

Qualitative Properties in Markov Chains

Lecture #20 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 22, 2006

Discrete-time Markov chains

A **DTMC** \mathcal{M} is a tuple $(S, \mathbf{P}, \iota_{init}, AP, L)$ with:

- S is a countable nonempty set of **states**
- $\mathbf{P} : S \times S \rightarrow [0, 1]$, **transition probability function** s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
 - $\mathbf{P}(s, s')$ is the probability to jump from s to s' in one step
 - s is **absorbing** if $\mathbf{P}(s, s) = 1$
- $\iota_{init} : S \rightarrow [0, 1]$, the **initial distribution** with $\sum_{s \in S} \iota_{init}(s) = 1$
 - $\iota_{init}(s)$ is the probability that system starts in state s
 - state s for which $\iota_{init}(s) > 0$ is an **initial state**
- $L : S \rightarrow 2^{AP}$, the **labelling function**

Paths

- **State graph** of DTMC \mathcal{M}
 - vertices are states of \mathcal{M} , and $(s, s') \in E$ if and only if $\mathbf{P}(s, s') > 0$
- **Paths** in \mathcal{M} are maximal (i.e., infinite) paths in its state graph
 - for path π in \mathcal{M} , $\inf(\pi)$ is the set of states that are visited infinitely often in π
 - $Paths(\mathcal{M})$ and $Paths_{fin}(\mathcal{M})$ denote the set of (finite) paths in \mathcal{M}
- $Post(s) = \{s' \in S \mid \mathbf{P}(s, s') > 0\}$ and $Pre(s) = \{s' \in S \mid \mathbf{P}(s', s) > 0\}$
 - $Post^*(s)$ is the set of states reachable from s via a finite path fragment
 - $Pre^*(s) = \{s' \in S \mid s \in Post^*(s')\}$

Probability measure on DTMCs

- Events are *infinite paths* in the DTMC \mathcal{M} , i.e., $\Omega = \text{Paths}(\mathcal{M})$
- σ -algebra on \mathcal{M} is generated by *cylinder sets* of finite paths $\hat{\pi}$:

$$\text{Cyl}(\hat{\pi}) = \{ \pi \in \text{Paths}(\mathcal{M}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

- cylinder sets serve as basis events of the smallest σ -algebra on $\text{Paths}(\mathcal{M})$
- \Pr is the *probability measure* on the σ -algebra on $\text{Paths}(\mathcal{M})$:

$$\Pr(\text{Cyl}(s_0 \dots s_n)) = \iota_{\text{init}}(s_0) \cdot \mathbf{P}(s_0 \dots s_n)$$

- where $\mathbf{P}(s_0 s_1 \dots s_n) = \prod_{0 \leq i < n} \mathbf{P}(s_i, s_{i+1})$
- and $\mathbf{P}(s_0) = 1$ for paths of length zero

Reachability probabilities

- What is the probability to reach a set of states $B \subseteq S$ in DTMC \mathcal{M} ?
- Which event does $\diamond B$ mean formally?
 - the union of all cylinders $Cyl(s_0 \dots s_n)$ where
 - $s_0 \dots s_n$ is an initial path fragment in \mathcal{M} with $s_0, \dots, s_{n-1} \notin B$ and $s_n \in B$

$$\begin{aligned}
 \Pr(\diamond B) &= \sum_{s_0 \dots s_n \in \text{Paths}_{fin}(\mathcal{M}) \cap (S \setminus B)^* B} \Pr(Cyl(s_0 \dots s_n)) \\
 &= \sum_{s_0 \dots s_n \in \text{Paths}_{fin}(\mathcal{M}) \cap (S \setminus B)^* B} \iota_{init}(s_0) \cdot \mathbf{P}(s_0 \dots s_n)
 \end{aligned}$$

Constrained reachability probabilities

Let \mathcal{M} be a *finite* DTMC with state space S partitioned into:

- $S_{=0} = \text{Sat}(\neg \exists(\textcolor{red}{C} \cup \textcolor{blue}{B}))$
- $S_{=1}$ a subset of $\{s \in S \mid \Pr(s \models \textcolor{red}{C} \cup \textcolor{blue}{B}) = 1\}$ that contains $\textcolor{blue}{B}$
- $S_? = S \setminus (S_{=0} \cup S_{=1})$

For $\textcolor{blue}{B}, \textcolor{red}{C} \subseteq S$, the vector

$$(\Pr(s \models \textcolor{red}{C} \cup \textcolor{blue}{B}))_{s \in S_?}$$

is the *unique* solution of the linear equation system:

$$\mathbf{x} = \mathbf{Ax} + \mathbf{b} \quad \text{where} \quad \mathbf{A} = (\mathbf{P}(s, t))_{s, t \in S_?} \quad \text{and} \quad \mathbf{b} = (\mathbf{P}(s, S_{=1}))_{s \in S_?}$$

Constrained reachability probabilities

- The probabilities of the events $C \cup^{\leq n} B$ can be obtained iteratively:

$$\mathbf{x}^{(0)} = \mathbf{0} \quad \text{and} \quad \mathbf{x}^{(i+1)} = \mathbf{A}\mathbf{x}^{(i)} + \mathbf{b} \text{ for } 0 \leq i < n$$

- where $\mathbf{A} = (\mathbf{P}(s, t))_{s, t \in C \setminus B}$ and $\mathbf{b} = (\mathbf{P}(s, B))_{s \in C \setminus B}$
- Then: $\mathbf{x}^{(n)}(s) = \Pr(s \models C \cup^{\leq n} B)$ for $s \in C \setminus B$

Qualitative properties

- Qualitative analysis of a Markov chain
 - determine whether a certain event holds with probability one or with probability zero
- Randomization versus (strong) fairness
 - visiting a state infinitely often almost surely implies strong fairness on its transitions
- Limit behaviour of a finite Markov chain
 - the long run behaviour of a DTMC is captured by reachable strongly connected components
- Almost surely reachability
- Repeated reachability
 - almost sure repeated reachability and probabilities for repeated reachability

Measurability of some events

Let $T \subseteq S$ a subset of states in a (possibly infinite) DTMC.

- The event $\square\lozenge T$ is measurable
 - $\square\lozenge T$ can be written as countable intersection of countable unions of cylinder sets:

$$\square\lozenge T = \bigcap_{n \geq 0} \bigcup_{m \geq n} \text{Cyl}(\text{"(m+1)-st state is in } T\text{"})$$
 where $\text{Cyl}(\dots)$ is the union of all cylinder sets $\text{Cyl}(t_0 \dots t_m)$ for $t_0 \dots t_m \in \text{Paths}_{fin}(\mathcal{M})$ and $t_m \in T$
- The event $\square\lozenge\hat{\pi}$ is measurable
 - then also $\bigcap_{\hat{\pi} \in \Pi}$ is measurable too
- The event $\lozenge\square T$ is measurable

Fairness constraints

- *Unconditional fairness*

no condition is expressed that constrains the circumstances under which something happens

- *Strong fairness*

if an activity is *infinitely often* enabled (not necessarily always!)
then it has to be executed infinitely often

- *Weak fairness*

if an activity is *continuously enabled* (no temporary disabling!)
then it has to be executed infinitely often

Probabilistic choice as strong fairness

Let \mathcal{M} be a (possibly infinite) Markov chain and s, t states in \mathcal{M} .

Then:

$$\Pr(s \models \square \diamond t) = \Pr_s \left(\bigwedge_{\hat{\pi} \in \text{Paths}_{fin}(t)} \square \diamond \hat{\pi} \right)$$

where $\bigwedge_{\hat{\pi} \in \text{Paths}_{fin}(t)} \square \diamond \hat{\pi}$ denotes the set consisting of all paths π such that any path fragment $\hat{\pi} \in \text{Paths}_{fin}(t)$ occurs infinitely often in π

