

# Reachability in Markov Chains

## Lecture #19 of Advanced Model Checking

*Joost-Pieter Katoen*

Lehrstuhl 2: Software Modeling & Verification

E-mail: [katoen@cs.rwth-aachen.de](mailto:katoen@cs.rwth-aachen.de)

January 18, 2006



## Probabilities help

- When analysing system performance and dependability
  - to quantify arrivals, waiting times, time between failure, QoS, ...
- When modelling uncertainty in the environment
  - to quantify environmental factors in decision support
  - to quantify unpredictable delays, express soft deadlines, ...
- When building protocols for networked embedded systems
  - randomized algorithms
- When analysing large populations
  - number of nodes in the internet, number of end-users, ...

# Probabilistic verification so far

- **Termination of probabilistic programs** (Hart, Sharir & Pnueli, 1983)
  - does a probabilistic program terminate with probability one?
- **Markov decision processes** (Courcoubetis & Yannakakis, 1988)
  - does a certain (linear) temporal logic formula hold with probability  $p$ ?
- **Discrete-time Markov chains** (Hansson & Jonsson, 1990)
  - can we reach a goal state via a given trajectory with probability  $p$ ?
- **Discrete-time Markov decision processes** (Bianco & de Alfaro, 1995)
  - what is the maximal (or minimal) probability of doing this?
- **Continuous-time Markov chains** (Baier, Katoen & Hermanns, 1999)
  - can we do so within a given time interval  $I$ ?



## Characteristics

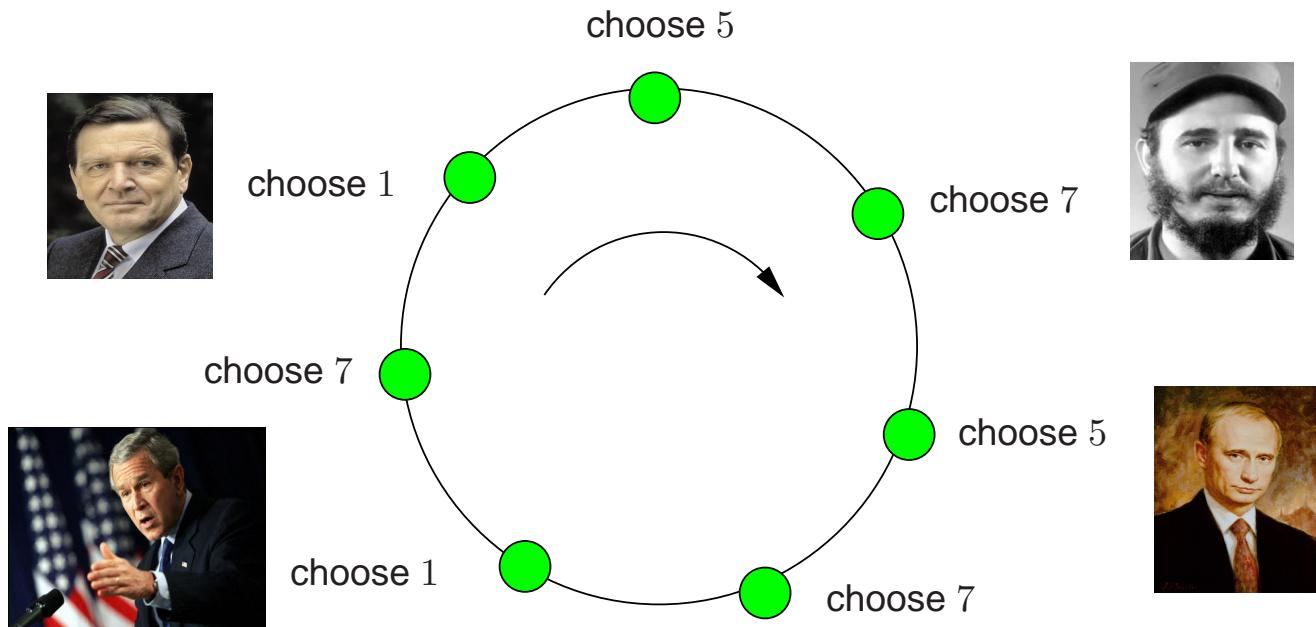
- **What is inside?**
  - temporal logics and model checking
  - numerical and optimisation techniques from performance and OR
- **What can be checked?**
  - time-bounded reachability, long-run averages, safety and liveness
- **What is its usage?**
  - powerful tools: PRISM (4,000 downloads), MRMC, Petri net tools, Probmela
  - applications: distributed systems, security, biology, quantum computing . . .

