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Advanced model checking

L2228 Probabilities help

e When analysing system performance and dependability
— to quantify arrivals, waiting times, time between failure, QoS, ...
e When modelling uncertainty in the environment

— to quantify environmental factors in decision support
— to quantify unpredictable delays, express soft deadlines, ...

e When building protocols for networked embedded systems
— randomized algorithms
e When analysing large populations

— number of nodes in the internet, number of end-users, ...
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Advanced model checking

Probabilistic verification so far

e Termination of probabilistic programs (Hart, Sharir & Pnueli
— does a probabilistic program terminate with probability one?

e Markov decision processes (Courcoubetis & Yannakakis
— does a certain (linear) temporal logic formula hold with probability p?

e Discrete-time Markov chains (Hansson & Jonsson
— can we reach a goal state via a given trajectory with probability p?

e Discrete-time Markov decision processes (Bianco & de Alfaro
— what is the maximal (or minimal) probability of doing this?

e Continuous-time Markov chains (Baier, Katoen & Hermanns

— can we do so within a given time interval 1?

,1983)

,1988)

, 1990)

, 1995)

, 1999)
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Advanced model checking

Q%g@ Characteristics

e What is inside?

— temporal logics and model checking
— numerical and optimisation techniques from performance and OR

¢ \What can be checked?
— time-bounded reachability, long-run averages, safety and liveness
e What is its usage”?

— powerful tools: PRISM (4,000 downloads), MRMC, Petri net tools, Probmela

— applications: distributed systems, security, biology, quantum computing . .
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Advanced model checking

A synchronous leader election protocol

(Itai & Rodeh, 1990)

e A round-based protocol in a synchronous ring of NV > 2 nodes

— the nodes proceed in a lock-step fashion
— each slot = 1 message is read + 1 state change + 1 message is sent
= this synchronous computation yields a Markov chain

e Each round starts by each node choosing a uniformid € {1,..., K }
e Nodes pass their selected id around the ring
e If there is a unique id, the node with the maximum unique id is leader

e If not, start another round and try again . ..
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Advanced model checking

Leader election

choose 5

choose 7

choose 1

probabilistically choose an

choose 7

id from [1... K|
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Advanced model checking

Leader election

send 7
send 7

send 1
send 5

send 7

send your selected id to your neighbour

© JPK



Advanced model checking

Leader election

pass 1
pass 5

pass 7
pass 7

pass 5

pass the received id, and check uniqueness own id
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Leader election

pass 7
pass 1

pass 5
pass 5

pass 7

pass the received id, and check uniqueness own id
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Leader election

pass 5
pass 7

pass 7
pass 1

pass 5

pass the received id, and check uniqueness own id
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Advanced model checking

End of 1st round

no unique leader has been elected

© JPK

10



Advanced model checking

Start a new round

choose 51

choose 1
choose 3
choose 1
choose 1
choose 3

new round and new chances!
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Advanced model checking

Properties of leader election

e Almost surely eventually a leader will be elected:

P_,(Cleader elected)

e With probability > %, eventually a leader is elected :

P-o.s(<Cleader elected)

o ...... within k steps:

P-0.5(O"leader elected)

© JPK
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Advanced model checking

Probability to elect a leader within L rounds

Frobability leader elected within L rounds (K=2) Probability leader elected within Lrounds (K=4)

Frobakility

—— |\|=3 —*— N=3

—*— N=4 —=— pl=4

—&— [|=5 —*— pN=h
— N=6 —— N=@
—N=8 L ——N=7
M=10 N=8

0.8

0.754

qu(Og(NH)'L leader elected) (ltai & Rodeh’s algorithm)
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Advanced model checking

Discrete-time Markov chains
A DTMC M is atuple (S, P, tini, AP, L) with:
e S'is a countable nonempty set of states
e P:S5 xS —|0,1], transition probability function s.t. >, P(s,s’) =1

— P(s, s) is the probability to jump from s to s’ in one step

e L - S — |0, 1], the initial distribution with >~ ¢;,:(s) =1
ses

— Linit(8) is the probability that system starts in state s
— state s for which ¢;,;:(s) > 0 is an initial state

e L:S — 247 the labelling function

= a DTMC is a transition system with only probabilistic transitions
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Advanced model checking

Example

© JPK
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Advanced model checking

