

Probabilistic Computation Tree Logic

Lecture #21 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

February 1, 2007

Discrete-time Markov chains

A **DTMC** \mathcal{M} is a tuple $(S, \mathbf{P}, \iota_{init}, AP, L)$ with:

- S is a countable nonempty set of **states**
- $\mathbf{P} : S \times S \rightarrow [0, 1]$, **transition probability function** s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
 - $\mathbf{P}(s, s')$ is the probability to jump from s to s' in one step
 - s is **absorbing** if $\mathbf{P}(s, s) = 1$
- $\iota_{init} : S \rightarrow [0, 1]$, the **initial distribution** with $\sum_{s \in S} \iota_{init}(s) = 1$
 - $\iota_{init}(s)$ is the probability that system starts in state s
 - state s for which $\iota_{init}(s) > 0$ is an **initial state**
- $L : S \rightarrow 2^{AP}$, the **labelling function**

PCTL Syntax

- For $a \in AP$, $J \subseteq [0, 1]$ an interval with rational bounds, and natural n :

$$\Phi ::= \text{true} \mid a \mid \Phi \wedge \Phi \mid \neg \Phi \mid \mathbb{P}_J(\varphi)$$

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2 \mid \Phi_1 \cup^{\leq n} \Phi_2$$

- $s_0s_1s_2\dots \models \Phi \cup^{\leq n} \Psi$ if Φ holds until Ψ holds within n steps
- $s \models \mathbb{P}_J(\varphi)$ if probability that paths starting in s fulfill φ lies in J

abbreviate $\mathbb{P}_{[0,0.5]}(\varphi)$ by $\mathbb{P}_{\leq 0.5}(\varphi)$ and $\mathbb{P}_{]0,1]}(\varphi)$ by $\mathbb{P}_{>0}(\varphi)$

Derived operators

$$\diamond\Phi = \text{true} \cup \Phi$$

$$\diamond^{\leq n}\Phi = \text{true} \cup^{\leq n}\Phi$$

$$\mathbb{P}_{\leq p}(\square\Phi) = \mathbb{P}_{\geq 1-p}(\diamond\neg\Phi)$$

$$\mathbb{P}_{]p,q]}(\square^{\leq n}\Phi) = \mathbb{P}_{[1-q,1-p[}(\diamond^{\leq n}\neg\Phi)$$

operators like weak until W or release R can be derived analogously

Example properties

- Transient probabilities: $\mathbb{P}_{\geq 0.92} (\diamond^{=137} \text{goal})$

- With probability ≥ 0.92 , a goal state is reached legally:

$$\mathbb{P}_{\geq 0.92} (\neg \text{illegal} \cup \text{goal})$$

- ... in maximally 137 steps: $\mathbb{P}_{\geq 0.92} (\neg \text{illegal} \cup^{\leq 137} \text{goal})$

- ... once there, remain there almost surely for the next 31 steps:

$$\mathbb{P}_{\geq 0.92} (\neg \text{illegal} \cup^{\leq 137} \mathbb{P}_{=1}(\square^{[0,31]} \text{goal}))$$

PCTL semantics (1)

$\mathcal{M}, s \models \Phi$ if and only if formula Φ holds in state s of DTMC \mathcal{M}

Relation \models is defined by:

$$\begin{aligned} s \models a &\quad \text{iff } a \in L(s) \\ s \models \neg \Phi &\quad \text{iff } \text{not } (s \models \Phi) \\ s \models \Phi \vee \Psi &\quad \text{iff } (s \models \Phi) \text{ or } (s \models \Psi) \\ s \models \mathbb{P}_J(\varphi) &\quad \text{iff } \Pr(s \models \varphi) \in J \end{aligned}$$

where $\Pr(s \models \varphi) = \Pr_s\{\pi \in \text{Paths}(s) \mid \pi \models \varphi\}$

PCTL semantics (2)

A *path* in \mathcal{M} is an infinite sequence $s_0 s_1 s_2 \dots$ with $\mathbf{P}(s_i, s_{i+1}) > 0$

Semantics of path-formulas is defined as in CTL:

$$\pi \models \bigcirc \Phi \quad \text{iff} \quad s_1 \models \Phi$$

$$\pi \models \Phi \mathbf{U} \Psi \quad \text{iff} \quad \exists n \geq 0. (s_n \models \Psi \wedge \forall 0 \leq i < n. s_i \models \Phi)$$

$$\pi \models \Phi \mathbf{U}^{\leq n} \Psi \quad \text{iff} \quad \exists k \geq 0. (k \leq n \wedge s_k \models \Psi \wedge \forall 0 \leq i < k. s_i \models \Phi)$$

Measurability

For any PCTL path formula φ and state s of DTMC \mathcal{M}
the set $\{\pi \in \text{Paths}(s) \mid \pi \models \varphi\}$ is measurable

PCTL model checking

- Check whether state s in a DTMC satisfies a PCTL formula:
 - compute **recursively** the set $\text{Sat}(\Phi)$ of states that satisfy Φ
 - check whether state s belongs to $\text{Sat}(\Phi)$

⇒ bottom-up traversal of the parse tree of Φ (like for CTL)
- For the propositional fragment: as for CTL
- How to compute $\text{Sat}(\Phi)$ for the probabilistic operators?

