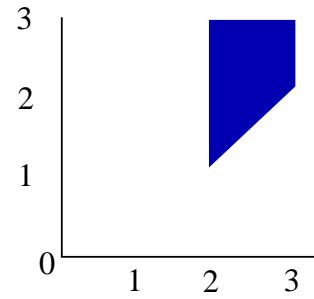
leaving first



entering second



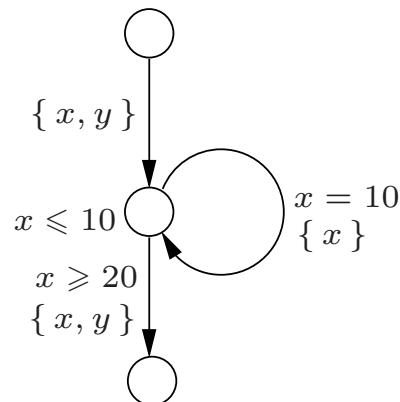
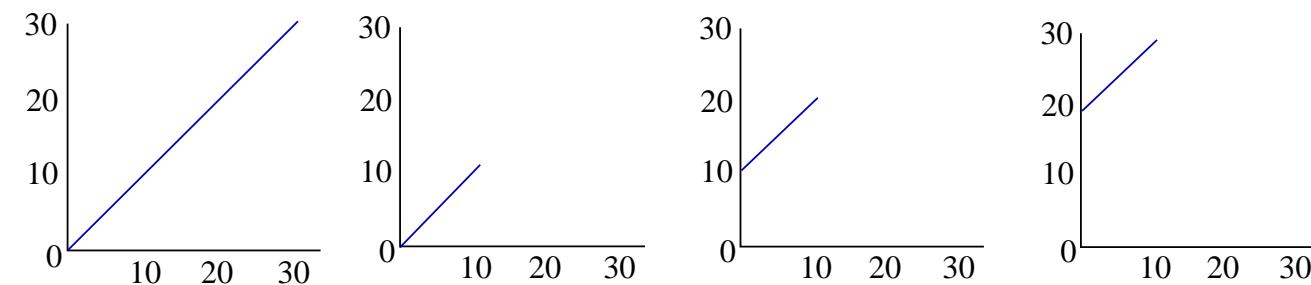
leaving second



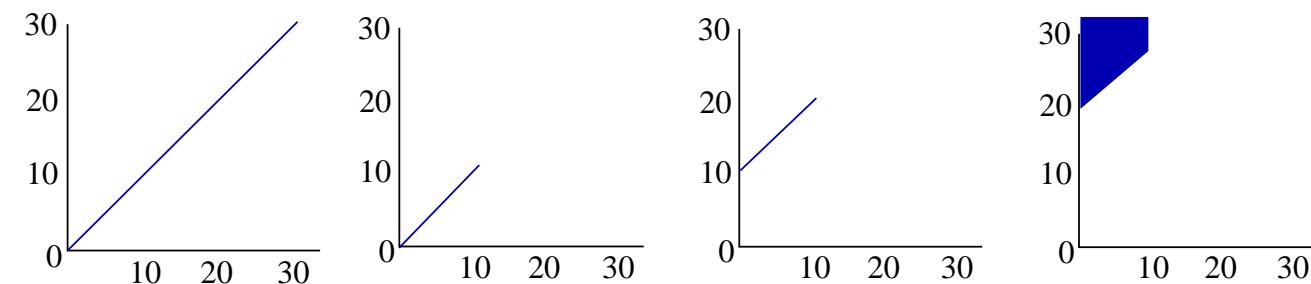
entering third

Normalization: intuition

symbolic semantics has infinitely many zones:



normalization yields a finite zone graph:

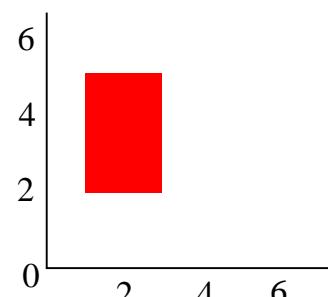


more about normalization later.....

