
A Quick Tour on CTL Model Checking
Lecture #2 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

October 26, 2006

c© JPK

Advanced model checking

Linear and branching temporal logic

• Linear temporal logic:

“statements about (all) paths starting in a state”

– s |= 2(x 6 20) iff for all possible paths starting in s always x 6 20

• Branching temporal logic:

“statements about all or some paths starting in a state”

– s |= ∀2(x 6 20) iff for all paths starting in s always x 6 20

– s |= ∃2(x 6 20) iff for some path starting in s always x 6 20

– nesting of path quantifiers is allowed

• Checking ∃ϕ in LTL can be done using ∀¬ϕ

– . . . but this does not work for nested formulas such as ∀2∃3a

c© JPK 1

Advanced model checking

Linear versus branching temporal logic
• Semantics is based on a branching notion of time

– an infinite tree of states obtained by unfolding transition system
– one “time instant” may have several possible successor “time instants”

• Incomparable expressiveness

– there are properties that can be expressed in LTL, but not in CTL
– there are properties that can be expressed in most branching, but not in LTL

• Distinct model-checking algorithms, and their time complexities

• Distinct treatment of fairness assumptions

• Distinct equivalences (pre-orders) on transition systems

– that correspond to logical equivalence in LTL and branching temporal logics

c© JPK 2

Advanced model checking

Transition systems and trees

s0

s2s3 { x = 0 }

{ x = 0 }

{ x 6= 0 }

{ x = 1, x 6= 0 }

(s0, 0)

(s1, 1)

(s2, 2) (s3, 2)

(s3, 3) (s2, 3) (s3, 3)

(s2, 4) (s3, 4) (s3, 4) (s2, 4) (s3, 4)

s1

c© JPK 3

Advanced model checking

“behavior” path-based: state-based:
in a state s trace(s) computation tree of s

temporal LTL: path formulas ϕ CTL: state formulas
logic s |= ϕ iff existential path quantification ∃ϕ

∀π ∈ Paths(s). π |= ϕ universal path quantification: ∀ϕ

complexity of the PSPACE–complete PTIME
model checking

problems O
“

|TS| · 2|ϕ|
”

O (|TS| · |Φ|)

implementation- trace inclusion and the like simulation and bisimulation
relation (proof is PSPACE-complete) (proof in polynomial time)

fairness no special techniques special techniques needed

c© JPK 4

Advanced model checking

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

• Statements over states

– a ∈ AP atomic proposition
– ¬Φ and Φ∧Ψ negation and conjunction
– ∃ϕ there exists a path fulfilling ϕ

– ∀ϕ all paths fulfill ϕ

• Statements over paths

– ©Φ the next state fulfills Φ

– Φ U Ψ Φ holds until a Ψ-state is reached

⇒ note that © and U alternate with ∀ and ∃

c© JPK 5

Advanced model checking

Derived operators

potentially Φ: ∃3Φ = ∃(true U Φ)

inevitably Φ: ∀3Φ = ∀(true U Φ)

potentially always Φ: ∃2Φ := ¬∀3¬Φ

invariantly Φ: ∀2Φ = ¬∃3¬Φ

weak until: ∃(Φ W Ψ) = ¬∀
(
(Φ∧¬Ψ) U (¬Φ∧¬Ψ)

)

∀(Φ W Ψ) = ¬∃
(
(Φ∧¬Ψ) U (¬Φ∧¬Ψ)

)

the boolean connectives are derived as usual

c© JPK 6

Advanced model checking

Visualization of semantics

∀3red ∀(yellow U red)

