

A Quick Tour on CTL Model Checking

Lecture #2 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

October 26, 2006

Linear and branching temporal logic

- *Linear* temporal logic:

“statements about **(all) paths** starting in a state”

- $s \models \Box(x \leq 20)$ iff for all possible paths starting in s always $x \leq 20$

- *Branching* temporal logic:

“statements about **all or some paths** starting in a state”

- $s \models \forall \Box(x \leq 20)$ iff for **all** paths starting in s always $x \leq 20$
 - $s \models \exists \Box(x \leq 20)$ iff for **some** path starting in s always $x \leq 20$
 - nesting of path quantifiers is allowed

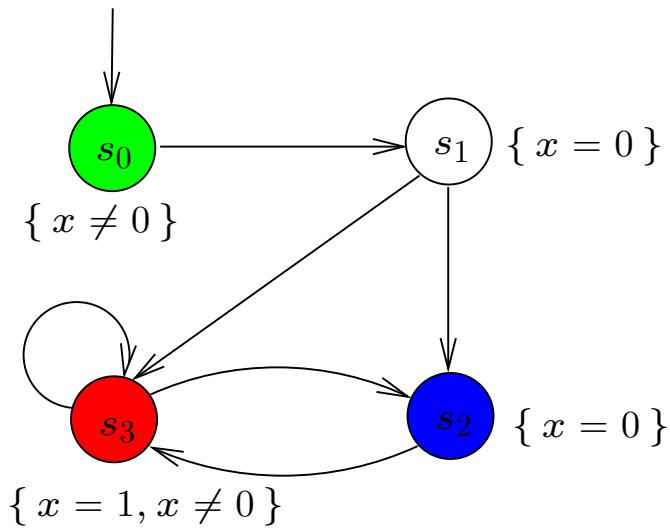
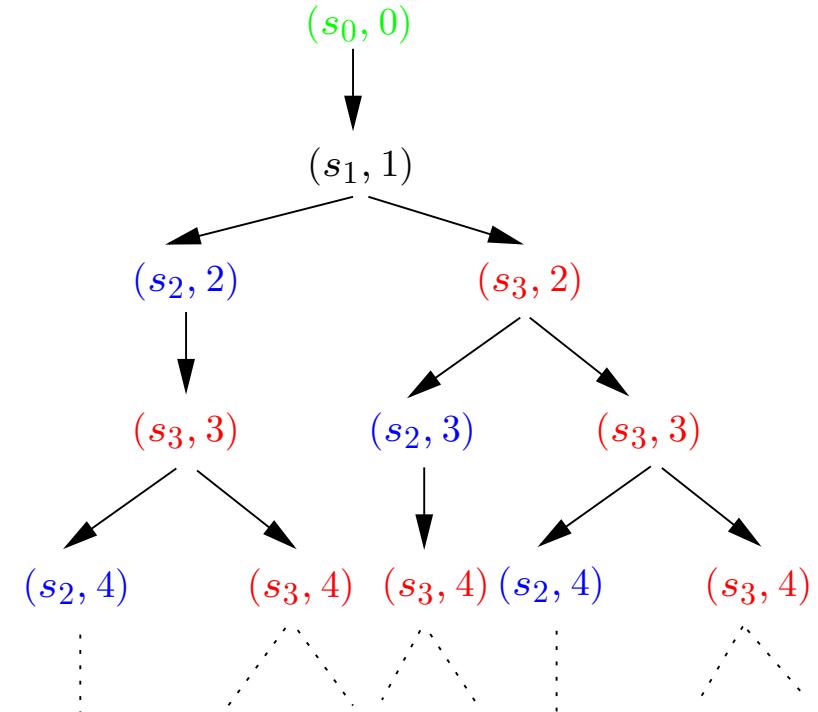
- Checking $\exists \varphi$ in LTL can be done using $\forall \neg \varphi$

- . . . but this does not work for nested formulas such as $\forall \Box \exists \Diamond a$

Linear versus branching temporal logic

- **Semantics** is based on a branching notion of time
 - an infinite tree of states obtained by unfolding transition system
 - one “time instant” may have several possible successor “time instants”
- **Incomparable expressiveness**
 - there are properties that can be expressed in LTL, but not in CTL
 - there are properties that can be expressed in most branching, but not in LTL
- Distinct **model-checking algorithms**, and their time complexities
- Distinct treatment of **fairness assumptions**
- Distinct **equivalences** (pre-orders) on transition systems
 - that correspond to logical equivalence in LTL and branching temporal logics

Transition systems and trees



“behavior” in a state s	path-based: $trace(s)$	state-based: computation tree of s
temporal logic	LTL: path formulas φ $s \models \varphi$ iff $\forall \pi \in Paths(s). \pi \models \varphi$	CTL: state formulas existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$
complexity of the model checking problems	PSPACE-complete $\mathcal{O}(TS \cdot 2^{ \varphi })$	PTIME $\mathcal{O}(TS \cdot \Phi)$
implementation- relation	trace inclusion and the like (proof is PSPACE-complete)	simulation and bisimulation (proof in polynomial time)
fairness	no special techniques	special techniques needed

Computation tree logic

modal logic over infinite **trees** [Clarke & Emerson 1981]

- **Statements over states**

- $a \in AP$ atomic proposition
- $\neg \Phi$ and $\Phi \wedge \Psi$ negation and conjunction
- $\exists \varphi$ there **exists** a path fulfilling φ
- $\forall \varphi$ **all** paths fulfill φ

- **Statements over paths**

- $\bigcirc \Phi$ the next state fulfills Φ
- $\Phi \mathbf{U} \Psi$ Φ holds until a Ψ -state is reached

