© JPK

A Quick Tour on CTL Model Checking
Lecture #2 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-malil: kat oen@s. r wt h- aachen. de

October 26, 2006

Advanced model checking

Linear and branching temporal logic

e Linear temporal logic:
“statements about (all) paths starting in a state”

— s = O(x < 20) iff for all possible paths starting in s always = < 20

e Branching temporal logic:

“statements about all or some paths starting in a state”

— s = VO(x < 20) iff for all paths starting in s always = < 20
— s = Jd0(x < 20) iff for some path starting in s always = < 20
— nesting of path quantifiers is allowed

e Checking dy In LTL can be done using V-

— ... but this does not work for nested formulas such as VO34<a

© JPK

Advanced model checking

Linear versus branching temporal logic

e Semantics is based on a branching notion of time

— an infinite tree of states obtained by unfolding transition system
— one “time instant” may have several possible successor “time instants”

e Incomparable expressiveness

— there are properties that can be expressed in LTL, but notin CTL
— there are properties that can be expressed in most branching, but not in LTL

e Distinct model-checking algorithms, and their time complexities

e Distinct treatment of fairness assumptions

e Distinct equivalences (pre-orders) on transition systems

— that correspond to logical equivalence in LTL and branching temporal logics

© JPK 2

Advanced model checking

Transition systems and trees

'
s1){x=0} ‘/(811)\~

{z#0} (s2,2)
(s3,3 (s2,3) (s3,3)
x =0
b ey /\ ' /\
{z=1,2+#0} (s9,4) (s3,4) (33 4) 33

© JPK

Advanced model checking

“behavior” path-based: state-based:
in a state s trace(s) computation tree of s
temporal LTL: path formulas ¢ CTL: state formulas
logic s = ¢ iff existential path quantification d

Vr € Paths(s). w = ¢

universal path quantification: V¢

complexity of the
model checking

problems

PSPACE-complete

1, (|TS| . 2|90|>

PTIME

O (TS| - [®])

iImplementation-
relation

trace inclusion and the like
(proof is PSPACE-complete)

simulation and bisimulation
(proof in polynomial time)

fairness

no special techniques

special techniques needed

© JPK

Advanced model checking

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

e Statements over states

— a € AP atomic proposition
— mdand PAT negation and conjunction
— dop there exists a path fulfilling ¢
— Vo all paths fulfill

e Statements over paths

- O% the next state fulfills &
— U WY & holds until a W-state is reached

= note that () and U alternate with V and 4

© JPK 5

Advanced model checking

Derived operators

potentially &: 40P = J(trueU 9)

Inevitably &: voOP = V(trueU ®)

potentially always ¢: dJ0O0¢ = AVOd

iInvariantly o: vOob = —dO-d

weak until: FHOWUT) = —V(PA-D)U (D A-T))
\V/((I)W\If) = —EI(((I)/\—I\IJ) U (—1(13/\—1\11))

the boolean connectives are derived as usual

© JPK 6

Advanced model checking

Visualization of semantics

AR AR AA)

'
0 O O O
S red J0red %I(yelllow U red)
o /i\-

(A /f\r
00 dedee dedal
vored vtred - V(yeilow U red)

© JPK 7

Advanced model checking

Semantics of CTL state-formulas

Defined by a relation = such that

s = @ if and only if formula ® holds in state s

s E=a iff a e L(s)
s= - iff —(s = ®)
sEPATY iff (sEP)A(sED)

s = dp iff m = ¢ for some path = that starts in s

s E Vo iff 7 = ¢ for all paths 7 that startin s

© JPK 8

Advanced model checking

Semantics of CTL path-formulas

Define a relation = such that

7 = if and only if path 7 satisfies ¢

TE QP iff 7[1] = &
TEOUY ff(Fj>20.njlEVY AN (VO Ek<j.nlk]l EP))

where 7 [¢] denotes the state s, in the path =

© JPK 9

Advanced model checking

Transition system semantics

e For CTL-state-formula @, the satisfaction set Sat(®) is defined by:

Sat(®) = {se€S|sEo}

e TS satisfies CTL-formula ® iff ® holds in all its initial states:

TSE® ifandonlyif Vsoe l.so =@

e Point of attention: TS = ® and TS [~ —® is possible!