Proof

Corollary

For any state s in DTMC \mathcal{M} :

$$\Pr(s \models \Box \Diamond t) = \Pr\left(s \models \bigwedge_{u \in \text{Post}^*(t)} \Box \Diamond u\right)$$

and

$$\Pr\left(s \models \bigwedge_{t \in S} \bigwedge_{u \in \text{Post}^*(t)} (\Box \Diamond t \rightarrow \Box \Diamond u)\right) = 1$$

for finite Markov chains at least one state is visited infinitely often on all paths

Graph notions

Let $\mathcal{M} = (S, \mathbf{P}, \iota_{init}, AP, L)$ be a *finite* Markov chain

- $T \subseteq S$ is *strongly connected* if:
 - $s \in T$ and $t \in T$ are mutually reachable via edges in T
- T is a *strongly connected component* (SCC) of \mathcal{M} if:
 - it is strongly connected and no proper superset of T is strongly connected
- T is a *bottom SCC* (BSCC) if:
 - it is an SCC and no state outside T is reachable from T
 - for any state $t \in T$ it holds $\mathbf{P}(s, T) = \sum_{t \in T} \mathbf{P}(s, t) = 1$
 - let $BSCC(\mathcal{M})$ denote the set of BSCCs of \mathcal{M}

Limit behaviour

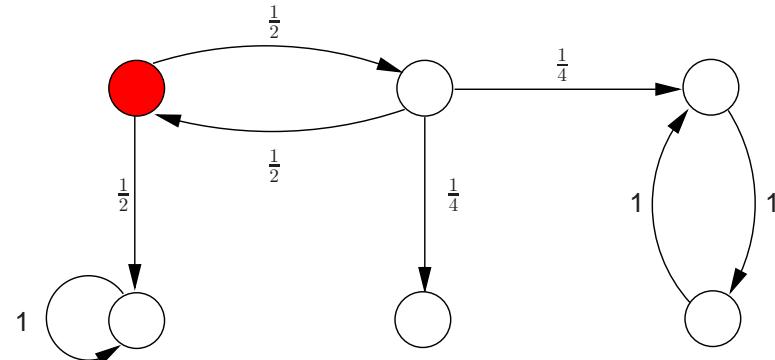
For each state s of a finite Markov chain \mathcal{M} :

$$\Pr_s \{ \pi \in \text{Paths}(s) \mid \inf(\pi) \in \text{BSCC}(\mathcal{M}) \} = 1$$

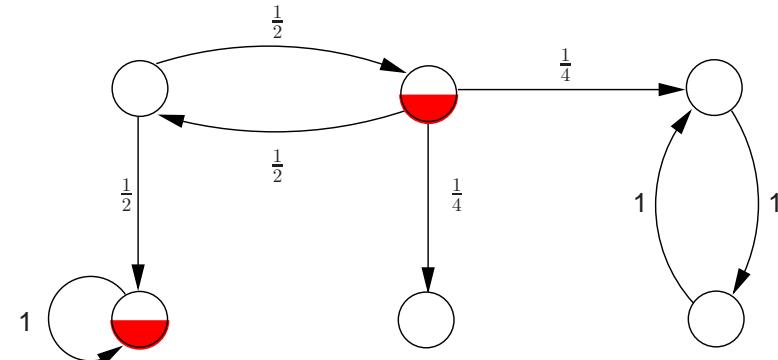
*almost surely any finite DTMC eventually reaches a BSCC
and visits all its states ∞ often*