# A synchronous leader election protocol

(Itai & Rodeh, 1990)

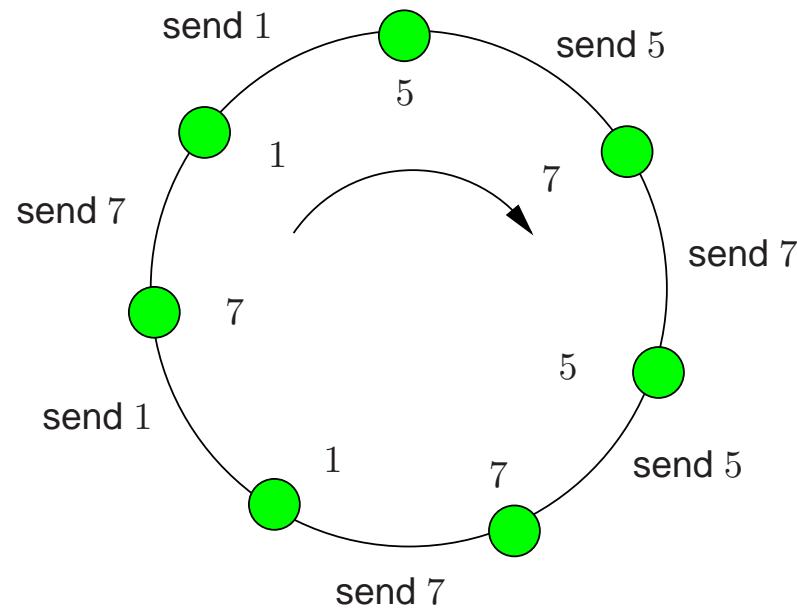
- A round-based protocol in a synchronous ring of  $N > 2$  nodes
  - the nodes proceed in a **lock-step** fashion
  - each slot = 1 message is read + 1 state change + 1 message is sent
  - ⇒ this synchronous computation yields a Markov chain
- Each round starts by each node choosing a uniform  $\text{id} \in \{1, \dots, K\}$
- Nodes pass their selected  $\text{id}$  around the ring
- If there is a unique  $\text{id}$ , the node with the **maximum** unique  $\text{id}$  is leader
- If not, start another round and try again ...

# Leader election



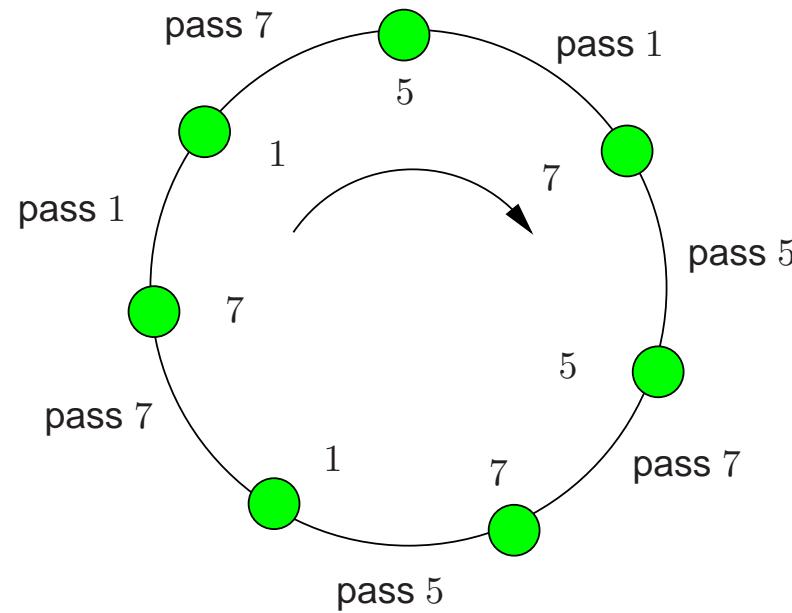
probabilistically choose an id from  $[1 \dots K]$

