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Advanced model checking

Probabilities help

• When analysing system performance and dependability

– to quantify arrivals, waiting times, time between failure, QoS, ...

• When modelling uncertainty in the environment

– to quantify environmental factors in decision support
– to quantify unpredictable delays, express soft deadlines, ...

• When building protocols for networked embedded systems

– randomized algorithms

• When analysing large populations

– number of nodes in the internet, number of end-users, ...
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Advanced model checking

Probabilistic verification so far

• Termination of probabilistic programs (Hart, Sharir & Pnueli, 1983)

– does a probabilistic program terminate with probability one?

• Markov decision processes (Courcoubetis & Yannakakis, 1988)

– does a certain (linear) temporal logic formula hold with probability p?

• Discrete-time Markov chains (Hansson & Jonsson, 1990)

– can we reach a goal state via a given trajectory with probability p?

• Discrete-time Markov decision processes (Bianco & de Alfaro, 1995)

– what is the maximal (or minimal) probability of doing this?

• Continuous-time Markov chains (Baier, Katoen & Hermanns, 1999)

– can we do so within a given time interval I?
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Advanced model checking

Characteristics

• What is inside?

– temporal logics and model checking
– numerical and optimisation techniques from performance and OR

• What can be checked?

– time-bounded reachability, long-run averages, safety and liveness

• What is its usage?

– powerful tools: PRISM (4,000 downloads), MRMC, Petri net tools, Probmela
– applications: distributed systems, security, biology, quantum computing . . .
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Advanced model checking

A synchronous leader election protocol
(Itai & Rodeh, 1990)

• A round-based protocol in a synchronous ring of N > 2 nodes

– the nodes proceed in a lock-step fashion
– each slot = 1 message is read + 1 state change + 1 message is sent

⇒ this synchronous computation yields a Markov chain

• Each round starts by each node choosing a uniform id ∈ { 1, . . . , K }

• Nodes pass their selected id around the ring

• If there is a unique id, the node with the maximum unique id is leader

• If not, start another round and try again . . .
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Leader election

choose 7choose 1

choose 7

choose 1

choose 5

choose 5

choose 7

probabilistically choose an id from [1...K]
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Leader election
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Leader election
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Leader election
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Leader election
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End of 1st round
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Start a new round

choose 1choose 1

choose 3

choose 1

choose 1

choose 51

choose 3

new round and new chances!
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Advanced model checking

Properties of leader election

• Almost surely eventually a leader will be elected:

P=1(�leader elected)

• With probability � 4
5, eventually a leader is elected :

P�0.8(�leader elected)

• . . . . . . within k steps:

P�0.8(��kleader elected)
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Probability to elect a leader within L rounds

P�q(�
�(N+1)·L leader elected) (Itai & Rodeh’s algorithm)
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Advanced model checking

Discrete-time Markov chains

A DTMC M is a tuple (S,P, ιinit, AP,L) with:

• S is a countable nonempty set of states

• P : S × S → [0, 1], transition probability function s.t.
∑

s′ P(s, s′) = 1

– P(s, s′) is the probability to jump from s to s′ in one step

• ιinit : S → [0, 1], the initial distribution with
∑
s∈S

ιinit(s) = 1

– ιinit(s) is the probability that system starts in state s

– state s for which ιinit(s) > 0 is an initial state

• L : S → 2AP , the labelling function

⇒ a DTMC is a transition system with only probabilistic transitions
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Example
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Advanced model checking

Paths

• State graph of DTMC M
– vertices are states of M, and (s, s′) ∈ E if and only if P(s, s′) > 0

• Paths in M are maximal (i.e., infinite) paths inits state graph

– for path π in M, inf(π) is the set of states that are visited infinitely often in π

– Paths(M) and Pathsfin(M) denote the set of (finite) paths in M

• Post(s) = {s′ ∈ S | P(s, s′) > 0} and Pre(s) = {s′ ∈ S | P(s′, s) > 0}
– Post∗(s) is the set of states reachable from s via a finite path fragment
– Pre∗(s) = {s′ ∈ S | s ∈ Post∗(s′)}
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σ-algebra

(Ω,F) with F ⊆ 2Ω is a σ-algebra if:

1. ∅ ∈ F

2. E ∈ F ⇒ Ω − E ∈ F , and

3. (∀i � 0. Ei ∈ F) implies
⋃

i�0 Ei ∈ F

The elements of a σ-algebra are called measurable sets (or: events)

Ω ∈ F and F is closed under countable intersections
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Probability space

A probability space is a structure (Ω,F ,Pr) with:

• σ-algebra (Ω,F)

• Pr : F → [0, 1] is a probability measure, i.e.:

1. Pr(Ω) = 1, and

2. Pr (
S∞

i=1 Ei) =
P∞

i=1 Pr(Ei) for Ei ∈ F and Ei ∩ Ej = ∅ for i�=j

Pr(E) is the probability of E, i.e., E is measurable

c© JPK 18



Advanced model checking

Properties of probability measures

• An event E with Pr(E) = 1 is called almost sure

– Pr(D) = Pr(E ∩ D) + Pr(D \ E)| {z }
=0

= Pr(E ∩ D)

• E1, . . . , En are almost sure implies
⋂

1�i�n Ei is almost sure

• For any Ω and F ⊆ 2Ω there exists a smallest σ-algebra containing F
– it is obtained by taking the intersection over all σ-algebras on Ω that contain F
– this is called the σ-algebra generated by F
– F is called the basis for this σ-algebra
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Probability measure on DTMCs

• Events are infinite paths in the DTMC M, i.e., Ω = Paths(M)

• σ-algebra on M is generated by cylinder sets of finite paths π̂:

Cyl(π̂) =
{

π ∈ Paths(M) | π̂ is a prefix of π
}

– cylinder sets serve as basis events of the smallest σ-algebra on Paths(M)

• Pr is the probability measure on the σ-algebra on Paths(M):

Pr
(
Cyl(s0 . . . sn)

)
= ιinit(s0) · P(s0 . . . sn)

– where P(s0 s1 . . . sn) =
Q

0�i<n

P(si, si+1)

– and P(s0) = 1 for paths of length zero
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Reachability probabilities
• What is the probability to reach a set of states B ⊆ S in DTMC M?

– B could be certain bad states which should be visited only seldomly

• Which event does �B mean formally?

– the union of all cylinders Cyl(s0 . . . sn) where
– s0 . . . sn is an initial path fragment in M with s0, . . . , sn−1 /∈ B and sn ∈ B

Pr(�B) =
∑

s0...sn∈Pathsfin(M)∩(S\B)∗B

Pr
(
Cyl(s0 . . . sn)

)

=
∑

s0...sn∈Pathsfin(M)∩(S\B)∗B

ιinit(s0) · P(s0 . . . sn)
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Reachability probabilities by infinite sums
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Reachability probabilities in finite DTMCs

• Let Pr(s |= �B) = Prs(�B) = Prs{π ∈ Paths(s) | π |= �B}
– where Prs is the probability measure in M with only initial state s

• Let variable xs = Pr(s |= �B) for any state s

– if B is not reachable from s then xs = 0

– if s ∈ B then xs = 1

• For any state s ∈ Pre∗(B) \ B:

xs =
∑

t∈S\B

P(s, t) · xt

︸ ︷︷ ︸
reach B via t

+
∑
u∈B

P(s, u)

︸ ︷︷ ︸
reach B in one step
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Linear equation system

• These equations can be rewritten into the following form:

x = Ax + b

– where vector x = (xs)s∈S̃ with S̃ = Pre∗(B) \ B

– A =
“

P(s, t)
”

s,t∈S̃
, the transition probabilities in S̃

– b =
“

bs

”
s∈S̃

contains the probabilities to reach B within one step

• Linear equation system: (I− A)x = b

– note: more than one solution may exist if I − A has no inverse (i.e., is singular)
⇒ characterize the desired probability as least fixed point
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Example

Let B =
{

delivered
}

S̃ =
{

init, try, lost
}

and the equations:

xinit = xtry

xtry = 1
10 · xlost + 9

10
xlost = xtry

which can be rewritten as:

 1 −1 0

0 1 − 1
10

0 −1 1


 · x =


 0

9
10
0




and yields the (unique) solution: xtry = xinit = xlost = 1.
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Constrained reachability

• Let M = (S,P, ιinit , AP, L) be a (possibly infinite) DTMC and B, C ⊆ S

• C U �nB is the union of the basic cylinders of path fragments:

– s0 s1 . . . sk with k � n and si ∈ C for all 0 � i < k and sk ∈ B

• Let S=0, S=1, S? be a partition of S such that:

– B ⊆ S=1 ⊆ {s ∈ S | Pr(s |= C U B) = 1}
– S \ (C ∪ B) ⊆ S=0 ⊆ {s ∈ S | Pr(s |= C U B) = 0}
– so: all states in S? belong to C \ B

• Let A =
(
P(s, t)

)
s,t∈S?

and
(
bs

)
s∈S?

where bs = P(s, S=1)
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Least fixed point characterization
The vector x =

(
Pr(s |= C UB)

)
s∈S?