∃(yellow U red)∃2red

∀2red

∃3red

c© JPK 7

Advanced model checking

Semantics of CTL state-formulas

Defined by a relation |= such that

s |= Φ if and only if formula Φ holds in state s

s |= a iff a ∈ L(s)

s |= ¬Φ iff ¬ (s |= Φ)

s |= Φ∧Ψ iff (s |= Φ)∧ (s |= Ψ)

s |= ∃ϕ iff π |= ϕ for some path π that starts in s

s |= ∀ϕ iff π |= ϕ for all paths π that start in s

c© JPK 8

Advanced model checking

Semantics of CTL path-formulas

Define a relation |= such that

π |= ϕ if and only if path π satisfies ϕ

π |= ©Φ iff π[1] |= Φ

π |= Φ U Ψ iff (∃ j > 0. π[j] |= Ψ ∧ (∀ 0 6 k < j. π[k] |= Φ))

where π[i] denotes the state si in the path π

c© JPK 9

Advanced model checking

Transition system semantics

• For CTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

Sat(Φ) = { s ∈ S | s |= Φ }

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

TS |= Φ if and only if ∀s0 ∈ I. s0 |= Φ

• Point of attention: TS 6|= Φ and TS 6|= ¬Φ is possible!

– because of several initial states, e.g. s0 |= ∃2Φ and s′
0 6|= ∃2Φ

c© JPK 10

Advanced model checking

CTL equivalence

CTL-formulas Φ and Ψ (over AP) are equivalent , denoted Φ ≡ Ψ

if and only if Sat(Φ) = Sat(Ψ) for all transition systems TS over AP

Φ ≡ Ψ iff (TS |= Φ if and only if TS |= Ψ)

c© JPK 11

Advanced model checking

Expansion laws

Recall in LTL: ϕUψ ≡ ψ ∨ (ϕ∧ © (ϕUψ))

In CTL:
∀(Φ U Ψ) ≡ Ψ ∨ (Φ ∧ ∀© ∀(Φ U Ψ))

∀3Φ ≡ Φ ∨ ∀© ∀3Φ

∀2Φ ≡ Φ ∧ ∀© ∀2Φ

∃(Φ U Ψ) ≡ Ψ ∨ (Φ ∧ ∃© ∃(Φ U Ψ))

∃3Φ ≡ Φ ∨ ∃© ∃3Φ

∃2Φ ≡ Φ ∧ ∃© ∃2Φ

c© JPK 12

Advanced model checking

Distributive laws

Recall in LTL: 2(ϕ ∧ ψ) ≡ 2ϕ ∧ 2ψ and 3(ϕ ∨ ψ) ≡ 3ϕ ∨ 3ψ

In CTL:
∀2(Φ∧Ψ) ≡ ∀2Φ ∧ ∀2Ψ

∃3(Φ ∨ Ψ) ≡ ∃3Φ ∨ ∃3Ψ

note that ∃2(Φ ∧ Ψ) 6≡ ∃2Φ ∧ ∃2Ψ and ∀3(Φ ∨ Ψ) 6≡ ∀3Φ ∨ ∀3Ψ

c© JPK 13

Advanced model checking

Equivalence of LTL and CTL formulas

• CTL-formula Φ and LTL-formula ϕ (both over AP) are equivalent ,
denoted Φ ≡ ϕ, if for any transition system TS over AP:

TS |= Φ if and only if TS |= ϕ

• Let Φ be a CTL-formula, and ϕ the LTL-formula that is obtained by
eliminating all path quantifiers in Φ. Then:

Φ ≡ ϕ or there does not exist any LTL-formula that is equivalent to Φ

c© JPK 14

Advanced model checking

LTL and CTL are incomparable

• Some LTL-formulas cannot be expressed in CTL, e.g.,

– 32a

– 3(a ∧ © a)

• Some CTL-formulas cannot be expressed in LTL, e.g.,

– ∀3∀2a

– ∀3(a∧∀©a)

– ∀2∃3a

⇒ Cannot be expressed = there does not exist an equivalent formula

c© JPK 15

Advanced model checking

Comparing LTL and CTL (1)

3(a ∧ © a) is not equivalent to ∀3(a ∧ ∀©a)

{ a }

∅

s0

s3

s4

s1s2

{ a } { a }
∅

c© JPK 16

Advanced model checking

Comparing LTL and CTL (1)

3(a ∧ © a) is not equivalent to ∀3(a ∧ ∀©a)