PCTL model checking

- Alternative formulation: $s \models \mathbb{P}_{\textcolor{red}{J}}(\bigcirc\Phi)$ if and only if $Prob(s, \bigcirc\Phi) \in \textcolor{red}{J}$
- Next: $Prob(s, \bigcirc\Phi)$ equals $\sum_{s' \in Sat(\Phi)} \mathbf{P}(s, s')$
- Matrix-vector multiplication:

$$(Prob(s, \bigcirc\Phi))_{s \in S} = \mathbf{P} \cdot \iota_{\Phi}$$

where ι_{Φ} is the characteristic vector of $Sat(\Phi)$, i.e.,
 $\iota_{\Phi}(s) = 1$ if and only if $s \in Sat(\Phi)$

Checking probabilistic reachability

- $s \models \mathbb{P}_J(\Phi \cup^{≤h} \Psi)$ if and only if $Prob(s, \Phi \cup^{≤h} \Psi) \in J$
- $Prob(s, \Phi \cup^{≤h} \Psi)$ is the least solution of: (Hansson & Jonsson, 1990)
 - 1 if $s \models \Psi$
 - for $h > 0$ and $s \models \Phi \wedge \neg \Psi$:
$$\sum_{s' \in S} \mathbf{P}(s, s') \cdot Prob(s', \Phi \cup^{≤h-1} \Psi)$$
 - 0 otherwise
- Standard reachability for $\mathbb{P}_{>0}(\Phi \cup^{≤h} \Psi)$ and $\mathbb{P}_{≥1}(\Phi \cup^{≤h} \Psi)$
 - for efficiency reasons (avoiding solving system of linear equations)

Reduction to transient analysis

- Make all Ψ - and all $\neg(\Phi \vee \Psi)$ -states absorbing in \mathcal{M}
- Check $\diamond^{=h} \Psi$ in the obtained DTMC \mathcal{M}'
- This is a standard transient analysis in \mathcal{M}' :

$$\sum_{\substack{s \\ s' \models \Psi}} \Pr\{\pi \in \text{Paths}(s) \mid \sigma[h] = s'\}$$

- compute by $(\mathbf{P}')^h \cdot \iota_\Psi$ where ι_Ψ is the characteristic vector of $\text{Sat}(\Psi)$

⇒ Matrix-vector multiplication

Time complexity

For finite DTMC \mathcal{M} and PCTL formula Φ , $\mathcal{M} \models \Phi$ can be solved in time

$$\mathcal{O}(\text{poly}(\text{size}(\mathcal{M})) \cdot n_{\max} \cdot |\Phi|)$$

- $n_{\max} = \max\{ n \mid \Psi_1 \mathsf{U}^{\leq n} \Psi_2 \text{ occurs in } \Phi \}$
- and $n_{\max} = 1$ if Φ does not contain the bounded until-operator

The qualitative fragment of PCTL

- For $a \in AP$ and natural n :

$$\Phi ::= \text{true} \mid a \mid \Phi \wedge \Phi \mid \neg \Phi \mid \mathbb{P}_{>0}(\varphi) \mid \mathbb{P}_{=1}(\varphi)$$

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

- The probability bounds $= 0$ and < 1 can be derived:

$$\mathbb{P}_{=0}(\varphi) \equiv \neg \mathbb{P}_{>0}(\varphi) \quad \text{and} \quad \mathbb{P}_{<1}(\varphi) \equiv \neg \mathbb{P}_{=1}(\varphi)$$

- No bounded until, and only > 0 , $= 0$, > 1 and $= 1$ intervals

so: $\mathbb{P}_{=1}(\diamond \mathbb{P}_{>0}(\bigcirc a))$ and $\mathbb{P}_{<1}(\mathbb{P}_{>0}(\diamond a) \cup b)$ are qualitative PCTL formulas

$\mathbb{P}_{=1}$ **versus** \forall and $\mathbb{P}_{>0}$ **versus** \exists

- PCTL-formula Φ is *equivalent* to CTL-formula Ψ :
 - $\Phi \equiv \Psi$ if and only if $Sat_{\mathcal{M}}(\Phi) = Sat_{TS(\mathcal{M})}(\Psi)$ for each DTMC \mathcal{M}
- $\exists \varphi$ requires φ on **some** paths, $\mathbb{P}_{>0}(\varphi)$ with **positive** probability
 - $\mathbb{P}_{>0}(\bigcirc a) \equiv \exists \bigcirc a$ and $\mathbb{P}_{>0}(\diamond a) \equiv \exists \diamond a$
 - and $\mathbb{P}_{>0}(a \cup b) \equiv \exists a \cup b$
 - but: $\mathbb{P}_{>0}(\Box a) \not\equiv \exists \Box a$
- $\forall \varphi$ requires φ to hold for **all** paths, $\mathbb{P}_{=1}(\varphi)$ for **almost** all
 - $\mathbb{P}_{=1}(\bigcirc a) \equiv \forall \bigcirc a$ and $\mathbb{P}_{=1}(\Box a) \equiv \forall \Box a$
 - but: $\mathbb{P}_{=1}(\diamond a) \not\equiv \forall \diamond a$ whereas $s \models \forall \diamond a$ implies $s \models \mathbb{P}_{=1}(\diamond a)$
 - and $\mathbb{P}_{=1}(a \cup b) \not\equiv \forall a \cup b$