⇒ note that \bigcirc and \mathbf{U} **alternate** with \forall and \exists

Derived operators

potentially Φ : $\exists \diamond \Phi$ = $\exists(\text{true} \cup \Phi)$

inevitably Φ : $\forall \diamond \Phi$ = $\forall(\text{true} \cup \Phi)$

potentially always Φ : $\exists \Box \Phi$:= $\neg \forall \diamond \neg \Phi$

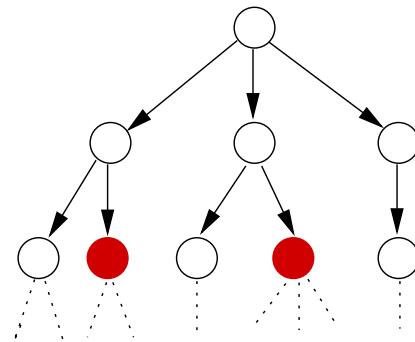
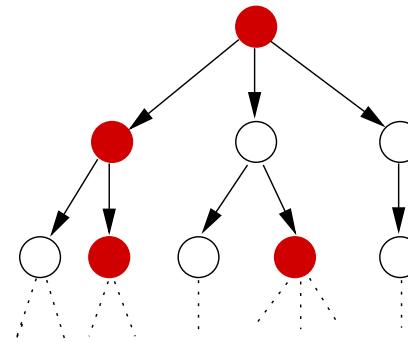
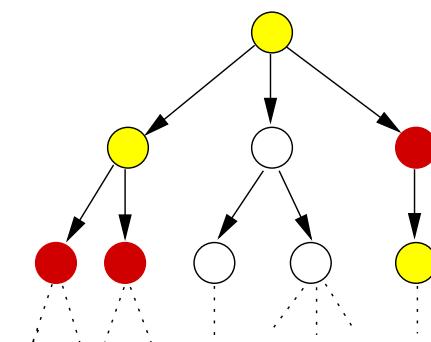
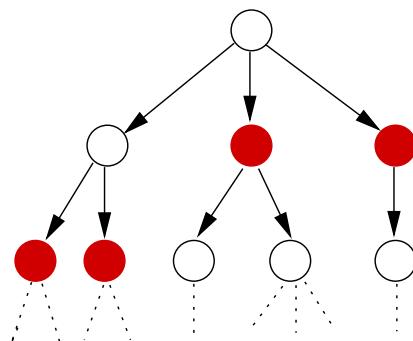
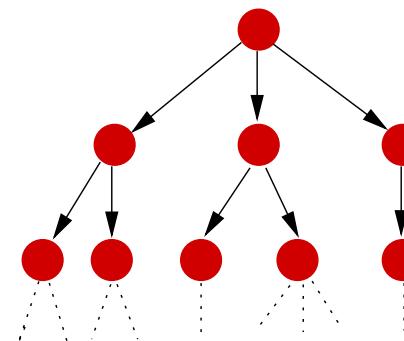
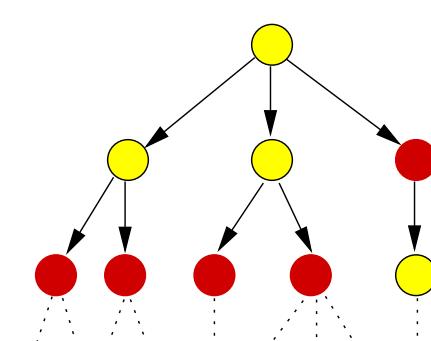
invariantly Φ : $\forall \Box \Phi$ = $\neg \exists \diamond \neg \Phi$

weak until: $\exists(\Phi W \Psi)$ = $\neg \forall ((\Phi \wedge \neg \Psi) \cup (\neg \Phi \wedge \neg \Psi))$

$\forall(\Phi W \Psi)$ = $\neg \exists ((\Phi \wedge \neg \Psi) \cup (\neg \Phi \wedge \neg \Psi))$

the boolean connectives are derived as usual

Visualization of semantics

 $\exists \diamond red$  $\exists \square red$  $\exists (yellow \cup red)$  $\forall \diamond red$  $\forall \square red$  $\forall (yellow \cup red)$

Semantics of CTL **state**-formulas

Defined by a relation \models such that

$s \models \Phi$ if and only if formula Φ holds in state s

$$s \models a \quad \text{iff} \quad a \in L(s)$$

$$s \models \neg \Phi \quad \text{iff} \quad \neg (s \models \Phi)$$

$$s \models \Phi \wedge \Psi \quad \text{iff} \quad (s \models \Phi) \wedge (s \models \Psi)$$

$$s \models \exists \varphi \quad \text{iff} \quad \pi \models \varphi \text{ for } \textcolor{red}{some} \text{ path } \pi \text{ that starts in } s$$

$$s \models \forall \varphi \quad \text{iff} \quad \pi \models \varphi \text{ for } \textcolor{red}{all} \text{ paths } \pi \text{ that start in } s$$

Semantics of CTL **path**-formulas

Define a relation \models such that

$\pi \models \varphi$ if and only if path π satisfies φ

$$\pi \models \bigcirc \Phi \quad \text{iff } \pi[1] \models \Phi$$

$$\pi \models \Phi \cup \Psi \quad \text{iff } (\exists j \geq 0. \pi[j] \models \Psi) \wedge (\forall 0 \leq k < j. \pi[k] \models \Phi))$$

where $\pi[i]$ denotes the state s_i in the path π

Transition system semantics

- For CTL-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

- TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi \quad \text{if and only if} \quad \forall s_0 \in I. s_0 \models \Phi$$