— because of several initial states, e.g. so = 30® and s;, [~ 30P

© JPK 10

Advanced model checking

CTL equivalence

CTL-formulas ¢ and ¥ (over AP) are equivalent, denoted & = ¥

If and only if Sat(®) = Sat(W¥) for all transition systems TS over AP

¢ =0 iff (TS=® ifandonlyif TS} V)

© JPK

11

Advanced model checking

Expansion laws

Recallin LTL: Uy = ¥ V (oA O (@U))
In CTL:

V@UT) = TV (& AVOV(@UTD))
VOd = & v VO VOD
vO® = & A V(O VOD

PUT) = TV (@ AIOIPUD))
100 = & v 3O 3I0P
od = & A 300

© JPK

12

Advanced model checking

Distributive laws

RecallinLTL: O(p A ¢) = Op A O and O(p V oY) = Op VvV Ou

In CTL:
VO(P A D)

3O(P V)

note that 30(® A W) % JOP A

= VYOb A VOW

460 v IOW

30T and VO (@ v T) # VOb v VO

© JPK

13

Advanced model checking

Equivalence of LTL and CTL formulas

e CTL-formula & and LTL-formula ¢ (both over AP) are equivalent,
denoted ¢ = o, if for any transition system TS over AP:

TSE® ifandonlyif TS o

e Let & be a CTL-formula, and ¢ the LTL-formula that is obtained by
eliminating all path quantifiers in ®. Then:

d = ¢ orthere does not exist any LTL-formula that is equivalent to ¢

© JPK 14

Advanced model checking R

LTL and CTL are incomparable

e Some LTL-formulas cannot be expressed in CTL, e.g.,
— O0a
— Ola AN O a)

e Some CTL-formulas cannot be expressed in LTL, e.qg.,

— VYoOVa
— VO(a AVOa)
— YOI a

= Cannot be expressed = there does not exist an equivalent formula

© JPK 15

Advanced model checking

Comparing LTL and CTL (1)

Sla A (O a)is not equivalent to VO(a A VOa)

S92

(OD—@

© JPK 16

Advanced model checking

Comparing LTL and CTL (1)

Sla A (O a)is not equivalent to VO(a A VOa)

%)
S9o S \l/

() =
(@ .

. (a} {a}\‘

{a}

so=<Cla A Oa) but sgEVO(a A VOa)

path sg sy (s;;w violates it

© JPK

17

Advanced model checking

Comparing LTL and CTL (2)

vYOVOa Is not equivalent to $0Oa

o - ‘o

S0 S1 S2

© JPK 18

Advanced model checking

Comparing LTL and CTL (2)

vYOVOa Is not equivalent to $0Oa

e |

59

so =<0a but 5o E VOVOa

path s¥ violates it

© JPK 19

Advanced model checking

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

O = true ‘ a ‘ O1 A Do | - | 30@ ‘ 33, Ud,) | 300

For each CTL formula, there exists an equivalent CTL formula in ENF

© JPK 20

Advanced model checking

Model checking CTL

e Convert the formula @’ into an equivalent ® in ENF

e How to check whether state TS satisfies ®?

— compute recursively the set Sat(P) of states that satisfy &
— check whether all initial states belong to Sat(®)

e Recursive bottom-up computation:

— consider the parse-tree of ®

— start to compute Sat(a), for all leafs in the tree

— then go one level up in the tree and check the formula of these nodes
— then go one level up and check the formula of these nodes

— and so on....... until the root of the tree (i.e., ®) is checked

© JPK 21

Advanced model checking

Example

Cja A 3(bU \Ij”c)

G 7
Ve

\Ij/

© JPK 22

Advanced model checking

Characterization of Sat (1)

For all C'T'L formulas ®, ¥ over AP it holds:

Sat(true) = S
Sat(a) = {seS|ae€L(s)}, foranya € AP
Sat(® AW¥) = Sat(®) N Sat(V)
Sat(-®) = S\ Sat(®)
Sat(3O®) = {se S |Post(s)nSat(®) # o}

where TS = (S, Act, —, I, AP, L) is a transition system without terminal states

© JPK 23

Advanced model checking

Characterization of Sat (2)

For all C'T'L formulas ¢, ¥ over AP it holds:

e Sat(d(® U W)) is the smallest subset T" of S, such that:
(1) Sat(w) C T and

(2) s € Sat(®) and Post(s) N T # o impliess € T

e Sat(dO®d) is the largest subset T' of S, such that:

(3) T C Sat(®) and

(4) s € T implies Post(s) N T # &

where TS = (S, Act, —, I, AP, L) is a transition system without terminal states

© JPK 24

Advanced model checking

switch(®):

a
30T
(P21 U Dy)

100

end switch

Computation of Sat

return {s € S | a € L(s) };

return { s € S | Post(s) N Sat(¥) # @ };

T := Sat(®P2); (* compute the smallest fixed point *)
while Sat(®q) \ T"N Pre(T") # @ do
let s € Sat(®1) \ T' N Pre(T);
T:=T U {s}
od,;
return T’

T := Sat(V); (* compute the greatest fixed point *)

while 3s € T. Post(s) N T = @ do
let s€ {se€ T |Post(s) NT =o};

T:=T\{s}
od;
return 71°;

© JPK

25

Advanced model checking

Computing Sat(3(® U V))

© JPK

26

Advanced model checking

Computing Sat(3(® U V))

Input: finite transition system TS with state-set S and CTL-formula 3(® U V)
Output: Sat(3(P U W))

E := Sat(V); (* E administers the states s with s = 3(® U V) *)
T := FE; (* T contains the already visited states s with s = 3(® U V) *)
while £ # @ do

let s’ € E;

E:=E\{s};
for all s € Pre(s’) do
if se€ Sat(®)\TthenE:=F U {s}T:=T U {s}; fi
od
od
return 7'

© JPK 27

Advanced model checking

Example
{r} &
Q< A
(paor) O
{q} /Q{p,r}
{q. 7} (p.q)

let's check the CTL-formula 3¢ ((p =) A (p # q))

© JPK 28

Advanced model checking

The computation in snapshots

{r}
{p,q,7} ? Q{)@ ? iﬁ

{q} {p,’l“}

ta,r} {p,q} T
(@) (b)
SPMESP
© @ !

© JPK 29

Advanced model checking

Computing Sat(d0®)

E := S\ Sat(®); (* E contains any not visited s” with s” [~ 30® *)
T := Sat(P); (* T contains any s for which s |= 30® has not yet been disproven *)
for all s € Sat(®) do c¢[s] := | Post(s) |; od (* initialize array c *)

while £ # @ do

(* loop invariant: ¢[s] = | Post(s) N (T"U E) | *)
let s’ € E; s’ = P ¥
E:=E\{s}; (* s’ has been considered *)
for all s € Pre(s’) do

if s € T then
c[s] := c[s] — 1; (* update counter c[s] for predecessor s of s’ *)
if c[s] = 0 then
T:=T\{sh E:=FEU{s} (* s does not have any successor in 1" *)
fi
fi
od
od
return T’

© JPK 30

Advanced model checking

Alternative algorithm

1. Consider only state s if s = @, otherwise eliminate s

e change TS into TS[®] = (S’, Act, —', I', AP, L") with S’ = Sat(®),
e ' =—> NS xActx S, I'=1In S',and L'(s) = L(s)fors € S’
= all removed states will not satisfy 30, and thus can be safely removed

2. Determine all non-trivial strongly connected components in TS|®|

e non-trivial SCC = maximal, connected subgraph with at least one transition
= any state in such SCC satisfies 30

3. s = 30® is equivalent to “some SCC is reachable from s”

e this search can be done in a backward manner

© JPK

31

Advanced model checking

Example
{r} ;
(p.a.r} T Q{,/}O
{q} {p,7}
tar} {p,q}
(@ (b) K[q]

(c) scc (d)

© JPK 32

Advanced model checking

Time complexity

For transition system TS with NV states and K transitions,
and CTL formula ®, the CTL model-checking problem TS = &
can be determined in time O(| ® |- (N + M))

this applies to both algorithm for existential until-formulas

© JPK 33

Advanced model checking

Model-checking LTL versus CTL

e Let TS be a transition system with IV states and M transitions

e Model-checking LTL-formula ® has time-complexity O((N+M)-2!®1)

— linear in the state space of the system model
— exponential in the length of the formula

e Model-checking CTL-formula ® has time-complexity O((N+M)-| ® |)

— linear in the state space of the system model and the formula

¢ Is model-checking CTL more efficient? No!

© JPK 34

Advanced model checking

Model-checking LTL versus CTL

= LTL-formulae can be exponentially shorter than their equivalent in
CTL

e Existence of Hamiltonian path in LTL: = ((Opo A ... A<Ops) A Ot q)

e In CTL, all possible (= 4!) routes need to be encoded

© JPK 35