PCTL with $\forall \varphi$ and $\exists \varphi$ is more expressive than PCTL

Qualitative PCTL versus CTL

- There is no CTL-formula that is equivalent to $\mathbb{P}_{=1}(\diamond a)$
- There is no CTL-formula that is equivalent to $\mathbb{P}_{>0}(\square a)$
- There is no qualitative PCTL-formula that is equivalent to $\forall \diamond a$
- There is no qualitative PCTL-formula that is equivalent to $\exists \square a$

Proofs

Strong fairness

For finite \mathcal{M} is finite and $s \in AP$ to characterize uniquely state s :

$$sfair = \bigwedge_{s \in S} \bigwedge_{t \in Post(s)} (\square \diamond s \rightarrow \square \diamond t).$$

Using earlier results (see previous lecture) we obtain:

$$\begin{aligned} s \models \mathbb{P}_{=1}(a \mathbf{U} b) &\quad \text{iff} \quad s \models_{sfair} \forall a \mathbf{U} b \\ s \models \mathbb{P}_{>0}(\square a) &\quad \text{iff} \quad s \models_{sfair} \exists \square a \end{aligned}$$

As s_{fair} is a *realizable* fairness constraint on obtains:

$$\begin{aligned}s \models_{sfair} \exists(a \cup b) &\quad \text{iff} \quad s \models \exists(a \cup b) \quad \text{iff} \quad s \models \mathbb{P}_{>0}(a \cup b) \\s \models_{sfair} \forall \bigcirc a &\quad \text{iff} \quad s \models \forall \bigcirc a \quad \text{iff} \quad s \models \mathbb{P}_{=1}(\bigcirc a) \\s \models_{sfair} \exists \bigcirc a &\quad \text{iff} \quad s \models \exists \bigcirc a \quad \text{iff} \quad s \models \mathbb{P}_{>0}(\bigcirc a)\end{aligned}$$

for finite DTMCs the qualitative fragment of PCTL can be viewed as a variant of CTL
with some special kind of strong fairness

Almost sure repeated reachability

Let \mathcal{M} be a finite Markov chain and s a state of \mathcal{M} . Then:

$$s \models \mathbb{P}_{=1}(\square \mathbb{P}_{=1}(\diamond a)) \quad \text{iff} \quad \Pr_s\{\pi \in \text{Paths}(s) \mid \pi \models \square \diamond a\} = 1$$

this resembles $s \models \forall \square \forall \diamond a$ iff for all paths π : $\pi \models \square \diamond a$

Repeated reachability probabilities

For finite Markov chain, s a state of \mathcal{M} and interval $J \subseteq [0, 1]$:

$$s \models \underbrace{\mathbb{P}_J(\diamond \mathbb{P}_{=1}(\square \mathbb{P}_{=1}(\diamond a)))}_{=\mathbb{P}_J(\square \diamond a)} \quad \text{iff} \quad \Pr(s \models \square \diamond a) \in J$$

the probabilities for $\square \diamond a$ agree with the probability to reach
a BSCC that contains at least one a -state

Persistence probabilities

For finite Markov chain, s a state of \mathcal{M} and interval $J \subseteq [0, 1]$:

$$s \models \mathbb{P}_J(\diamond \mathbb{P}_{=1}(\square a)) \quad \text{iff} \quad \Pr(s \models \diamond \square a) \in J$$

Traditional model checking

- Bisimulation:
(Fisler & Vardi, 1998)
 - preserves μ -calculus
 - . . . obtains **significant state space reductions**
 - . . . minimization effort **significantly exceeds** model checking time
- Advantages:
 - fully automated and efficient abstraction technique
 - may be tailored to properties-of-interest
 - enables compositional minimisation
- Does bisimulation in probabilistic model checking pay off?

Probabilistic bisimulation

- Let $\mathcal{M} = (S, \mathbf{P}, AP, L)$ be a DTMC and R an equivalence on S
- R is a *probabilistic bisimulation* on S if for any $(s, s') \in R$:

$$L(s) = L(s') \text{ and } \mathbf{P}(s, C) = \mathbf{P}(s', C) \quad \text{for all } C \text{ in } S/R$$

where $\mathbf{P}(s, C) = \sum_{s' \in C} \mathbf{P}(s, s')$ (Larsen & Shou, 1989)

- $s \sim s'$ if \exists a probabilistic bisimulation R on S with $(s, s') \in R$

$$s \sim s' \Leftrightarrow (\forall \Phi \in PCTL : s \models \Phi \text{ if and only if } s' \models \Phi)$$