{ a }

∅

s0

s3

s4

s1s2

{ a } { a }
∅

s0 |= 3(a ∧ © a) but s0 6|= ∀3(a ∧ ∀©a)
︸ ︷︷ ︸

path s0 s1 (s2)ω violates it

c© JPK 17

Advanced model checking

Comparing LTL and CTL (2)

∀3∀2a is not equivalent to 32a

s0 s2s1

c© JPK 18

Advanced model checking

Comparing LTL and CTL (2)

∀3∀2a is not equivalent to 32a

s0 s2s1

s0 |= 32a but s0 6|= ∀3∀2a
︸ ︷︷ ︸

path sω
0 violates it

c© JPK 19

Advanced model checking

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

Φ ::= true
∣
∣
∣ a

∣
∣
∣ Φ1∧Φ2

∣
∣
∣ ¬Φ

∣
∣
∣ ∃©Φ

∣
∣
∣ ∃(Φ1 U Φ2)

∣
∣
∣ ∃2Φ

For each CTL formula, there exists an equivalent CTL formula in ENF

c© JPK 20

Advanced model checking

Model checking CTL

• Convert the formula Φ′ into an equivalent Φ in ENF

• How to check whether state TS satisfies Φ?

– compute recursively the set Sat(Φ) of states that satisfy Φ

– check whether all initial states belong to Sat(Φ)

• Recursive bottom-up computation:

– consider the parse-tree of Φ

– start to compute Sat(a), for all leafs in the tree
– then go one level up in the tree and check the formula of these nodes
– then go one level up and check the formula of these nodes
– and so on....... until the root of the tree (i.e., Φ) is checked

c© JPK 21

Advanced model checking

Example

∧ Sat(Φ)

∃©Sat(Ψ) ∃U Sat(Ψ′)

a

b ∃2 Sat(Ψ′′)

¬

c

Φ = ∃©a
︸ ︷︷ ︸

Ψ

∧ ∃(bU ∃2¬c)
︸ ︷︷ ︸

Ψ′′
︸ ︷︷ ︸

Ψ′

.

c© JPK 22

Advanced model checking

Characterization of Sat (1)

For all CTL formulas Φ,Ψ over AP it holds:

Sat(true) = S

Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP

Sat(Φ ∧ Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(¬Φ) = S \ Sat(Φ)

Sat(∃©Φ) = { s ∈ S | Post(s) ∩ Sat(Φ) 6= ∅ }

where TS = (S, Act,→, I, AP, L) is a transition system without terminal states

c© JPK 23

Advanced model checking

Characterization of Sat (2)

For all CTL formulas Φ,Ψ over AP it holds:

• Sat(∃(Φ U Ψ)) is the smallest subset T of S, such that:

(1) Sat(Ψ) ⊆ T and

(2) s ∈ Sat(Φ) and Post(s) ∩ T 6= ∅ implies s ∈ T

• Sat(∃2Φ) is the largest subset T of S, such that:

(3) T ⊆ Sat(Φ) and

(4) s ∈ T implies Post(s) ∩ T 6= ∅

where TS = (S, Act,→, I, AP, L) is a transition system without terminal states

c© JPK 24

Advanced model checking

Computation of Sat

switch(Φ):

a : return { s ∈ S | a ∈ L(s) };
. . . :

∃©Ψ : return { s ∈ S | Post(s) ∩ Sat(Ψ) 6= ∅ };

∃(Φ1 U Φ2) : T := Sat(Φ2); (* compute the smallest fixed point *)
while Sat(Φ1) \ T ∩ Pre(T) 6= ∅ do

let s ∈ Sat(Φ1) \ T ∩ Pre(T);
T := T ∪ { s };

od;
return T ;

∃2Ψ : T := Sat(Ψ); (* compute the greatest fixed point *)
while ∃s ∈ T. Post(s) ∩ T = ∅ do

let s ∈ { s ∈ T | Post(s) ∩ T = ∅ };
T := T \ { s };

od;
return T ;

end switch

c© JPK 25

Advanced model checking

Computing Sat(∃(ΦU Ψ))

c© JPK 26

Advanced model checking

Computing Sat(∃(Φ U Ψ))

Input: finite transition system TS with state-set S and CTL-formula ∃(Φ U Ψ)