- **Point of attention:** $TS \not\models \Phi$ and $TS \not\models \neg\Phi$ is possible!
 - because of several initial states, e.g. $s_0 \models \exists \Box \Phi$ and $s'_0 \not\models \exists \Box \Phi$

CTL equivalence

CTL-formulas Φ and Ψ (over AP) are *equivalent*, denoted $\Phi \equiv \Psi$
if and only if $Sat(\Phi) = Sat(\Psi)$ for all transition systems TS over AP

$$\Phi \equiv \Psi \quad \text{iff} \quad (TS \models \Phi \quad \text{if and only if} \quad TS \models \Psi)$$

Expansion laws

Recall in LTL: $\varphi \mathbf{U} \psi \equiv \psi \vee (\varphi \wedge \bigcirc (\varphi \mathbf{U} \psi))$

In CTL:

$$\forall(\Phi \mathbf{U} \Psi) \equiv \Psi \vee (\Phi \wedge \forall \bigcirc \forall(\Phi \mathbf{U} \Psi))$$

$$\forall \diamond \Phi \equiv \Phi \vee \forall \bigcirc \forall \diamond \Phi$$

$$\forall \Box \Phi \equiv \Phi \wedge \forall \bigcirc \forall \Box \Phi$$

$$\exists(\Phi \mathbf{U} \Psi) \equiv \Psi \vee (\Phi \wedge \exists \bigcirc \exists(\Phi \mathbf{U} \Psi))$$

$$\exists \diamond \Phi \equiv \Phi \vee \exists \bigcirc \exists \diamond \Phi$$

$$\exists \Box \Phi \equiv \Phi \wedge \exists \bigcirc \exists \Box \Phi$$

Distributive laws

Recall in LTL: $\Box(\varphi \wedge \psi) \equiv \Box\varphi \wedge \Box\psi$ and $\Diamond(\varphi \vee \psi) \equiv \Diamond\varphi \vee \Diamond\psi$

In CTL:

$$\forall \Box(\Phi \wedge \Psi) \equiv \forall \Box\Phi \wedge \forall \Box\Psi$$

$$\exists \Diamond(\Phi \vee \Psi) \equiv \exists \Diamond\Phi \vee \exists \Diamond\Psi$$

note that $\exists \Box(\Phi \wedge \Psi) \not\equiv \exists \Box\Phi \wedge \exists \Box\Psi$ and $\forall \Diamond(\Phi \vee \Psi) \not\equiv \forall \Diamond\Phi \vee \forall \Diamond\Psi$

Equivalence of LTL and CTL formulas

- CTL-formula Φ and LTL-formula φ (both over AP) are *equivalent*, denoted $\Phi \equiv \varphi$, if for any transition system TS over AP :

$$TS \models \Phi \quad \text{if and only if} \quad TS \models \varphi$$

- Let Φ be a CTL-formula, and φ the LTL-formula that is obtained by eliminating all path quantifiers in Φ . Then:

$\Phi \equiv \varphi$ or there does not exist any LTL-formula that is equivalent to Φ

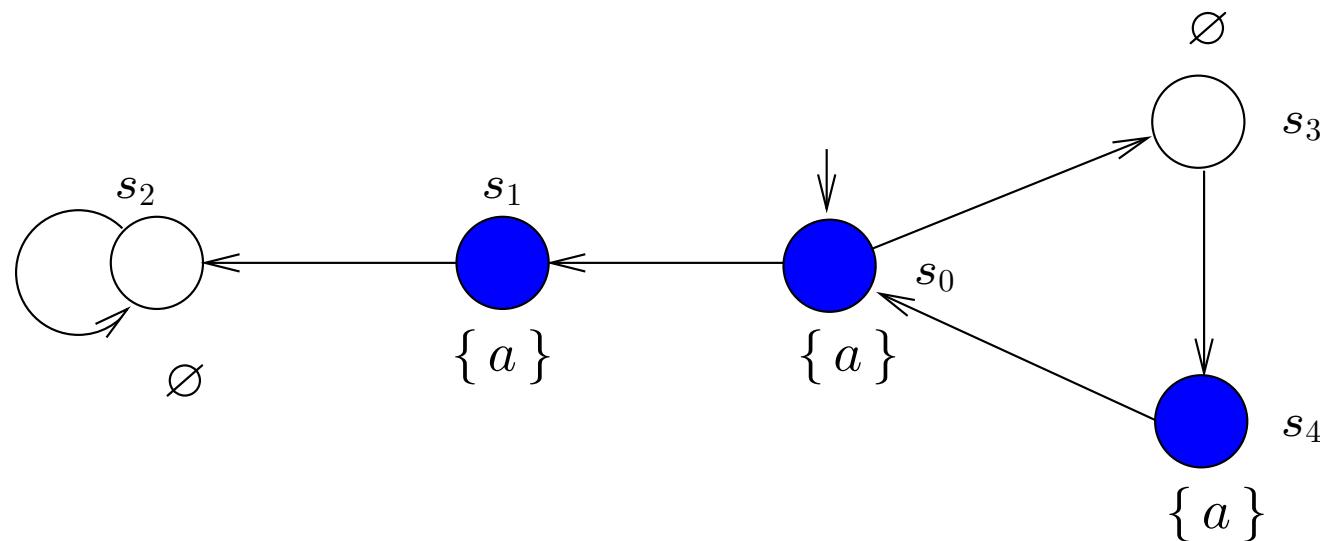
LTL and CTL are incomparable

- Some LTL-formulas cannot be expressed in CTL, e.g.,
 - $\Diamond\Box a$
 - $\Diamond(a \wedge \bigcirc a)$
- Some CTL-formulas cannot be expressed in LTL, e.g.,
 - $\forall\Diamond\forall\Box a$
 - $\forall\Diamond(a \wedge \forall\bigcirc a)$
 - $\forall\Box\exists\Diamond a$