Proof

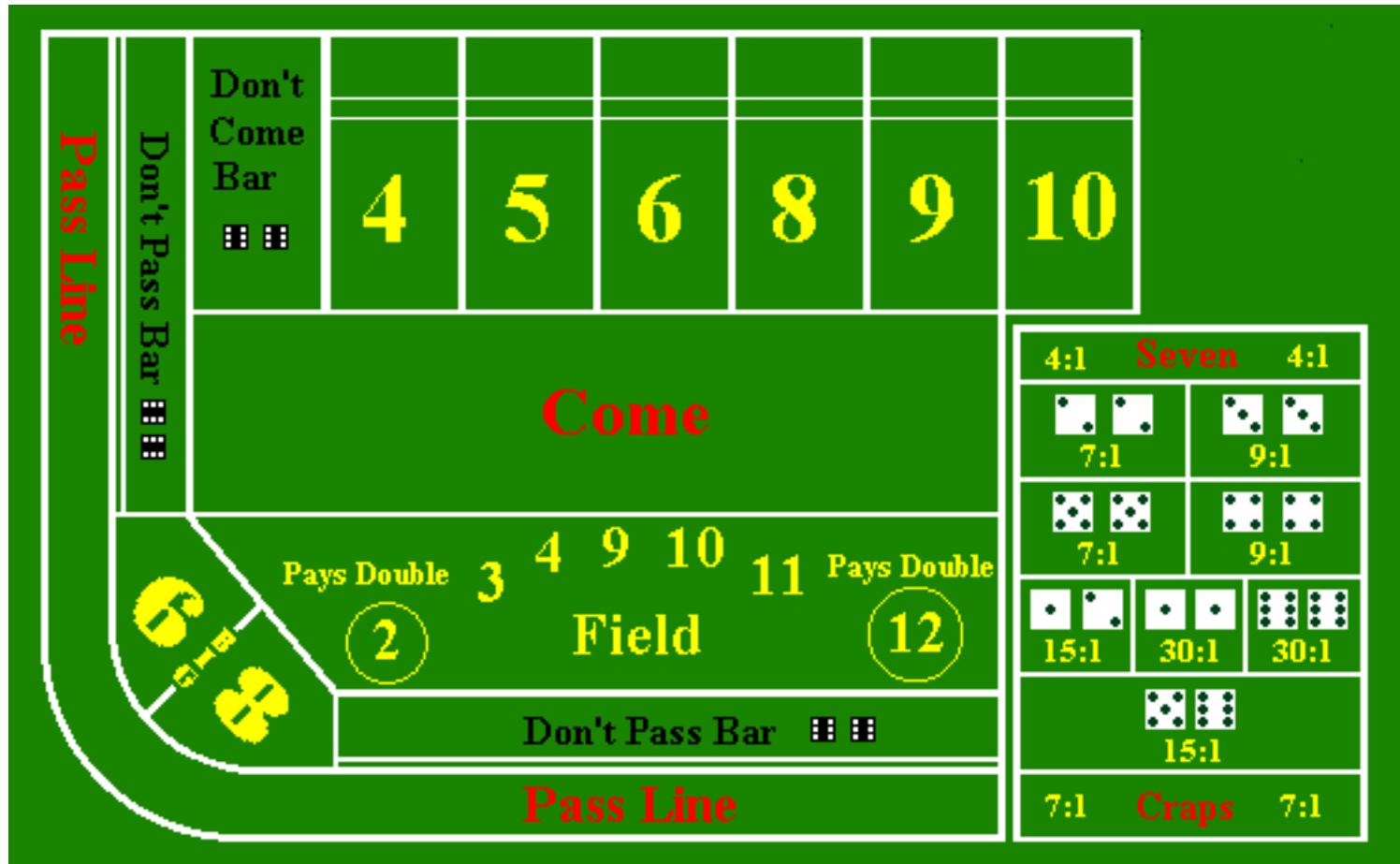
Quotient DTMC under \sim

$\mathcal{M}/\sim = (S', \mathbf{P}', AP, L')$, the **quotient** of $\mathcal{M} = (S, \mathbf{P}, AP, L)$ under \sim :

- $S' = S/\sim = \{ [s]_\sim \mid s \in S \}$
- $\mathbf{P}'([s]_\sim, C) = \mathbf{P}(s, C)$
- $L'([s]_\sim) = L(s)$

get \mathcal{M}/\sim by partition-refinement in time $\mathcal{O}(M \cdot \log N + |AP| \cdot N)$ (Derisavi et al., 2001)