# Leader election



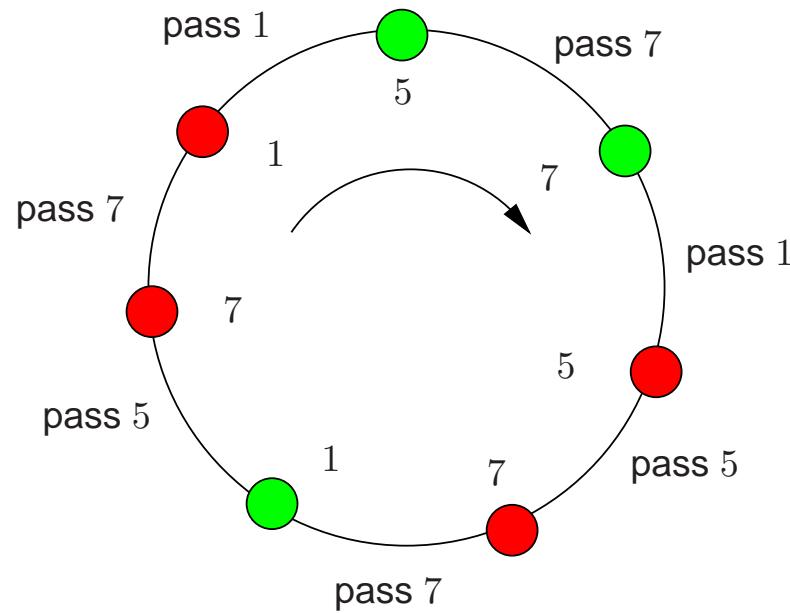
send your selected id to your neighbour

# Leader election



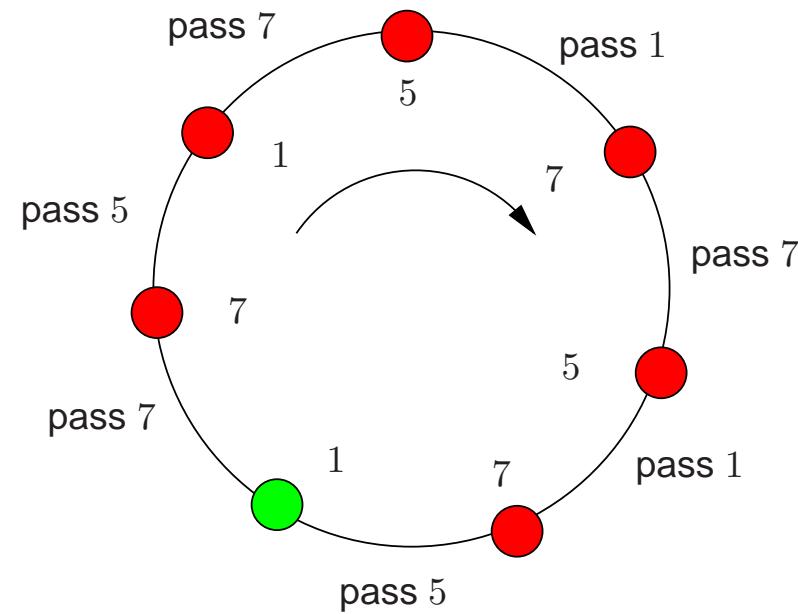
pass the received id, and check uniqueness own id

# Leader election



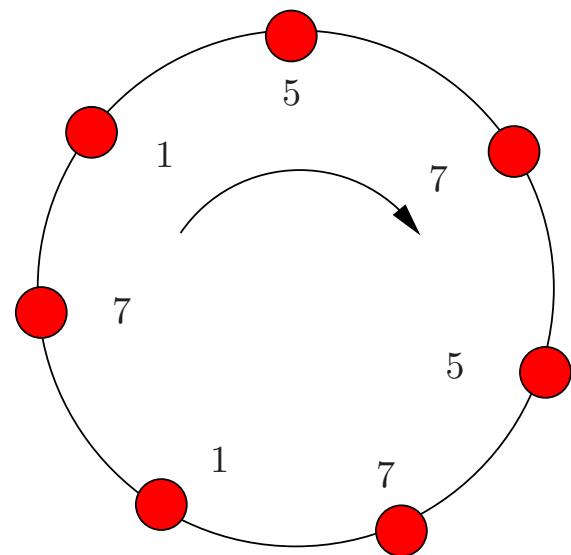
pass the received id, and check uniqueness own id

# Leader election



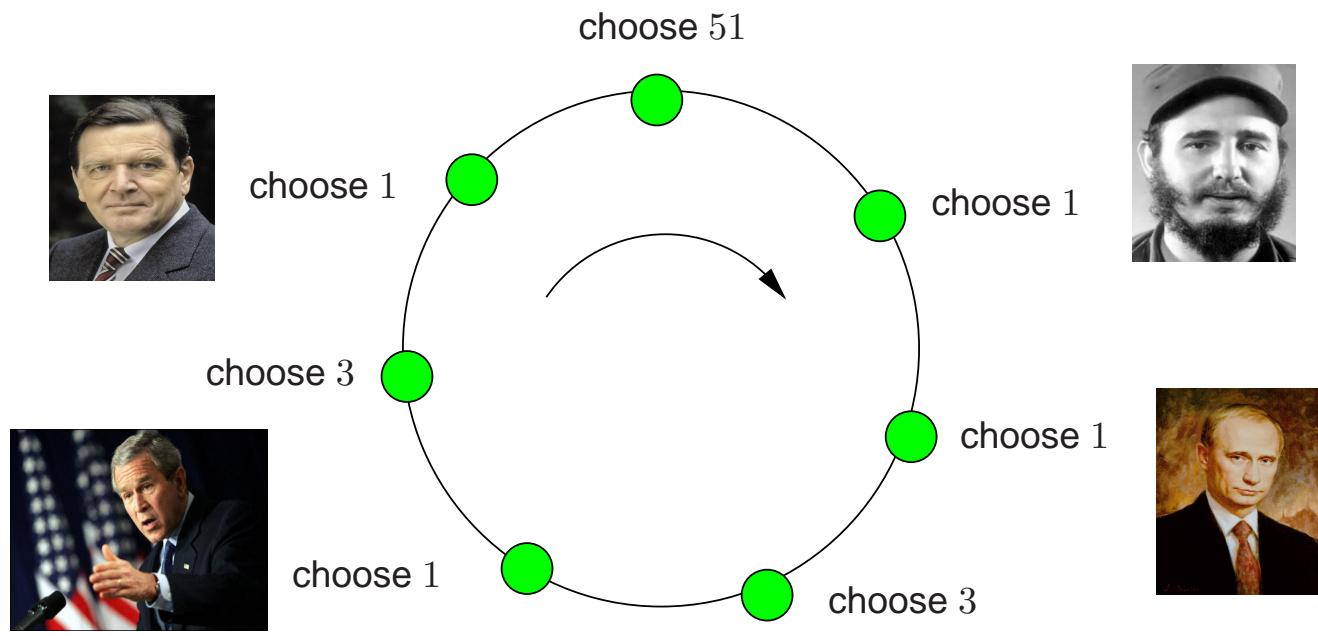
pass the received id, and check uniqueness own id