is the least fixed point of the
operator

Υ : [0, 1]S? → [0, 1]S? given by Υ(y) = A · y + b

Furthermore, for x(0) = 0 and x(n+1) = Υ(x(n)) for n � 0:

• x(n) = (x(n)
s )s∈S?

where for any s: x
(n)
s = Pr(s |= C U �nS=1)

• x(0) � x(1) � x(2) � . . . � x, and

• x = lim
n→∞x(n)

partial ordering is: y � y′ iff ys � y′
s for all s ∈ S?
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Proof
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Expansion law

• Recall in CTL: ∃(C UB) is the least solution of expansion law:

∃(C UB) ≡ B ∨ (C ∧∃© ∃(C UB))

• That is: the set X = Sat(∃(C UB)) is the smallest set such that:

B ∪ { s ∈ C \ B | Post(s) ∩ X 
= ∅ } ⊆ X

• Previous theorem “replaces” s ∈ X by values xs in [0, 1]

– if s ∈ B then xs = 1 (compare: s ∈ B implies s ∈ X)
– if s ∈ S \ (C ∪ B) then xs = 0 (compare: s /∈ C ∪ B implies s /∈ X)

• If s ∈ C \ B then xs =
∑

t∈C\B P(s, t) · xt +
∑

t∈B P(s, t)

– compare: s ∈ C \ B and Post(s) ∩ X �= ∅ implies s ∈ X
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Constrained reachability probabilities

• So: x is the least solution of Ax + b = x in [0, 1]S?

• And: can be approximated by:

x(0) = 0 and x(n+1) = Ax(n) + b for n � 0

• Power method: compute vectors x(0),x(1),x(2), . . . and abort if:

max
s∈S?

|x(n+1)
s − x(n)

s | < ε for some small tolerance ε

– convergence guaranteed
– alternative techniques: e.g., Jacobi or Gauss-Seidel, successive overrelaxation
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Unique solution
Let M be a finite DTMC with state space S partitioned into:

• S=0 = Sat(¬∃(C UB))

• S=1 a subset of {s ∈ S | Pr(s |= C UB) = 1} that contains B

• S? = S \ (S=0 ∪ S=1)

For B, C ⊆ S, the vector
(
Pr(s |= C UB)

)
s∈S?

is the unique solution of the linear equation system:

x = Ax+b where A =
(
P(s, t)

)
s,t∈S?

and b =
(
P(s, S=1)

)
s∈S?
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Computing constrained reachability probabilities

• The probabilities of the events C U �nB can be obtained iteratively:

x(0) = 0 and x(i+1) = Ax(i) + b for 0 � i < n

• where A =
(
P(s, t)

)
s,t∈C\B

and b =
(
P(s, B)

)
s∈C\B

• Then: x(n)(s) = Pr(s |= C U �nB) for s ∈ C \ B
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Transient probabilities

• Given that An(s, t) = Pr(s |= S? U =n t)

– if B = ∅, C = S, we have S=1 = S=0 = ∅ and S? = S and A = P
– Pn(s, t) is the probability to be in state t after n steps once started in s

• Transient probability: ΘM
n (t) =

∑
s∈S ιinit(s) · Pn(s, t)

• ΘM
n = P · P · . . . · P︸ ︷︷ ︸

n times

· ιinit = Pn · ιinit

– where the initial distribution ιinit is viewed as column-vector

• Compute ΘM
n by successive vector-matrix multiplication:

ΘM
0 = ιinit , ΘM

n = P · ΘM
n−1 for n � 1

c© JPK 33



Advanced model checking

Reachability = transient probabilities

• Suppose we want to compute probabilities for ��nB in M
– observe: once B is reached, remaining behaviour is not important

• Adapt M by making all states in B absorbing

– PB(s, t) = P(s, t) if s /∈ B and PB(s, s) = 1 for s ∈ B

– all outgoing transitions of s ∈ B are replaced by a single self-loop at s

• Then:
M
Pr(��nB)︸ ︷︷ ︸

reachability in M
=

∑
s′∈B

ΘMB
n (s′)

︸ ︷︷ ︸
transient probability in MB
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Constrained reachability = transient probabilities

• Suppose we want to compute probabilities for C U �nB in M
– observe: once B is reached, remaining behaviour is not important
– observe: once s ∈ S \ (C ∪ B) is reached, remaining behaviour not important

• Adapt M by making all states in B and S \ (C ∪ B) absorbing

– PB(s, t) = P(s, t) if s /∈ B and PB(s, s) = 1 for s ∈ B or s ∈ C ∪ B

• Then:
M
Pr(C U �nB)︸ ︷︷ ︸
reachability in M

=
∑
s′∈B

Θ
MC,B
n (s′)

︸ ︷︷ ︸
transient probability in MC,B
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