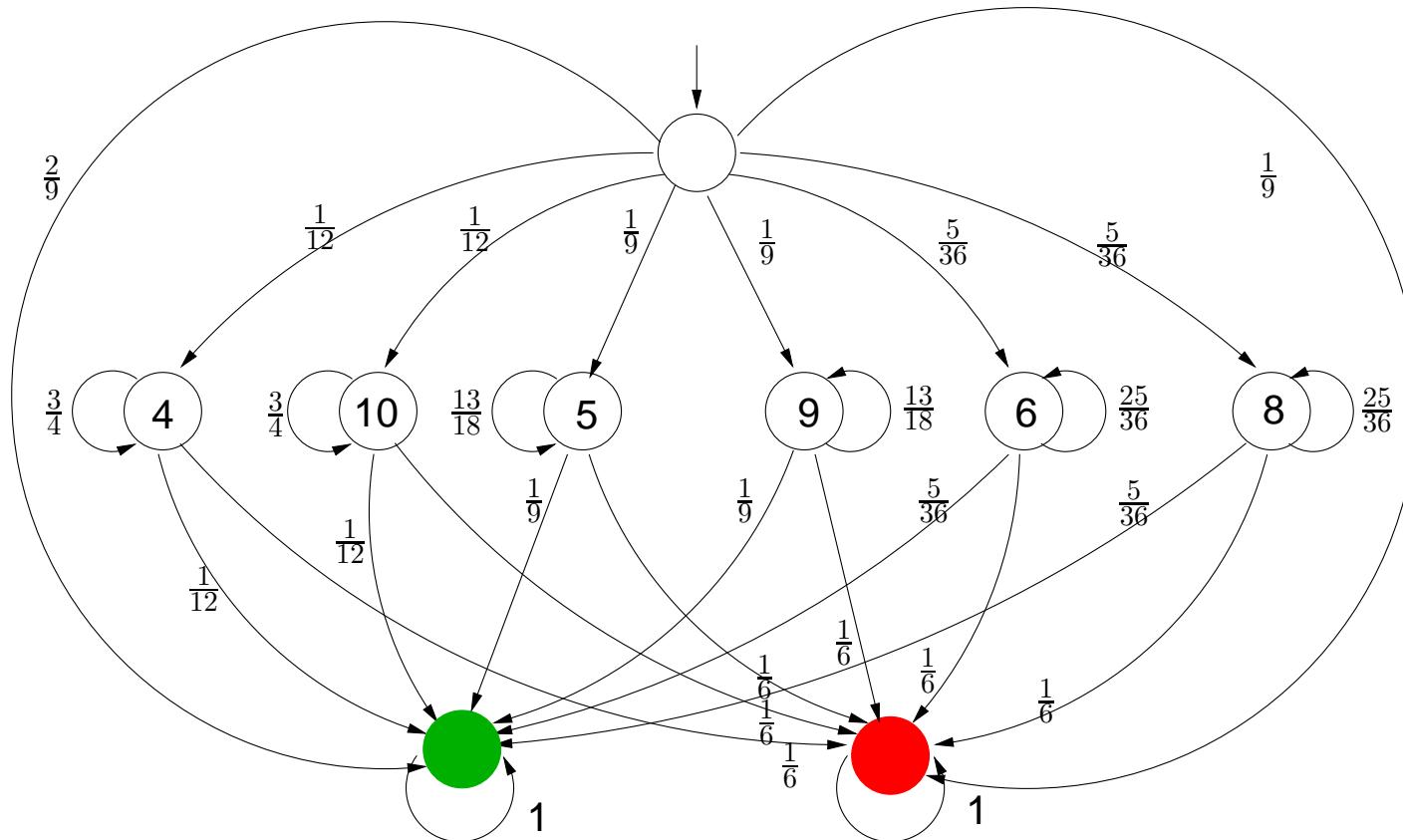
Craps



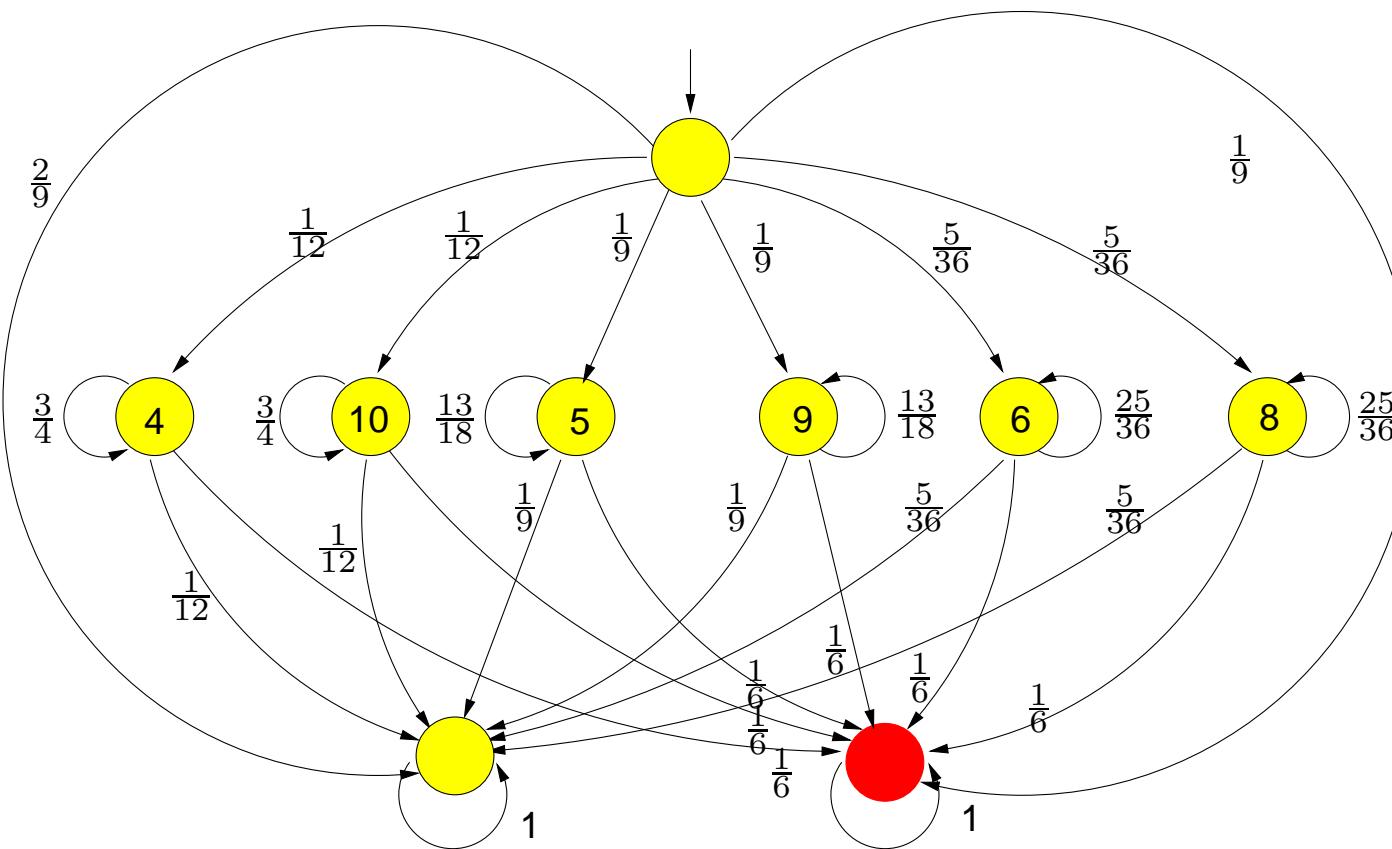
Craps

- Roll two dice and bet on outcome
- Come-out roll (“pass line” wager):
 - outcome 7 or 11: win
 - outcome 2, 3, and 12: loss (“craps”)
 - any other outcome: roll again (outcome is “**point**”)
- Repeat until 7 or the “**point**” is thrown:
 - outcome 7: loss (“seven-out”)
 - outcome the **point**: win
 - any other outcome: roll again