⇒ Cannot be expressed = there does not exist an equivalent formula

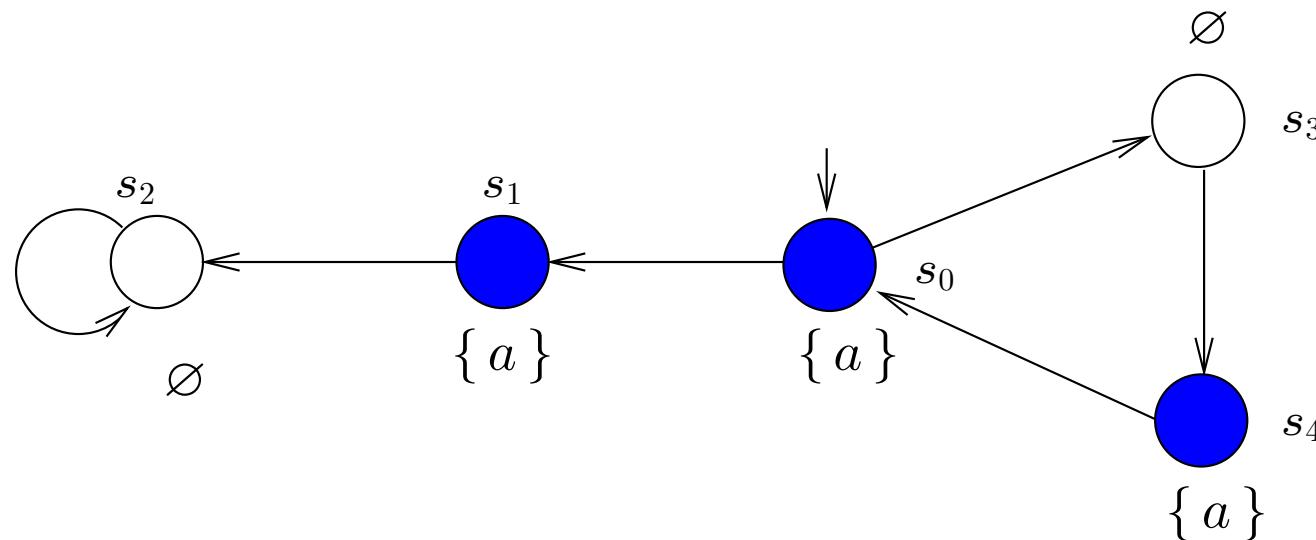
Comparing LTL and CTL (1)

$\Diamond(a \wedge \bigcirc a)$ is not equivalent to $\forall \Diamond(a \wedge \forall \bigcirc a)$



Comparing LTL and CTL (1)

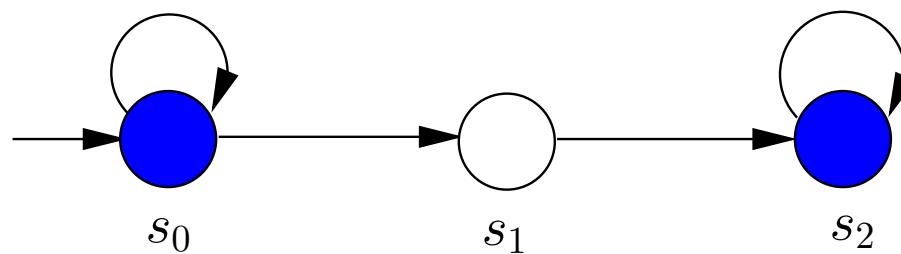
$\diamond(a \wedge \bigcirc a)$ is not equivalent to $\forall \diamond(a \wedge \forall \bigcirc a)$



$s_0 \models \diamond(a \wedge \bigcirc a)$ but $\underbrace{s_0 \not\models \forall \diamond(a \wedge \forall \bigcirc a)}_{\text{path } s_0 s_1 (s_2)^\omega \text{ violates it}}$

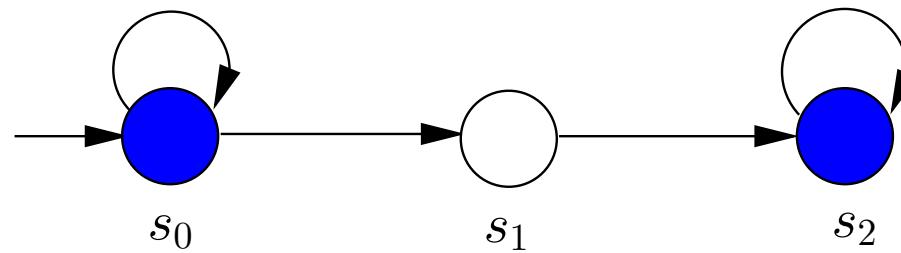
Comparing LTL and CTL (2)

$\forall \Diamond \forall \Box a$ is not equivalent to $\Diamond \Box a$



Comparing LTL and CTL (2)

$\forall \Diamond \forall \Box a$ is not equivalent to $\Diamond \Box a$



$s_0 \models \Diamond \Box a$ but $\underbrace{s_0 \not\models \forall \Diamond \forall \Box a}_{\text{path } s_0^\omega \text{ violates it}}$

Existential normal form (ENF)

The set of CTL formulas in *existential normal form (ENF)* is given by:

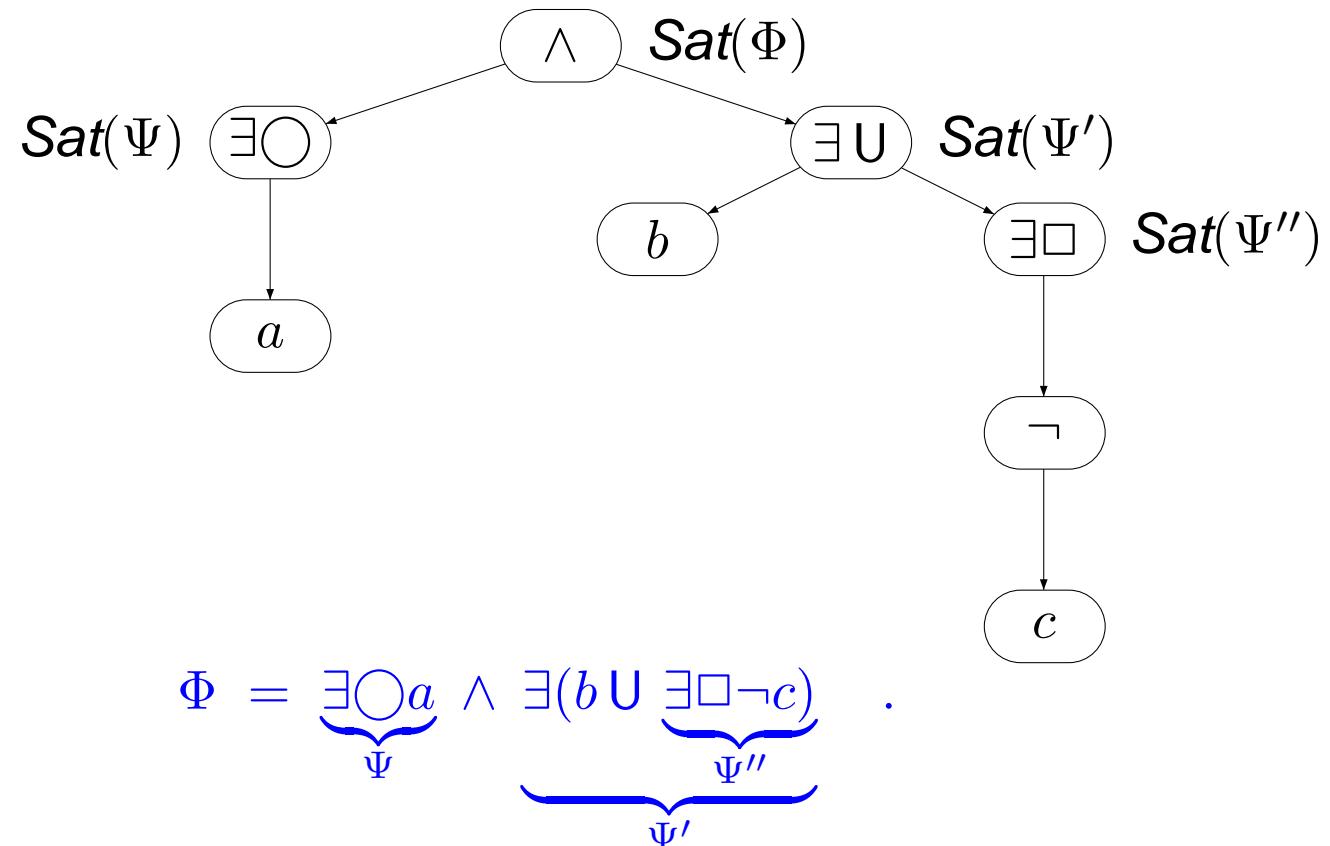
$$\Phi ::= \text{true} \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi_1 \cup \Phi_2) \mid \exists \Box \Phi$$

For each CTL formula, there exists an equivalent CTL formula in ENF

Model checking CTL

- Convert the formula Φ' into an equivalent Φ in ENF
- How to check whether state TS satisfies Φ ?
 - compute *recursively* the set $Sat(\Phi)$ of states that satisfy Φ
 - check whether all initial states belong to $Sat(\Phi)$
- Recursive **bottom-up** computation:
 - consider the *parse-tree* of Φ
 - start to compute $Sat(a)$, for all leafs in the tree
 - then go one level up in the tree and check the formula of these nodes
 - then go one level up and check the formula of these nodes
 - and so on..... until the root of the tree (i.e., Φ) is checked

Example



Characterization of $\text{Sat}(1)$

For all CTL formulas Φ, Ψ over AP it holds:

$$\text{Sat}(\text{true}) = S$$

$$\text{Sat}(a) = \{ s \in S \mid a \in L(s) \}, \text{ for any } a \in AP$$

$$\text{Sat}(\Phi \wedge \Psi) = \text{Sat}(\Phi) \cap \text{Sat}(\Psi)$$

$$\text{Sat}(\neg\Phi) = S \setminus \text{Sat}(\Phi)$$

$$\text{Sat}(\exists \bigcirc \Phi) = \{ s \in S \mid \text{Post}(s) \cap \text{Sat}(\Phi) \neq \emptyset \}$$

where $TS = (S, Act, \rightarrow, I, AP, L)$ is a transition system without terminal states

Characterization of $\text{Sat}(2)$

For all CTL formulas Φ, Ψ over AP it holds:

- $\text{Sat}(\exists(\Phi \cup \Psi))$ is the smallest subset T of S , such that:

- (1) $\text{Sat}(\Psi) \subseteq T$ and
- (2) $s \in \text{Sat}(\Phi)$ and $\text{Post}(s) \cap T \neq \emptyset$ implies $s \in T$

- $\text{Sat}(\exists \Box \Phi)$ is the largest subset T of S , such that:

- (3) $T \subseteq \text{Sat}(\Phi)$ and
- (4) $s \in T$ implies $\text{Post}(s) \cap T \neq \emptyset$

where $TS = (S, \text{Act}, \rightarrow, I, AP, L)$ is a transition system without terminal states