Output: Sat(∃(Φ U Ψ))

E := Sat(Ψ); (* E administers the states s with s |= ∃(Φ U Ψ) *)
T := E; (* T contains the already visited states s with s |= ∃(Φ U Ψ) *)
while E 6= ∅ do

let s′ ∈ E;
E := E \ { s′ };
for all s ∈ Pre(s′) do

if s ∈ Sat(Φ) \ T then E := E ∪ { s }; T := T ∪ { s }; fi
od

od
return T

c© JPK 27

Advanced model checking

Example

{ p, q, r }

{ q, r }

{ q }

{ r } ∅

{ p }

{ p, r }

{ p, q }

let’s check the CTL-formula ∃3((p = r)∧ (p 6= q))

c© JPK 28

Advanced model checking

The computation in snapshots

(c)

(a) (b)

(d)

{ q, r }

{ p, q, r }

{ p, q }

{ p, r }

{ p }

{ q }

{ r }
∅

c© JPK 29

Advanced model checking

Computing Sat(∃2Φ)

E := S \ Sat(Φ); (* E contains any not visited s′ with s′ 6|= ∃2Φ *)

T := Sat(Φ); (* T contains any s for which s |= ∃2Φ has not yet been disproven *)

for all s ∈ Sat(Φ) do c[s] := | Post(s) |; od (* initialize array c *)

while E 6= ∅ do
(* loop invariant: c[s] = |Post(s) ∩ (T ∪ E) | *)

let s′ ∈ E; (* s′ 6|= Φ *)
E := E \ { s′ }; (* s′ has been considered *)
for all s ∈ Pre(s′) do

if s ∈ T then
c[s] := c[s] − 1; (* update counter c[s] for predecessor s of s′ *)
if c[s] = 0 then

T := T \ { s }; E := E ∪ { s }; (* s does not have any successor in T *)
fi

fi
od

od
return T

c© JPK 30

Advanced model checking

Alternative algorithm

1. Consider only state s if s |= Φ, otherwise eliminate s

• change TS into TS[Φ] = (S′, Act,→′, I ′, AP, L′) with S′ = Sat(Φ),
• →′ = → ∩ (S′ × Act × S′), I ′ = I ∩ S′, and L′(s) = L(s) for s ∈ S′

⇒ all removed states will not satisfy ∃2Φ, and thus can be safely removed

2. Determine all non-trivial strongly connected components in TS[Φ]

• non-trivial SCC = maximal, connected subgraph with at least one transition
⇒ any state in such SCC satisfies ∃2Φ

3. s |= ∃2Φ is equivalent to “some SCC is reachable from s”

• this search can be done in a backward manner

c© JPK 31

Advanced model checking

Example

(a)

(d)

(b)

(c)

{ q, r }

{ p, q, r }

{ p, q }

{ p, r }

{ p }

{ q }

{ r }
∅

K[q]

SCC

c© JPK 32

Advanced model checking

Time complexity

For transition system TS with N states and K transitions,

and CTL formula Φ, the CTL model-checking problem TS |= Φ

can be determined in time O(|Φ |·(N +M))

this applies to both algorithm for existential until-formulas

c© JPK 33

Advanced model checking

Model-checking LTL versus CTL

• Let TS be a transition system with N states and M transitions

• Model-checking LTL-formula Φ has time-complexity O((N+M)·2|Φ |)

– linear in the state space of the system model
– exponential in the length of the formula

• Model-checking CTL-formula Φ has time-complexity O((N+M)·|Φ |)

– linear in the state space of the system model and the formula

• Is model-checking CTL more efficient? No!

c© JPK 34

Advanced model checking

Model-checking LTL versus CTL

⇒ LTL-formulae can be exponentially shorter than their equivalent in
CTL

v1 v2 v3 v4

w

{ p3 }{ p0 }

{ p1 } { p2 }

{ q }

• Existence of Hamiltonian path in LTL: ¬
(
(3p0∧ . . . ∧3p3) ∧ ©4 q

)

• In CTL, all possible (= 4!) routes need to be encoded

c© JPK 35