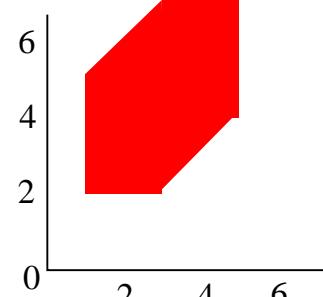
Successor and reset zones

- z' is the *successor* (clock) zone of z , denoted $z' = z^\uparrow$, if:
 - $z^\uparrow = \{ \eta + d \mid \eta \in z, d \in \mathbb{R}_{>0} \}$
- z' is the zone obtained from z by *resetting* clocks D :
 - $\text{reset } D \text{ in } z = \{ \text{reset } D \text{ in } \eta \mid \eta \in z \}$

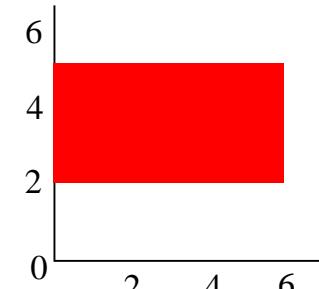
Some operations on zones



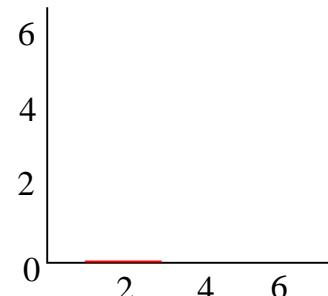
initial zone



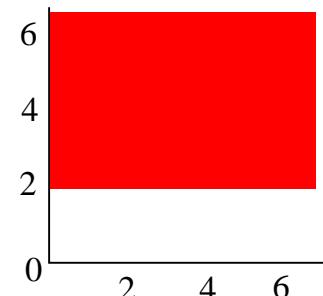
up



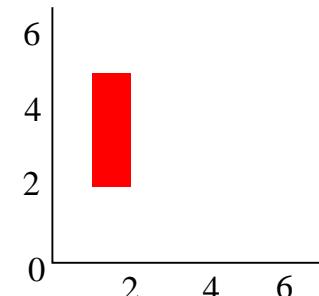
free x



reset x



norm(0,3)

and($x \leq 2$)

Zone automaton

For non-Zeno TA (without difference clock constraints) let:

$$ZG(TA, \Phi) = (S, \mathcal{A}ct \cup \{\tau\}, \rightarrow, I, \mathcal{A}P', L) \quad \text{with}$$

- $S = Loc \times Zone(C)$ and $I = \{ \langle \ell, z_0 \rangle \mid \ell \in Loc_0 \}$
- $L(\langle \ell, z \rangle) = L(\ell) \cup \{ g \mid g \in z \}$
- \rightarrow is defined by: $\langle \ell, z \rangle \xrightarrow{\tau} \langle \ell, z^\uparrow \wedge Inv(\ell) \rangle$ and

$$\frac{\ell \xrightarrow{g:\alpha, D} \ell'}{\langle \ell, z \rangle \xrightarrow{\alpha} \langle \ell', \text{reset } D \text{ in } (z \wedge g) \wedge Inv(\ell') \rangle}$$

Correctness (1)

For timed automaton TA and any initial state $\langle \ell, \eta_0 \rangle$:

- **Soundness:**

$$\underbrace{\langle \ell, \underbrace{\{\eta_0\}}_{z_0} \rangle \rightarrow^* \langle \ell', z' \rangle}_{\text{in } ZG(TA)} \text{ implies } \underbrace{\langle \ell, \eta_0 \rangle \rightarrow^* \langle \ell', \eta' \rangle}_{\text{in } TS(TA)} \text{ for all } \eta' \in z'$$

- **Completeness:**

$$\underbrace{\langle \ell, \eta_0 \rangle \rightarrow^* \langle \ell', \eta' \rangle}_{\text{in } TS(TA)} \text{ implies } \underbrace{\langle \ell, \{\eta_0\} \rangle \rightarrow^* \langle \ell', z' \rangle}_{\text{in } ZG(TA)} \text{ for some } z' \text{ with } \eta' \in z'$$