Computation of Sat

switch(Φ):

```

 $a$  : return {  $s \in S \mid a \in L(s)$  };

 $\dots$  :  $\dots \dots$ 

 $\exists \bigcirc \Psi$  : return {  $s \in S \mid Post(s) \cap Sat(\Psi) \neq \emptyset$  };

 $\exists(\Phi_1 \cup \Phi_2)$  :  $T := Sat(\Phi_2)$ ; (* compute the smallest fixed point *)
  while  $Sat(\Phi_1) \setminus T \cap Pre(T) \neq \emptyset$  do
    let  $s \in Sat(\Phi_1) \setminus T \cap Pre(T)$ ;
     $T := T \cup \{ s \}$ ;
  od;
  return  $T$ ;

 $\exists \square \Psi$  :  $T := Sat(\Psi)$ ; (* compute the greatest fixed point *)
  while  $\exists s \in T. Post(s) \cap T = \emptyset$  do
    let  $s \in \{ s \in T \mid Post(s) \cap T = \emptyset \}$ ;
     $T := T \setminus \{ s \}$ ;
  od;
  return  $T$ ;

```

end switch

Computing $\text{Sat}(\exists(\Phi \cup \Psi))$

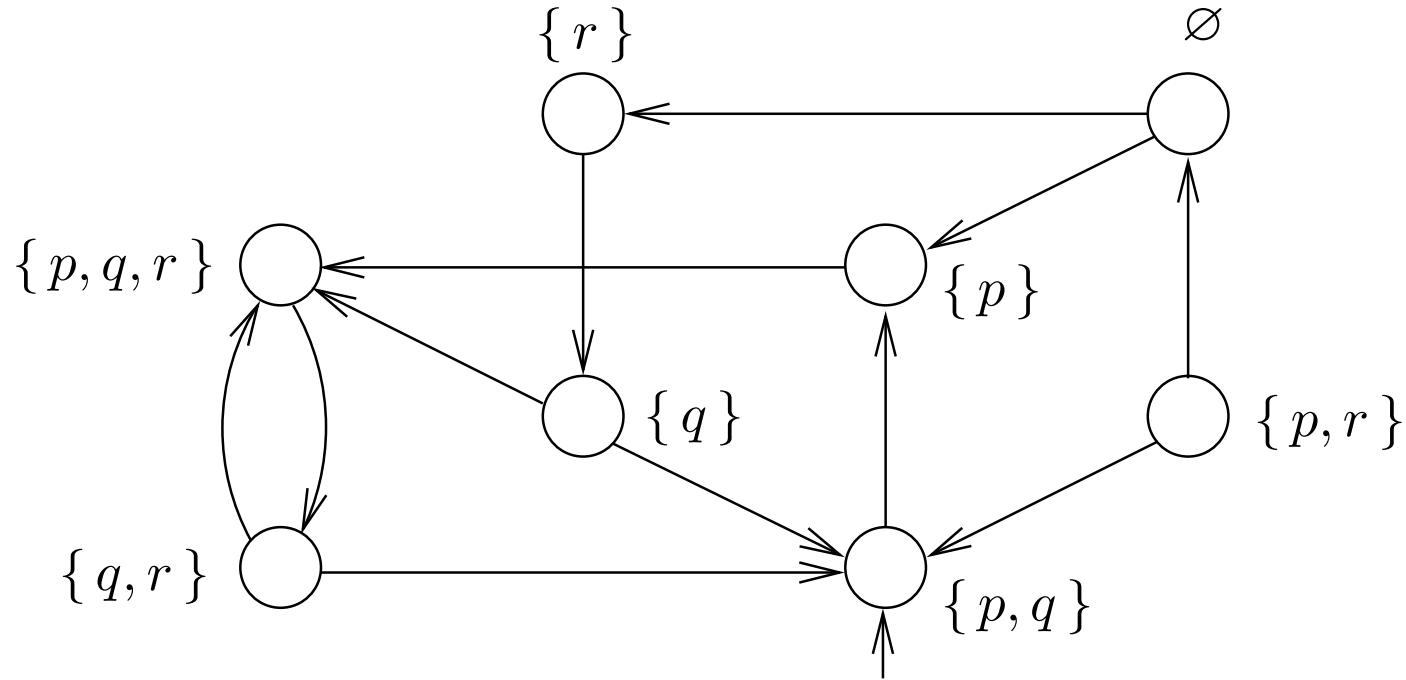
Computing $\text{Sat}(\exists(\Phi \cup \Psi))$

Input: finite transition system TS with state-set S and CTL-formula $\exists(\Phi \cup \Psi)$