## End of 1st round



no unique leader has been elected

# Start a new round



new round and new chances!

## Properties of leader election

- Almost surely eventually a leader will be elected:

$$\mathbb{P}_{=1}(\diamond \text{leader elected})$$

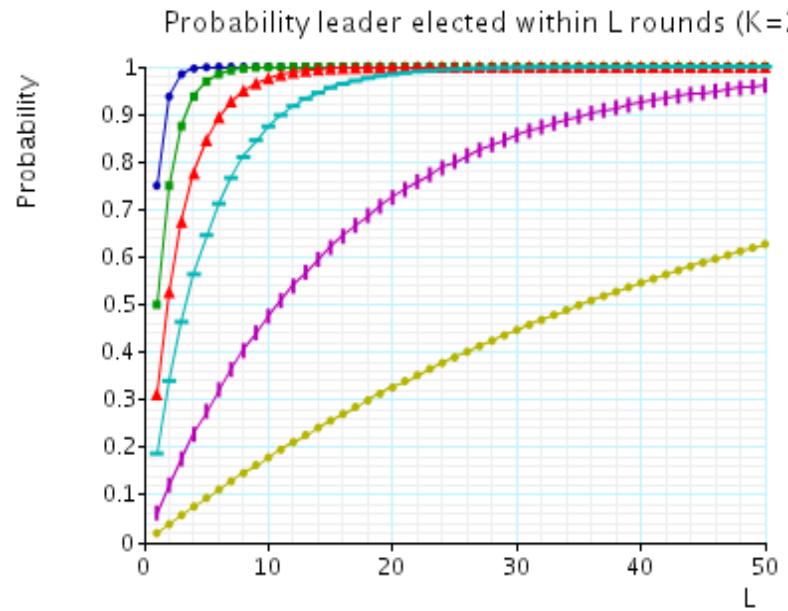
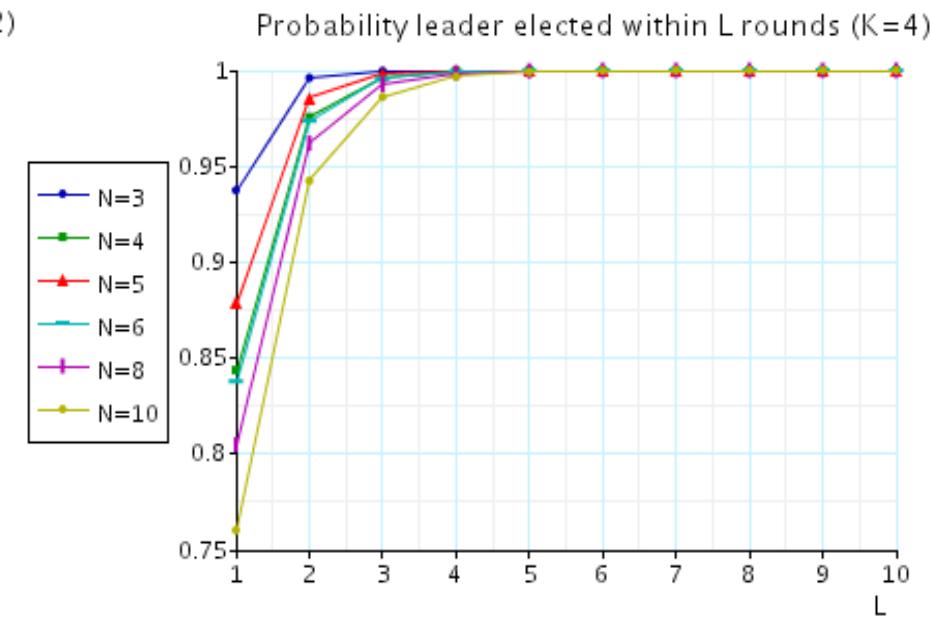
- With probability  $\geq \frac{4}{5}$ , eventually a leader is elected :

$$\mathbb{P}_{\geq 0.8}(\diamond \text{leader elected})$$

- ..... within  $k$  steps:

$$\mathbb{P}_{\geq 0.8}(\diamond^{\leq k} \text{leader elected})$$

# Probability to elect a leader within $L$ rounds



$$\mathbb{P}_{\leq q}(\diamond^{\leq (N+1) \cdot L} \text{leader elected}) \quad (\text{Itai \& Rodeh's algorithm})$$