A DTMC model of Craps

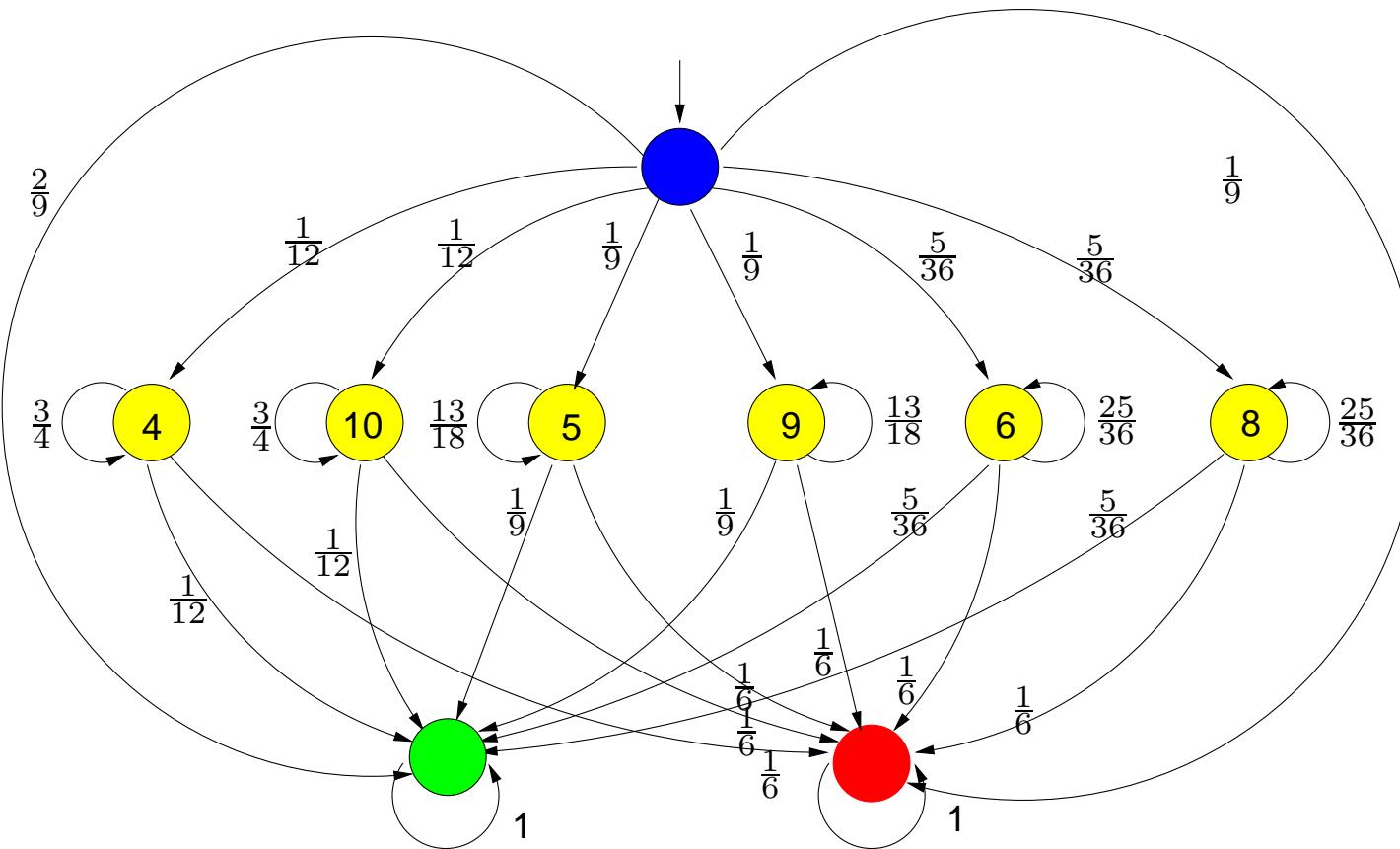


Minimizing Craps



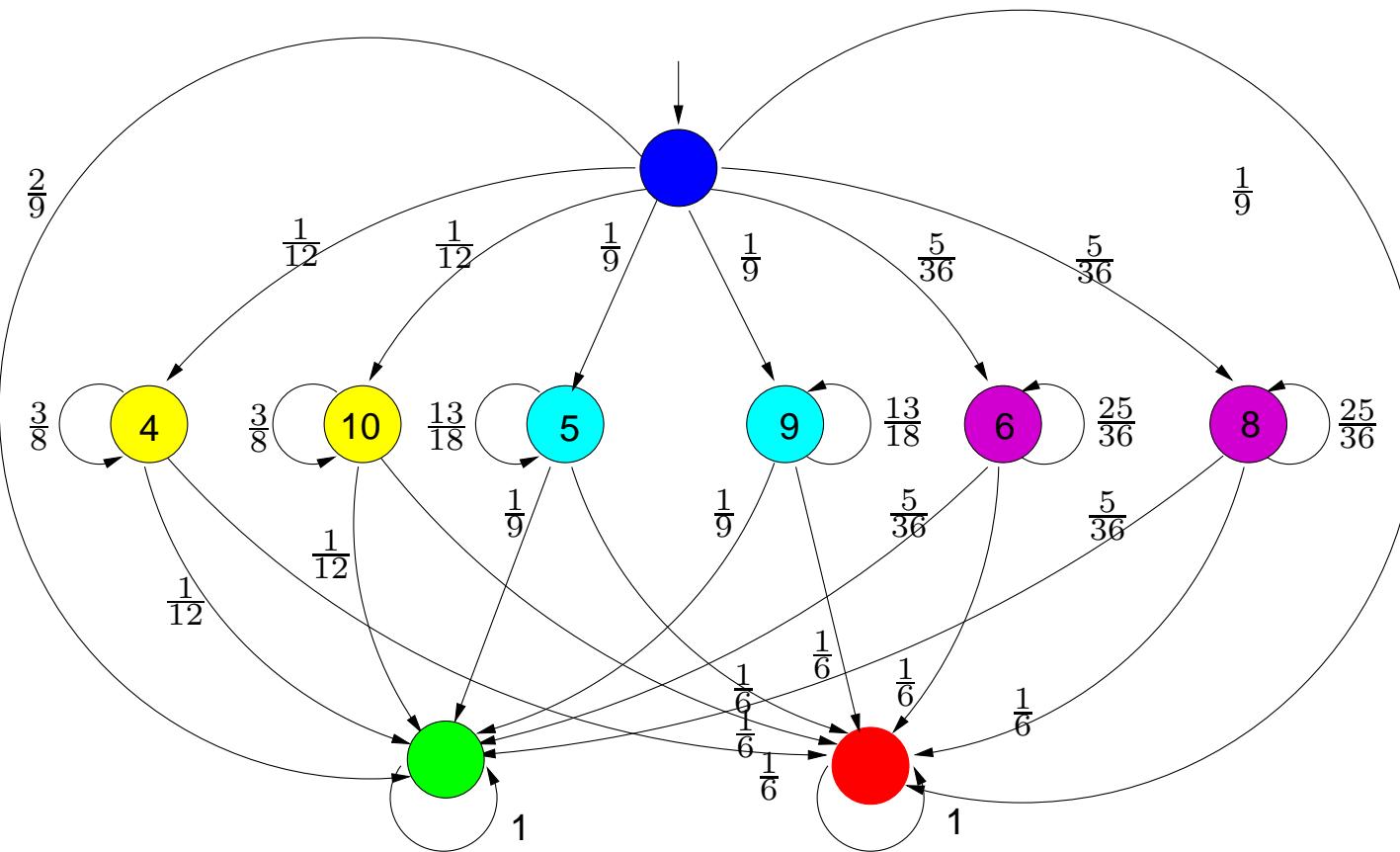
initial partitioning for the atomic propositions $AP = \{ \text{loss} \}$