Paths

e State graph of DTMC M

— vertices are states of M, and (s, s') € Eifand only if P(s,s’) > 0

e Paths in M are maximal (i.e., infinite) paths inits state graph

— for path 7 in M, inf () is the set of states that are visited infinitely often in
— Paths(M) and Pathsg, (M) denote the set of (finite) paths in M

e Post(s) ={s' € S|P(s,s') >0} and Pre(s) ={s" € S| P(s',s) >0}

— Post”(s) is the set of states reachable from s via a finite path fragment
— Pre*(s) = {s' € S| s € Post"(s')}
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Advanced model checking

c-algebra

(92, F) with F C 2% is a o-algebra if:

1. ocF

2. Fe F = Q—-FeF,and

3. (Vi > 0. E; € F) implies | J,.,F; € F

The elements of a o-algebra are called measurable sets (or: events)

) € F and F is closed under countable intersections

© JPK

17



Advanced model checking

Probability space

A probability space is a structure (€2, F, Pr) with:
e o-algebra (2, F)

e Pr: F — |0,1] is a probability measure, i.e.:

1. Pr(2) =1, and

2. Pr (U;.il Ez) = 221 PI‘(EZ) for E, e F and E;, N Ej = o for ’L#]

Pr(FE) is the probability of E, i.e., E is measurable

© JPK
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Advanced model checking

Properties of probability measures

e An event E with Pr(F) = 1 is called almost sure

- Pr(D) = Pr(END)+Pr(D\E) = Pr(END)

e Fi,..., E, are almost sure implies (), ,,, F; is almost sure

e Forany Q and F C 2% there exists a smallest o-algebra containing F

— it is obtained by taking the intersection over all o-algebras on €2 that contain F
— this is called the o-algebra generated by F
— JF is called the basis for this o-algebra
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Advanced model checking

Probability measure on DTMCs
e Events are infinite paths in the DTMC M, i.e., Q = Paths(M)

e g-algebra on M is generated by cylinder sets of finite paths 7
Cyl(#) = { = € Paths(M) | 7 is a prefix of 7 }
— cylinder sets serve as basis events of the smallest o-algebra on Paths(.M)

e Pris the probability measure on the o-algebra on Paths(M):

Pr(CyI(so . sn)) = Linit(S0) - P(sg...5p)

— where P(SO S1 ... Sn) = H P(Si, Si—l—l)
0<i<n

— and P(sp) = 1 for paths of length zero
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Reachability probabilities
e What is the probability to reach a set of states B C S in DTMC M?

— B could be certain bad states which should be visited only seldomly

e Which event does ¢ B mean formally?

— the union of all cylinders Cyl(sg . . . s,) where
— So ... Sp is aninitial path fragment in M with sq,...,s,-1 ¢ Bands, € B

Pr(¢B) = Z Pr(Cyl(so L sn))

sg---snp€Pathsg, (M)N(S\B)*B

(@)

— Z Lz’m’t(SO) . P(SO ce Sn)

..sp€Paths , (M)N(S\B)* B

S

e}

© JPK
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Advanced model checking

Reachability probabilities by infinite sums

© JPK
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Advanced model checking

Reachability probabilities in finite DTMCs

e Let Pr(s = OB) = Pry(¢B) = Pry{w € Paths(s) | 7 = OB}

— where Pr; is the probability measure in M with only initial state s

e Letvariable z, = Pr(s = ©B) for any state s
— if B is not reachable from s then z, = 0

— ifse€ Bthenz, =1

e For any state s € Pre*(B) \ B:

ZPst -y + ZPS’LL

tES\B ueB

7

reach B via t reach B |n one step
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Linear equation system

e These equations can be rewritten into the following form:

x = Ax + b

— where vector x = (), 5 with S = Pre*(B) \ B

- A = (P(s,t)) . the transition probabilities in S
s,te

— b = (bs) < contains the probabilities to reach B within one step
sc

e Linear equation system: (I— A)x = b

— note: more than one solution may exist if I — A has no inverse (i.e., is singular)
= characterize the desired probability as least fixed point
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Advanced model checking

Example
Let B = { delivered }

S = {init, try, lost } and the equations:

Lint  — Ly

_ 1 9
Tty = 71 Tlost T 1g
Llost — Lty

which can be rewritten as:

1 -1 0 0
0 1 -5 | ' x=| &
0 —1 1 0

and yields the (unique) solution: xyy = Zinit = Ziost = 1.