Proof

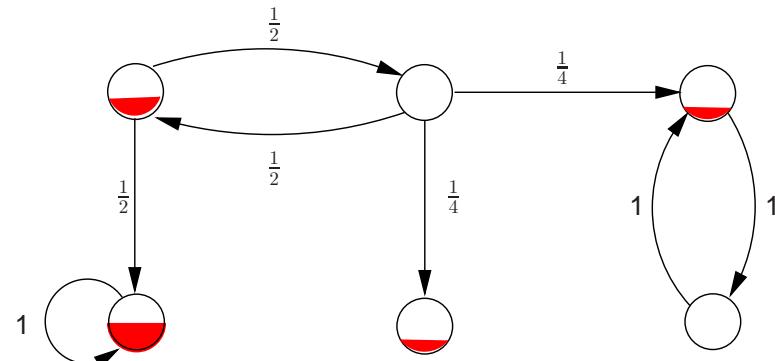
Evolution of an example DTMC



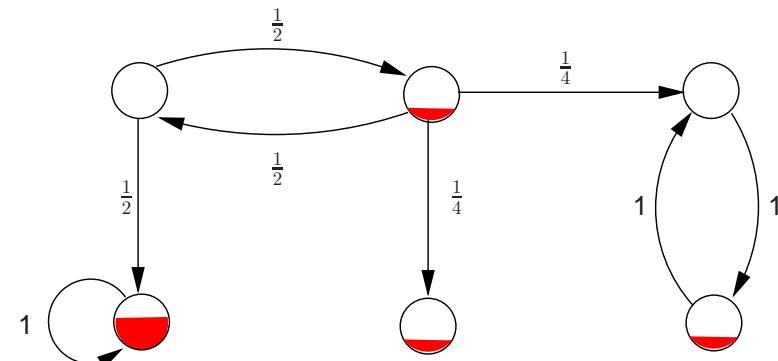
zero-th epoch



first epoch

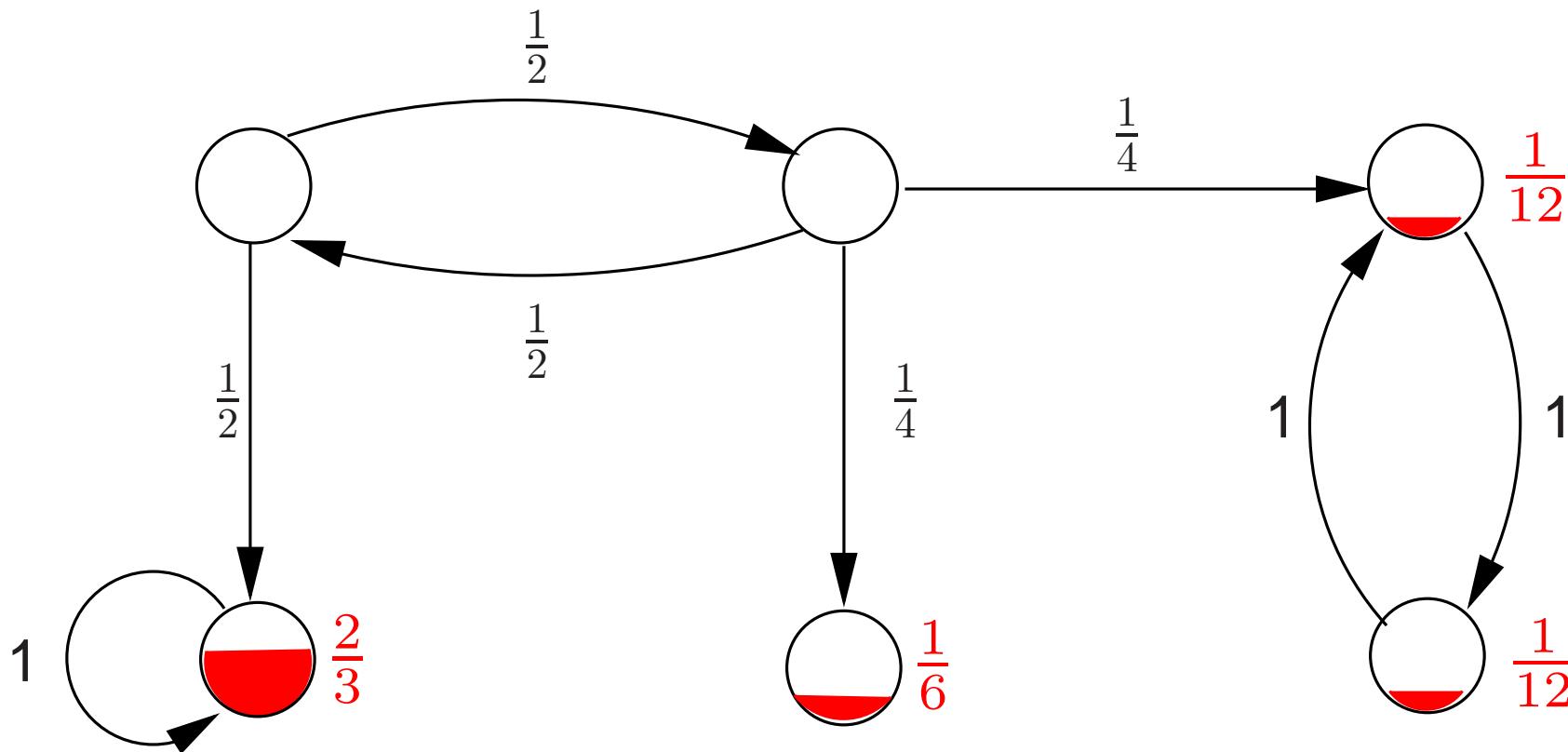


second epoch



third epoch

On the long run



Almost sure reachability

Let \mathcal{M} be a finite DTMC with state space S , $s \in S$.

For $B \subseteq S$ a set of absorbing states the following statements are equivalent:

- (a) $\Pr(s \models \diamond B) = 1$
- (b) $Post^*(t) \cap B \neq \emptyset$ for any state $t \in Post^*(s)$
- (c) $s \in S \setminus Pre^*(S \setminus Pre^*(B))$

in particular, $\{ s \in S \mid \Pr(s \models \diamond B) = 1 \} = S \setminus Pre^*(S \setminus Pre^*(B))$

Proof

Almost sure reachability

- Given finite DTMC \mathcal{M} and set of states $B \subseteq S$, determine:

$$s \in S \quad \text{such that} \quad \Pr(s \models \diamond B) = 1$$

1. Make all states in B absorbing (yielding \mathcal{M}_B)
2. Determine $S \setminus \text{Pre}^*(S \setminus \text{Pre}^*(B))$ by a graph analysis
 - do a backward search from B in \mathcal{M}_B to determine $\text{Pre}^*(B)$
 - then a backward search from $S \setminus \text{Pre}^*(B)$ in \mathcal{M}_B

- Time complexity: linear in the size of \mathcal{M}

0-1 constrained reachability

For finite DTMC \mathcal{M} , the sets:

$$S_{=0} = \{ s \in S \mid \Pr(s \models C \cup B) = 0 \} \quad \text{and}$$
$$S_{=1} = \{ s \in S \mid \Pr(s \models C \cup B) = 1 \}$$

can be computed in time $\mathcal{O}(\text{size}(\mathcal{M}))$

Proof

Repeated reachability (1)

Let \mathcal{M} be a finite DTMC with state-space S .

For $B \subseteq S$, $s \in S$, the following statements are equivalent:

- (a) $\Pr(s \models \square \diamond B) = 1$
- (b) $T \cap B \neq \emptyset$ for each BSCC T reachable from s
- (c) $s \models \forall \square \exists \diamond B$

$\{ s \in S \mid \Pr(s \models \square \diamond B) = 1 \}$ can be determined in $\mathcal{O}(\text{size}(\mathcal{M}))$

Repeated reachability (2)

Let \mathcal{M} be a finite DTMC with state space S and $B \subseteq S$, $s \in S$

Let U be the union of all BSCCs T with $T \cap B \neq \emptyset$

Then:

$$\Pr(s \models \Box \Diamond B) = \Pr(s \models \Diamond U)$$

Persistence properties

- $\Pr(s \models \diamond \square B) = 1$ iff $T \subseteq B$ for any BSCC T reachable from s
- $\Pr(s \models \diamond \square B) = \Pr(s \models \diamond V)$
 - where V is the union of all BSCCs T with $T \subseteq B$

Summary

Any considered qualitative property on finite DTMCs can be checked
by a graph analysis of the underlying state graph

Infinite DTMCs