Output: $\text{Sat}(\exists(\Phi \cup \Psi))$

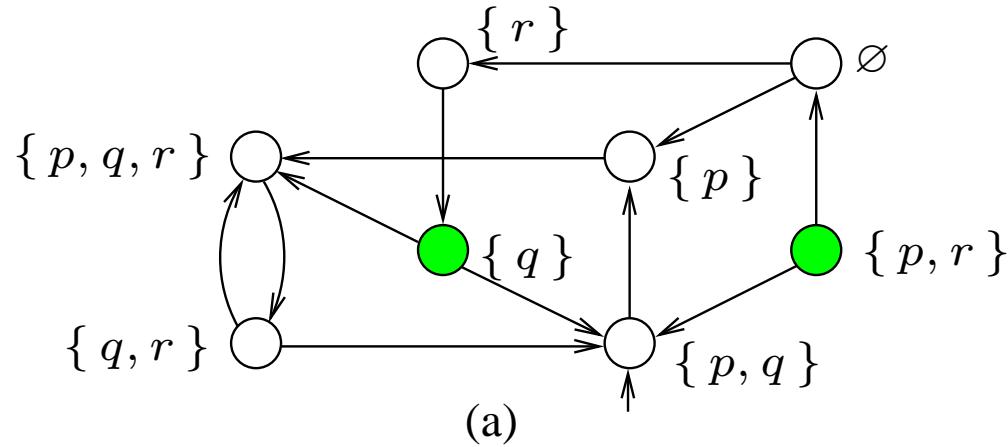
```
 $E := \text{Sat}(\Psi);$  (*  $E$  administers the states  $s$  with  $s \models \exists(\Phi \cup \Psi)$  *)
 $T := E;$  (*  $T$  contains the already visited states  $s$  with  $s \models \exists(\Phi \cup \Psi)$  *)
while  $E \neq \emptyset$  do
  let  $s' \in E;$ 
   $E := E \setminus \{s'\};$ 
  for all  $s \in \text{Pre}(s')$  do
    if  $s \in \text{Sat}(\Phi) \setminus T$  then  $E := E \cup \{s\}; T := T \cup \{s\};$  fi
  od
od
return  $T$ 
```

Example

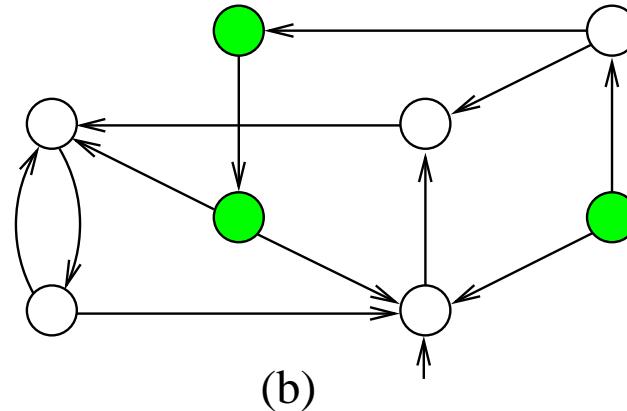


let's check the CTL-formula $\exists \Diamond((p = r) \wedge (p \neq q))$

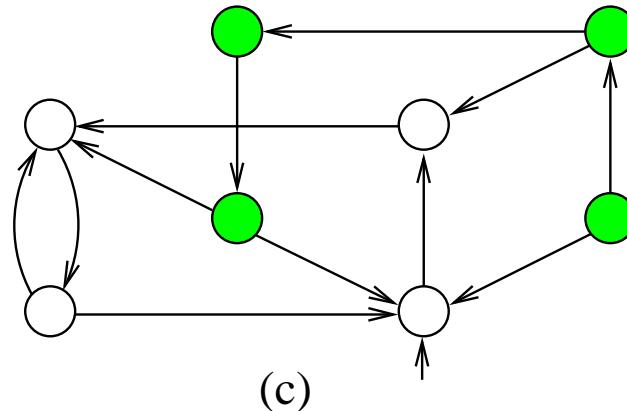
The computation in snapshots



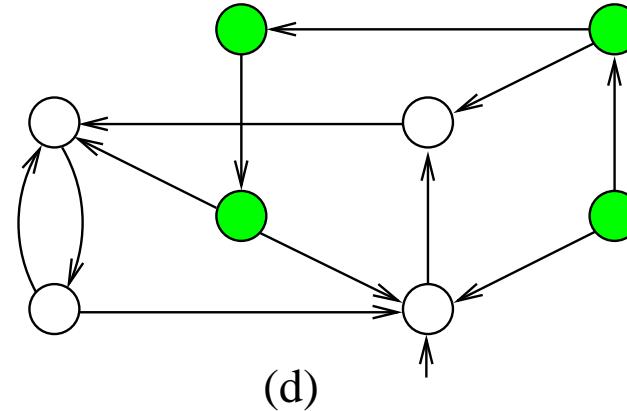
(a)



(b)



(c)



(d)

Computing $\text{Sat}(\exists \Box \Phi)$

$E := S \setminus \text{Sat}(\Phi);$ (* E contains any not visited s' with $s' \not\models \exists \Box \Phi$ *)

$T := \text{Sat}(\Phi);$ (* T contains any s for which $s \models \exists \Box \Phi$ has not yet been disproven *)

for all $s \in \text{Sat}(\Phi)$ **do** $c[s] := |\text{Post}(s)|;$ **od** (* initialize array c *)

while $E \neq \emptyset$ **do**

let $s' \in E;$

$E := E \setminus \{s'\};$

for all $s \in \text{Pre}(s')$ **do**

if $s \in T$ **then**

$c[s] := c[s] - 1;$

if $c[s] = 0$ **then**

$T := T \setminus \{s\}; E := E \cup \{s\};$

fi

fi

od

od

return T

(* loop invariant: $c[s] = |\text{Post}(s) \cap (T \cup E)|$ *)

(* $s' \not\models \Phi$ *)

(* s' has been considered *)