Example

Zone normalization

- To obtain a finite representation, *zone normalization* is employed
- For zone z , $norm(z) = \{ \eta \mid \eta \cong \eta', \eta' \in z \}$
 - where \cong is the clock equivalence
- There can only be finitely many normalized zones
- $\langle \ell, z \rangle \rightarrow_{norm} \langle \ell', norm(z') \rangle$ if $\langle \ell, z \rangle \rightarrow \langle \ell', z' \rangle$

Correctness (2)

For timed automaton TA and any initial state $\langle \ell, \eta \rangle$:

- **Soundness:**

$$\langle \ell, \{ \eta_0 \} \rangle \xrightarrow{*_{norm}} \langle \ell', z' \rangle \quad \text{implies} \quad \langle \ell, \eta_0 \rangle \xrightarrow{*} \langle \ell', \eta' \rangle$$

- for all $\eta' \in z'$ such that $\forall x. \eta'(x) \leq c_x$

- **Completeness:**

$$\langle \ell, \eta_0 \rangle \xrightarrow{*} \langle \ell', \eta' \rangle \text{ with } \forall x. \eta'(x) \leq c_x \quad \text{implies} \quad \langle \ell, \{ \eta_0 \} \rangle \xrightarrow{*_{norm}} \langle \ell', z' \rangle$$

- for some z' such that $\eta' \in z'$

- **Finiteness:** the transition relation \rightarrow_{norm} is finite

Example

Forward reachability algorithm

```
PASSED :=  $\emptyset$ ;                                // explored states so far
WAIT := {  $(\ell_0, z_0)$  };                         // states to be explored
while WAIT  $\neq \emptyset$                                 // still states to go
  do select and remove  $(\ell, z)$  from WAIT;
    if  $(\ell = \text{goal} \wedge z \cap z_{\text{goal}} \neq \emptyset)$  then return "reachable"! fi ;
    if  $\neg(\exists(\ell, z') \in \text{PASSED}. z \subseteq z')$  // no "super"state explored yet
      then add  $(\ell, z)$  to PASSED                  //  $(\ell, z)$  is a new state
      foreach  $(\ell', z')$  with  $(\ell, z) \rightarrow_{\text{norm}} (\ell', z')$ 
        do add  $(\ell', z')$  to WAIT;                // add symbolic successors
    fi
  od
return "not reachable!"
```

Representing zones

- Let $\mathbf{0}$ be a clock with constant value 0; let $C_0 = C \cup \{ \mathbf{0} \}$
- Any zone $z \in \text{Zone}(C)$ can be written as:
 - conjunction of constraints $x - y < n$ or $x - y \leq n$ for $n \in \mathbb{Z}$, $x, y \in C_0$
 - when $x - y \leq n$ and $x - y \leq m$ take only $x - y \leq \min(n, m)$ \Rightarrow this yields at most $|C_0| \cdot |C_0|$ constraints
- Example:

$$x - \mathbf{0} < 20 \wedge y - \mathbf{0} \leq 20 \wedge y - x \leq 10 \wedge x - y \leq -10 \wedge \mathbf{0} - z < 5$$

- Store each such constraint in a matrix
 - this yields a *difference bound matrix*

Difference bound matrices

- Zone z over C is represented by DBM \mathbf{Z} of cardinality $|C+1| \cdot |C+1|$
 - for $C = x_1, \dots, x_n$, let $C_0 = \{ x_0, x_1, \dots, x_n \}$ with $x_0 = \mathbf{0}$
 - $\mathbf{Z}(i, j) = (c, \prec)$ if and only if $x_i - x_j \prec c$
- Definition of \mathbf{Z} for zone z :
 - for $x_i - x_j \prec c$ let $\mathbf{Z}(i, j) = (c, \prec)$
 - if $x_i - x_j$ is unbounded in z , set $\mathbf{Z}(i, j) = \infty$
 - $\mathbf{Z}(0, i) = (\leq, 0)$ and $\mathbf{Z}(i, i) = (\leq, 0)$
- Operations on bounds:
 - $(c, \preceq) < \infty$, $(c, <) < (c, \leq)$, and $(c, \preceq) < (c', \preceq')$ if $c < c'$
 - $c + \infty = \infty$, $(c, \leq) + (c', \leq) = (c+c', \leq)$ and $(c, <) + (c', \leq) = (c+c', <)$