## Discrete-time Markov chains

A **DTMC**  $\mathcal{M}$  is a tuple  $(S, \mathbf{P}, \iota_{init}, AP, L)$  with:

- $S$  is a countable nonempty set of **states**
- $\mathbf{P} : S \times S \rightarrow [0, 1]$ , **transition probability function** s.t.  $\sum_{s'} \mathbf{P}(s, s') = 1$ 
  - $\mathbf{P}(s, s')$  is the probability to jump from  $s$  to  $s'$  in one step
- $\iota_{init} : S \rightarrow [0, 1]$ , the **initial distribution** with  $\sum_{s \in S} \iota_{init}(s) = 1$ 
  - $\iota_{init}(s)$  is the probability that system starts in state  $s$
  - state  $s$  for which  $\iota_{init}(s) > 0$  is an **initial state**
- $L : S \rightarrow 2^{AP}$ , the **labelling function**
  - ⇒ a DTMC is a transition system with only probabilistic transitions

# Example

# Paths

- **State graph** of DTMC  $\mathcal{M}$ 
  - vertices are states of  $\mathcal{M}$ , and  $(s, s') \in E$  if and only if  $\mathbf{P}(s, s') > 0$
- **Paths** in  $\mathcal{M}$  are maximal (i.e., infinite) paths in its state graph
  - for path  $\pi$  in  $\mathcal{M}$ ,  $\inf(\pi)$  is the set of states that are visited infinitely often in  $\pi$
  - $Paths(\mathcal{M})$  and  $Paths_{fin}(\mathcal{M})$  denote the set of (finite) paths in  $\mathcal{M}$
- $Post(s) = \{s' \in S \mid \mathbf{P}(s, s') > 0\}$  and  $Pre(s) = \{s' \in S \mid \mathbf{P}(s', s) > 0\}$ 
  - $Post^*(s)$  is the set of states reachable from  $s$  via a finite path fragment
  - $Pre^*(s) = \{s' \in S \mid s \in Post^*(s')\}$

## $\sigma$ -algebra

$(\Omega, \mathcal{F})$  with  $\mathcal{F} \subseteq 2^\Omega$  is a  $\sigma$ -algebra if:

1.  $\emptyset \in \mathcal{F}$
2.  $E \in \mathcal{F} \Rightarrow \Omega - E \in \mathcal{F}$ , and
3.  $(\forall i \geq 0. E_i \in \mathcal{F})$  implies  $\bigcup_{i \geq 0} E_i \in \mathcal{F}$

The elements of a  $\sigma$ -algebra are called *measurable sets* (or: **events**)

$\Omega \in \mathcal{F}$  and  $\mathcal{F}$  is closed under countable intersections

## Probability space

A *probability space* is a structure  $(\Omega, \mathcal{F}, \Pr)$  with:

- $\sigma$ -algebra  $(\Omega, \mathcal{F})$
- $\Pr : \mathcal{F} \rightarrow [0, 1]$  is a *probability measure*, i.e.:
  1.  $\Pr(\Omega) = 1$ , and
  2.  $\Pr(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \Pr(E_i)$  for  $E_i \in \mathcal{F}$  and  $E_i \cap E_j = \emptyset$  for  $i \neq j$

$\Pr(E)$  is the probability of  $E$ , i.e.,  $E$  is measurable

## Properties of probability measures

- An event  $E$  with  $\Pr(E) = 1$  is called *almost sure*
  - $\Pr(D) = \Pr(E \cap D) + \underbrace{\Pr(D \setminus E)}_{=0} = \Pr(E \cap D)$
- $E_1, \dots, E_n$  are almost sure implies  $\bigcap_{1 \leq i \leq n} E_i$  is almost sure
- For any  $\Omega$  and  $\mathcal{F} \subseteq 2^\Omega$  there exists a *smallest*  $\sigma$ -algebra containing  $\mathcal{F}$ 
  - it is obtained by taking the intersection over all  $\sigma$ -algebras on  $\Omega$  that contain  $\mathcal{F}$
  - this is called the  $\sigma$ -algebra *generated* by  $\mathcal{F}$
  - $\mathcal{F}$  is called the *basis* for this  $\sigma$ -algebra

## Probability measure on DTMCs

- Events are *infinite paths* in the DTMC  $\mathcal{M}$ , i.e.,  $\Omega = \text{Paths}(\mathcal{M})$
- $\sigma$ -algebra on  $\mathcal{M}$  is generated by *cylinder sets* of finite paths  $\hat{\pi}$ :

$$\text{Cyl}(\hat{\pi}) = \{ \pi \in \text{Paths}(\mathcal{M}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