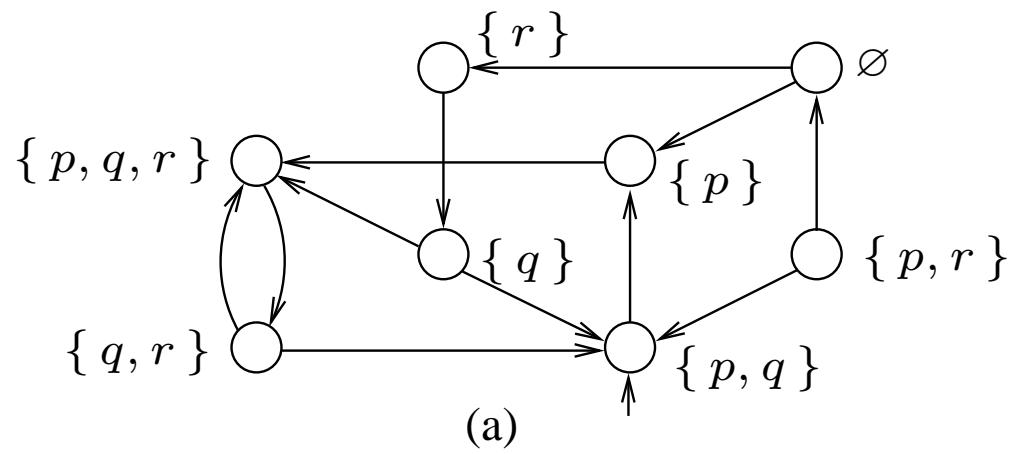
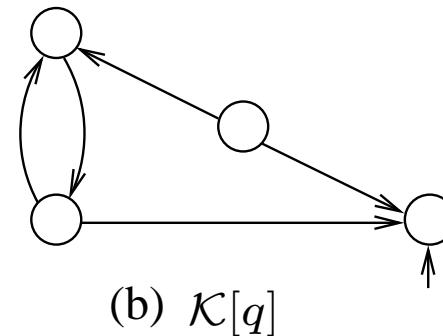
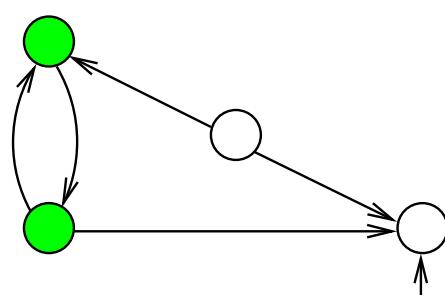
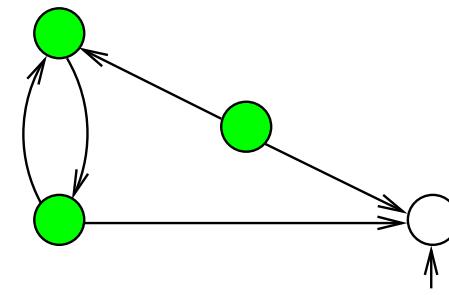
(* update counter $c[s]$ for predecessor s of s' *)

(* s does not have any successor in T *)

Alternative algorithm

1. Consider only state s if $s \models \Phi$, otherwise **eliminate** s
 - change TS into $TS[\Phi] = (S', Act, \rightarrow', I', AP, L')$ with $S' = Sat(\Phi)$,
 - $\rightarrow' = \rightarrow \cap (S' \times Act \times S')$, $I' = I \cap S'$, and $L'(s) = L(s)$ for $s \in S'$
 - ⇒ all removed states will not satisfy $\exists \Box \Phi$, and thus can be safely removed
2. Determine all ***non-trivial strongly connected components*** in $TS[\Phi]$
 - non-trivial SCC = maximal, connected subgraph with at least one transition
 - ⇒ any state in such SCC satisfies $\exists \Box \Phi$
3. $s \models \exists \Box \Phi$ is equivalent to “some ***SCC is reachable*** from s ”
 - this search can be done in a backward manner

Example



Time complexity

For transition system TS with N states and K transitions, and CTL formula Φ , the CTL model-checking problem $TS \models \Phi$ can be determined in time $\mathcal{O}(|\Phi| \cdot (N + M))$

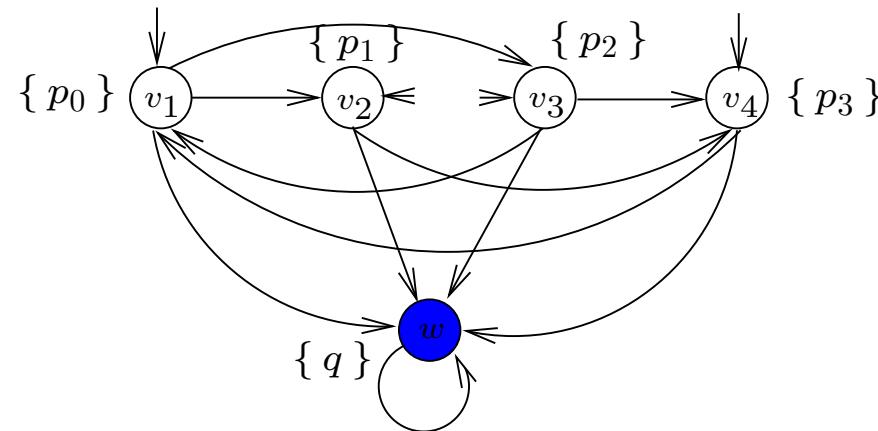
this applies to both algorithm for existential until-formulas

Model-checking LTL versus CTL

- Let TS be a transition system with N states and M transitions
- Model-checking LTL-formula Φ has time-complexity $\mathcal{O}((N+M) \cdot 2^{|\Phi|})$
 - linear in the state space of the system model
 - exponential in the length of the formula
- Model-checking CTL-formula Φ has time-complexity $\mathcal{O}((N+M) \cdot |\Phi|)$
 - linear in the state space of the system model and the formula
- Is model-checking CTL more efficient? **No!**

Model-checking LTL versus CTL

⇒ LTL-formulae can be *exponentially shorter* than their equivalent in CTL



- Existence of Hamiltonian path in LTL: $\neg ((\diamond p_0 \wedge \dots \wedge \diamond p_3) \wedge \bigcirc^4 q)$
- In CTL, all possible (= 4!) routes need to be encoded