A first refinement



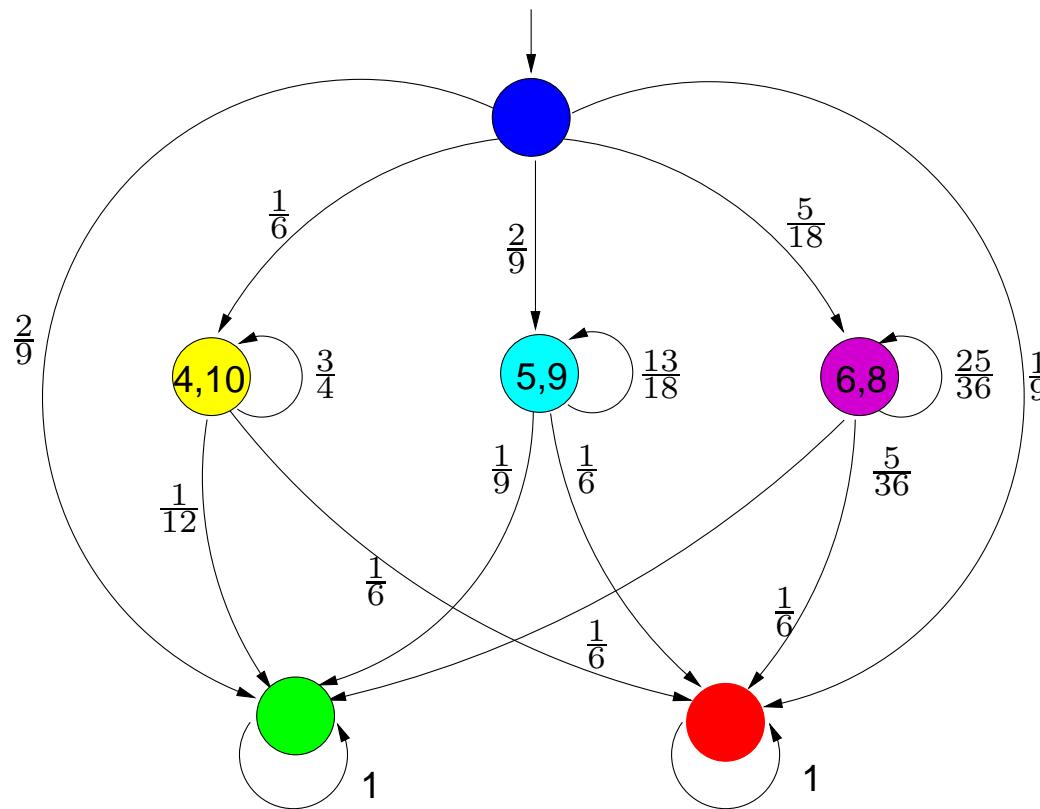
refine (“split”) with respect to the set of red states

A second refinement



refine (“split”) with respect to the set of green states

Quotient DTMC



Property-driven bisimulation

- For DTMC \mathcal{M} , set \mathcal{F} of PCTL-formulas, and equivalence R on S
- R is a probabilistic \mathcal{F} -bisimulation on S if for any $(s, s') \in R$:

$$L_{\mathcal{F}}(s) = L_{\mathcal{F}}(s') \text{ and } \mathbf{P}(s, C) = \mathbf{P}(s', C) \quad \text{for all } C \text{ in } S/R$$

where $L_{\mathcal{F}}(s) = \{ \Phi \in \mathcal{F} \mid s \models \Phi \}$ (Baier et al., 2000)

- $s \sim_{\mathcal{F}} s'$ if \exists a probabilistic \mathcal{F} -bisimulation R on S with $(s, s') \in R$

$$s \sim_{\mathcal{F}} s' \Leftrightarrow (\forall \Phi \in \text{PCTL}_{\mathcal{F}} : s \models \Phi \text{ if and only if } s' \models \Phi)$$

Minimization for Φ until Ψ

- Initial partition for \sim : $s_\Pi = \{ s' \mid L(s') = L(s) \}$
 - independent of the formula to be checked
- Now: exploit the structure of the formula to be checked
- Bounded until:
 - take $F = \{ \Psi, \neg\Phi \wedge \neg\Psi, \Phi \wedge \neg\Psi \}$
 - initial partition $\Pi = \{ s_\Psi, s_{\neg\Phi \wedge \neg\Psi}, \text{Sat}(\Phi \wedge \neg\Psi) \}$
 - or, for non-recurrent DTMCs: $\mathcal{P}_{\leq 0}(\Phi \cup \Psi)$ instead of $\neg\Phi \wedge \neg\Psi$
- Standard until:
 - take $F = \{ \underbrace{\mathcal{P}_{\geq 1}(\Phi \cup \Psi)}_{\text{single state in } \Pi}, \underbrace{\mathcal{P}_{\leq 0}(\Phi \cup \Psi)}_{\text{single state in } \Pi}, \mathcal{P}_{> 0}(\Phi \cup \Psi) \wedge \mathcal{P}_{< 1}(\Phi \cup \Psi) \}$