- cylinder sets serve as basis events of the smallest  $\sigma$ -algebra on  $\text{Paths}(\mathcal{M})$
- $\Pr$  is the *probability measure* on the  $\sigma$ -algebra on  $\text{Paths}(\mathcal{M})$ :

$$\Pr(\text{Cyl}(s_0 \dots s_n)) = \iota_{\text{init}}(s_0) \cdot \mathbf{P}(s_0 \dots s_n)$$

- where  $\mathbf{P}(s_0 s_1 \dots s_n) = \prod_{0 \leq i < n} \mathbf{P}(s_i, s_{i+1})$
- and  $\mathbf{P}(s_0) = 1$  for paths of length zero

## Reachability probabilities

- What is the probability to reach a set of states  $B \subseteq S$  in DTMC  $\mathcal{M}$ ?
  - $B$  could be certain *bad* states which should be visited only seldomly
- Which event does  $\diamond B$  mean formally?
  - the union of all cylinders  $Cyl(s_0 \dots s_n)$  where
  - $s_0 \dots s_n$  is an initial path fragment in  $\mathcal{M}$  with  $s_0, \dots, s_{n-1} \notin B$  and  $s_n \in B$

$$\begin{aligned}
 \Pr(\diamond B) &= \sum_{s_0 \dots s_n \in \text{Paths}_{fin}(\mathcal{M}) \cap (S \setminus B)^* B} \Pr(Cyl(s_0 \dots s_n)) \\
 &= \sum_{s_0 \dots s_n \in \text{Paths}_{fin}(\mathcal{M}) \cap (S \setminus B)^* B} \iota_{init}(s_0) \cdot \mathbf{P}(s_0 \dots s_n)
 \end{aligned}$$

# Reachability probabilities by infinite sums

## Reachability probabilities in finite DTMCS

- Let  $\Pr(s \models \diamond B) = \Pr_s(\diamond B) = \Pr_s\{\pi \in \text{Paths}(s) \mid \pi \models \diamond B\}$ 
  - where  $\Pr_s$  is the probability measure in  $\mathcal{M}$  with only initial state  $s$
- Let variable  $x_s = \Pr(s \models \diamond B)$  for any state  $s$ 
  - if  $B$  is not reachable from  $s$  then  $x_s = 0$
  - if  $s \in B$  then  $x_s = 1$
- For any state  $s \in \text{Pre}^*(B) \setminus B$ :

$$x_s = \underbrace{\sum_{t \in S \setminus B} \mathbf{P}(s, t) \cdot x_t}_{\text{reach } B \text{ via } t} + \underbrace{\sum_{u \in B} \mathbf{P}(s, u)}_{\text{reach } B \text{ in one step}}$$

## Linear equation system

- These equations can be rewritten into the following form:

$$\mathbf{x} = \mathbf{Ax} + \mathbf{b}$$

- where vector  $\mathbf{x} = (x_s)_{s \in \tilde{S}}$  with  $\tilde{S} = \text{Pre}^*(B) \setminus B$
- $\mathbf{A} = \left( \mathbf{P}(s, t) \right)_{s, t \in \tilde{S}}$ , the transition probabilities in  $\tilde{S}$
- $\mathbf{b} = (b_s)_{s \in \tilde{S}}$  contains the probabilities to reach  $B$  within one step

- *Linear equation system*:  $(\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{b}$ 
  - note: more than one solution may exist if  $\mathbf{I} - \mathbf{A}$  has no inverse (i.e., is singular)  
⇒ characterize the desired probability as least fixed point

## Example

Let  $B = \{ \text{delivered} \}$

$\tilde{S} = \{ \text{init}, \text{try}, \text{lost} \}$  and the equations:

$$\begin{aligned} x_{\text{init}} &= x_{\text{try}} \\ x_{\text{try}} &= \frac{1}{10} \cdot x_{\text{lost}} + \frac{9}{10} \\ x_{\text{lost}} &= x_{\text{try}} \end{aligned}$$

which can be rewritten as:

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -\frac{1}{10} \\ 0 & -1 & 1 \end{pmatrix} \cdot \mathbf{x} = \begin{pmatrix} 0 \\ \frac{9}{10} \\ 0 \end{pmatrix}$$

and yields the (unique) solution:  $x_{\text{try}} = x_{\text{init}} = x_{\text{lost}} = 1$ .