Example

The need for canonicity

Canonical DBMs

- A zone z is in *canonical form* if and only if:
 - no constraint in z can be strengthened without reducing $\llbracket z \rrbracket = \{ \eta \mid \eta \in z \}$
- For each zone z : \exists a *unique* and *equivalent* zone in canonical form
- Represent zone z by a *weighted digraph* $G = (V, E, w)$ where
 - $V = C_0$ is the set of vertices
 - $(x_i, x_j) \in E$ whenever $x_j - x_i \preceq c$ is a constraint in z
 - $w(x_i, x_j) = (\preceq, c)$ whenever $x_j - x_i \preceq c$ is a constraint in z
- Zone z is in *canonical form* if and only if DBM \mathbf{Z} satisfies:
 - $\mathbf{Z}(i, j) \leq \mathbf{Z}(i, k) + \mathbf{Z}(k, j)$ for any $x_i, x_j, x_k \in C_0$
- Compute canonical zone?
 - use *Floyd-Warshall*'s all-pairs SP algorithm (time $\mathcal{O}(|C_0|^3)$)

Example

Minimal constraint systems

- A zone may contain *redundant* constraints
 - e.g., in $x-y < 2$, $y-z < 5$, and $x-z < 7$, constraint $x-z < 7$ is redundant
- Reduce memory usage: consider *minimal* constraint systems
 - e.g., $x-y \leq 0$, $y-z \leq 0$, $z-x \leq 0$, $x-0 \leq 3$, and $0-x < -2$
 - is a minimal representation of a zone in canonical form with 12 constraints
- For each zone: \exists a unique and equivalent minimal constraint system
- Determining minimal representations of canonical zones:
 - $x_i \xrightarrow{(n, \preceq)} x_j$ is redundant if an alternative path from x_i to x_j has weight at most (n, \preceq)
 - it suffices to consider alternative paths of length two

zero cycles require a special treatment

Main operations on DBMs (1)

- *Nonemptiness*: is $\llbracket \mathbf{Z} \rrbracket \neq \emptyset$?
 - search for negative cycles in the graph representation of \mathbf{Z} , or
 - mark \mathbf{Z} when upper bound of some clock is set to value $<$ its lower bound
- *Inclusion test*: is $\llbracket \mathbf{Z} \rrbracket \subseteq \llbracket \mathbf{Z}' \rrbracket$?
 - for DBMs in canonical form, test whether $\mathbf{Z}(i, j) \leq \mathbf{Z}'(i, j)$, for all $i, j \in C_0$
- *Delay*: determine \mathbf{Z}^\uparrow
 - remove the upper bounds on any clock, i.e.,
 - $\mathbf{Z}^\uparrow(i, 0) = \infty$ and $\mathbf{Z}^\uparrow(i, j) = \mathbf{Z}(i, j)$ for $j \neq 0$

Main operations on DBMs (2)

- *Conjunction*: $z \wedge (x_i - x_j \preceq n)$
 - if $(n, \preceq) < \mathbf{Z}(i, j)$ then $\mathbf{Z}(i, j) := (n, \preceq)$ else do nothing
 - put \mathbf{Z} back into canonical form (in time $\mathcal{O}(|C_0|^2)$ using that only $\mathbf{Z}(i, j)$ changed)
- *Clock reset*: $x_i := d$
 - $\mathbf{Z}(i, j) := (d, \leq) + \mathbf{Z}(0, j)$ and $\mathbf{Z}(j, i) := \mathbf{Z}(j, 0) + (-d, \leq)$
- *Normalization*
 - remove all bounds $x - y \preceq m$ for which $(m, \preceq) > (c_x, \leq)$, and
 - set all bounds $x - y \preceq m$ with $(m, \preceq) < (-c_y, <)$ to $(-c_y, <)$
 - put the DBM back into canonical form (Floyd-Warshall)