© JPK
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Constrained reachability

o Let M = (S, P, 1, AP, L) be a (possibly infinite) DTMC and B, C' C S

e C'US"B is the union of the basic cylinders of path fragments:

— s8981...8.Withk <nmands; € Cforall0 <7< kand s, € B

e Let S_g, S—1, S» be a partition of S such that:

- B C S C{seS|Pr(sECUB)=1}
- S\ (CUB) C S.g C {se€ S|Pr(s=CUB) =0}
— so: all statesin S, belongto C' \ B

e LetA = (P(s,?)) and (b, )._. where by =P(s,S=1)

5,t€S? s€S9
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Advanced model checking

Least fixed point characterization

The vector x = (Pr(s = CUB))_
operator

s, 1S the least fixed point of the

Y :[0,1]°7 — [0,1]°? givenby T(y) = A-y + b
Furthermore, for x(°) = 0 and x(*+1) = 1 (x(")) for n > 0:
o x(") = (z\"),cg, where for any s: 20" = Pr(s = CU"5_,)
o x(0 <x(M <x®) ... <x, and

e x = lim x(™

partial orderingis: y < y'iffys <y, forall s € S»
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Proof

© JPK
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Expansion law

e Recall in CTL: 3(C'U B) is the least solution of expansion law:
I(CUB) =BV (CAN30O3(CUB))

e Thatis: the set X = Sat(3(C' U B)) is the smallest set such that:
BU{seC\B |Posts) NX#gog} C X

e Previous theorem “replaces” s € X by values z; in [0, 1]

— if s € Bthenxz, = 1 (compare: s € B implies s € X)
—ifse S\ (CUB)thenz, =0 (compare: s ¢ C U B implies s & X)

o fseC\Bthenz; =3, \gP(s,t) z1+ > g P(s,?)

— compare: s € C'\ B and Post(s) N X # @ implies s € X

© JPK
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Constrained reachability probabilities

e So: x is the least solution of Ax +b = xin [0, 1]°"
e And: can be approximated by:

x® =0 and x"tY = Ax("™) £ b for n >0

e Power method: compute vectors x(9, x(1) x(2) .. and abort if:

max | 2"t — 2" | < ¢ for some small tolerance «

SES?

— convergence guaranteed
— alternative techniques: e.g., Jacobi or Gauss-Seidel, successive overrelaxation
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Advanced model checking

Unique solution
Let M be a finite DTMC with state space S partitioned into:

e S_o = Sat(—-3(C'UB))

e S_jasubsetof {sec S|Pr(s =CUB) =1} that contains B
e 5o = 5\ (S=oUS=)

For B, C' C S, the vector

(Pr(s =CUB))

sES?

IS the unique solution of the linear equation system:

x = Ax+b where A = (P(s,t))_, o and b = (P(5,5.1))
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Computing constrained reachability probabilities

e The probabilities of the events C' U S" B can be obtained iteratively:

x® =0 and xUtY) = Ax® 1+ bforo <1<n

e where A = (P(s,t)) and b = (P(s,B))

s,teC\B seC\B

e Then: x("(s) = Pr(s ECUS"B)forse C\ B

© JPK
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Transient probabilities

e Giventhat A"(s,t) = Pr(sE= S U™"1t)

- fB=g,C =5S,wehave S_; = S_g=gand S, = Sand A = P
— P"(s, t) is the probability to be in state ¢ after n steps once started in s

e Transient probability: ©'(t) = >, g timi(s) - P"(s,t)

() @nM = PPVELzmt — Pn’bz'm't

n times

— where the initial distribution ¢,,;; IS viewed as column-vector
e Compute ©M by successive vector-matrix multiplication:

@Q/l = Linit, @nM =P @ﬂl for n > 1

© JPK
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Reachability = transient probabilities

e Suppose we want to compute probabilities for &<"B in M

— observe: once B is reached, remaining behaviour is not important

e Adapt M by making all states in B absorbing

— Pp(s,t) = P(s,t)ifs ¢ BandPpg(s,s) =1fors € B
— all outgoing transitions of s € B are replaced by a single self-loop at s

e Then:
M < M /
Pr(OS"B) = ) 0,'5(s)
reachab‘iﬁty in M s'eB
transient proBability in Mp

7
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Advanced model checking

Constrained reachability = transient probabilities

e Suppose we want to compute probabilities for C' U S"B in M

— observe: once B is reached, remaining behaviour is not important
— observe: once s € S\ (C U B) is reached, remaining behaviour not important

e Adapt M by making all states in B and S\ (C' U B) absorbing

— Pp(s,t) =P(s,t)ifs ¢ BandPpg(s,s) =1fors e Borse CUB

e Then:
M n Mce. B,
Pr(CcUs"B) = Y 0, ()
reachab‘ilrity in M s'eB
transient probagility in M¢c. B

7
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