## Constrained reachability

- Let  $\mathcal{M} = (S, \mathbf{P}, \iota_{init}, AP, L)$  be a (possibly infinite) DTMC and  $\mathcal{B}, \mathcal{C} \subseteq S$
- $\mathcal{C} \cup^{\leq n} \mathcal{B}$  is the union of the basic cylinders of path fragments:
  - $s_0 s_1 \dots s_k$  with  $k \leq n$  and  $s_i \in \mathcal{C}$  for all  $0 \leq i < k$  and  $s_k \in \mathcal{B}$
- Let  $S_{=0}, S_{=1}, S_?$  be a partition of  $S$  such that:
  - $\mathcal{B} \subseteq S_{=1} \subseteq \{s \in S \mid \Pr(s \models \mathcal{C} \cup \mathcal{B}) = 1\}$
  - $S \setminus (\mathcal{C} \cup \mathcal{B}) \subseteq S_{=0} \subseteq \{s \in S \mid \Pr(s \models \mathcal{C} \cup \mathcal{B}) = 0\}$
  - so: all states in  $S_?$  belong to  $\mathcal{C} \setminus \mathcal{B}$
- Let  $\mathbf{A} = (\mathbf{P}(s, t))_{s, t \in S_?}$  and  $(b_s)_{s \in S_?}$  where  $b_s = \mathbf{P}(s, S_{=1})$

## Least fixed point characterization

The vector  $\mathbf{x} = (\Pr(s \models \mathcal{C} \cup \mathcal{B}))_{s \in S?}$  is the *least fixed point* of the operator

$$\Upsilon : [0, 1]^{S?} \rightarrow [0, 1]^{S?} \quad \text{given by} \quad \Upsilon(\mathbf{y}) = \mathbf{A} \cdot \mathbf{y} + \mathbf{b}$$

Furthermore, for  $\mathbf{x}^{(0)} = \mathbf{0}$  and  $\mathbf{x}^{(n+1)} = \Upsilon(\mathbf{x}^{(n)})$  for  $n \geq 0$ :

- $\mathbf{x}^{(n)} = (x_s^{(n)})_{s \in S?}$  where for any  $s$ :  $x_s^{(n)} = \Pr(s \models \mathcal{C} \cup^{\leq n} S_{=1})$
- $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \dots \leq \mathbf{x}$ , and
- $\mathbf{x} = \lim_{n \rightarrow \infty} \mathbf{x}^{(n)}$

partial ordering is:  $\mathbf{y} \leq \mathbf{y}'$  iff  $y_s \leq y'_s$  for all  $s \in S?$

# Proof

## Expansion law

- Recall in CTL:  $\exists(\mathcal{C} \cup \mathcal{B})$  is the least solution of expansion law:

$$\exists(\mathcal{C} \cup \mathcal{B}) \equiv \mathcal{B} \vee (\mathcal{C} \wedge \exists \bigcirc \exists(\mathcal{C} \cup \mathcal{B}))$$

- That is: the set  $X = \text{Sat}(\exists(\mathcal{C} \cup \mathcal{B}))$  is the smallest set such that:

$$\mathcal{B} \cup \{s \in \mathcal{C} \setminus \mathcal{B} \mid \text{Post}(s) \cap X \neq \emptyset\} \subseteq X$$

- Previous theorem “replaces”  $s \in X$  by values  $x_s$  in  $[0, 1]$

- if  $s \in \mathcal{B}$  then  $x_s = 1$  (compare:  $s \in \mathcal{B}$  implies  $s \in X$ )
- if  $s \in \mathcal{C} \setminus (\mathcal{C} \cup \mathcal{B})$  then  $x_s = 0$  (compare:  $s \notin \mathcal{C} \cup \mathcal{B}$  implies  $s \notin X$ )

- If  $s \in \mathcal{C} \setminus \mathcal{B}$  then  $x_s = \sum_{t \in \mathcal{C} \setminus \mathcal{B}} \mathbf{P}(s, t) \cdot x_t + \sum_{t \in \mathcal{B}} \mathbf{P}(s, t)$ 
  - compare:  $s \in \mathcal{C} \setminus \mathcal{B}$  and  $\text{Post}(s) \cap X \neq \emptyset$  implies  $s \in X$

## Constrained reachability probabilities

- So:  $x$  is the *least* solution of  $Ax + b = x$  in  $[0, 1]^{S?}$
- And: can be approximated by:

$$x^{(0)} = 0 \quad \text{and} \quad x^{(n+1)} = Ax^{(n)} + b \quad \text{for } n \geq 0$$

- *Power method*: compute vectors  $x^{(0)}, x^{(1)}, x^{(2)}, \dots$  and abort if:

$$\max_{s \in S?} |x_s^{(n+1)} - x_s^{(n)}| < \varepsilon \quad \text{for some small tolerance } \varepsilon$$

- convergence guaranteed
- alternative techniques: e.g., Jacobi or Gauss-Seidel, successive overrelaxation

## Unique solution

Let  $\mathcal{M}$  be a finite DTMC with state space  $S$  partitioned into:

- $S_{=0} = \text{Sat}(\neg \exists(\textcolor{red}{C} \cup \textcolor{blue}{B}))$
- $S_{=1}$  a subset of  $\{s \in S \mid \Pr(s \models \textcolor{red}{C} \cup \textcolor{blue}{B}) = 1\}$  that contains  $\textcolor{blue}{B}$
- $S_? = S \setminus (S_{=0} \cup S_{=1})$

For  $\textcolor{blue}{B}, \textcolor{red}{C} \subseteq S$ , the vector

$$(\Pr(s \models \textcolor{red}{C} \cup \textcolor{blue}{B}))_{s \in S_?}$$

is the *unique* solution of the linear equation system:

$$\mathbf{x} = \mathbf{Ax} + \mathbf{b} \quad \text{where} \quad \mathbf{A} = (\mathbf{P}(s, t))_{s, t \in S_?} \quad \text{and} \quad \mathbf{b} = (\mathbf{P}(s, S_{=1}))_{s \in S_?}$$

## Computing constrained reachability probabilities

- The probabilities of the events  $C \cup^{\leq n} B$  can be obtained iteratively:

$$\mathbf{x}^{(0)} = \mathbf{0} \quad \text{and} \quad \mathbf{x}^{(i+1)} = \mathbf{A}\mathbf{x}^{(i)} + \mathbf{b} \text{ for } 0 \leq i < n$$

- where  $\mathbf{A} = (\mathbf{P}(s, t))_{s, t \in C \setminus B}$  and  $\mathbf{b} = (\mathbf{P}(s, B))_{s \in C \setminus B}$
- Then:  $\mathbf{x}^{(n)}(s) = \Pr(s \models C \cup^{\leq n} B)$  for  $s \in C \setminus B$

## Transient probabilities

- Given that  $\mathbf{A}^n(s, t) = \Pr(s \models S_? \cup^{=n} t)$ 
  - if  $B = \emptyset$ ,  $C = S$ , we have  $S_{=1} = S_{=0} = \emptyset$  and  $S_? = S$  and  $\mathbf{A} = \mathbf{P}$
  - $\mathbf{P}^n(s, t)$  is the probability to be in state  $t$  after  $n$  steps once started in  $s$
- Transient probability:  $\Theta_n^{\mathcal{M}}(t) = \sum_{s \in S} \iota_{init}(s) \cdot \mathbf{P}^n(s, t)$
- $\Theta_n^{\mathcal{M}} = \underbrace{\mathbf{P} \cdot \mathbf{P} \cdot \dots \cdot \mathbf{P}}_{n \text{ times}} \cdot \iota_{init} = \mathbf{P}^n \cdot \iota_{init}$ 
  - where the initial distribution  $\iota_{init}$  is viewed as column-vector
- Compute  $\Theta_n^{\mathcal{M}}$  by successive vector-matrix multiplication:

$$\Theta_0^{\mathcal{M}} = \iota_{init}, \quad \Theta_n^{\mathcal{M}} = \mathbf{P} \cdot \Theta_{n-1}^{\mathcal{M}} \text{ for } n \geq 1$$

## Reachability = transient probabilities

- Suppose we want to compute probabilities for  $\diamond^{\leq n} B$  in  $\mathcal{M}$ 
  - observe: once  $B$  is reached, remaining behaviour is not important
- Adapt  $\mathcal{M}$  by making all states in  $B$  absorbing
  - $\mathbf{P}_B(s, t) = \mathbf{P}(s, t)$  if  $s \notin B$  and  $\mathbf{P}_B(s, s) = 1$  for  $s \in B$
  - all outgoing transitions of  $s \in B$  are replaced by a single self-loop at  $s$
- Then:

$$\underbrace{\Pr_{\mathcal{M}}(\diamond^{\leq n} B)}_{\text{reachability in } \mathcal{M}} = \underbrace{\sum_{s' \in B} \Theta_n^{\mathcal{M}_B}(s')}_{\text{transient probability in } \mathcal{M}_B}$$

## Constrained reachability = transient probabilities

- Suppose we want to compute probabilities for  $\mathcal{C} \cup \leq^n \mathcal{B}$  in  $\mathcal{M}$ 
  - observe: once  $\mathcal{B}$  is reached, remaining behaviour is not important
  - observe: once  $s \in S \setminus (\mathcal{C} \cup \mathcal{B})$  is reached, remaining behaviour not important
- Adapt  $\mathcal{M}$  by making all states in  $\mathcal{B}$  and  $S \setminus (\mathcal{C} \cup \mathcal{B})$  absorbing
  - $\mathbf{P}_B(s, t) = \mathbf{P}(s, t)$  if  $s \notin \mathcal{B}$  and  $\mathbf{P}_B(s, s) = 1$  for  $s \in \mathcal{B}$  or  $s \in \mathcal{C} \cup \mathcal{B}$
- Then:

$$\underbrace{\Pr_{\mathcal{M}}(\mathcal{C} \cup \leq^n \mathcal{B})}_{\text{reachability in } \mathcal{M}} = \underbrace{\sum_{s' \in \mathcal{B}} \Theta_n^{\mathcal{M}_{\mathcal{C}, \mathcal{B}}}(s')}_{\text{transient probability in } \mathcal{M}_{\mathcal{C}, \mathcal{B}}}$$