

Continuous Stochastic Logic

Lecture #22 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

February 5, 2007

Exponential distribution

Continuous r.v. X is *exponential* with parameter $\lambda > 0$ if its density is

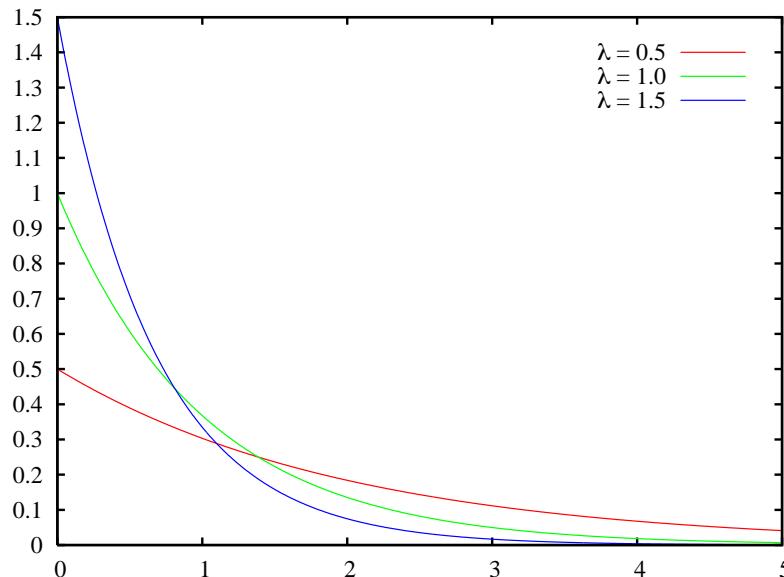
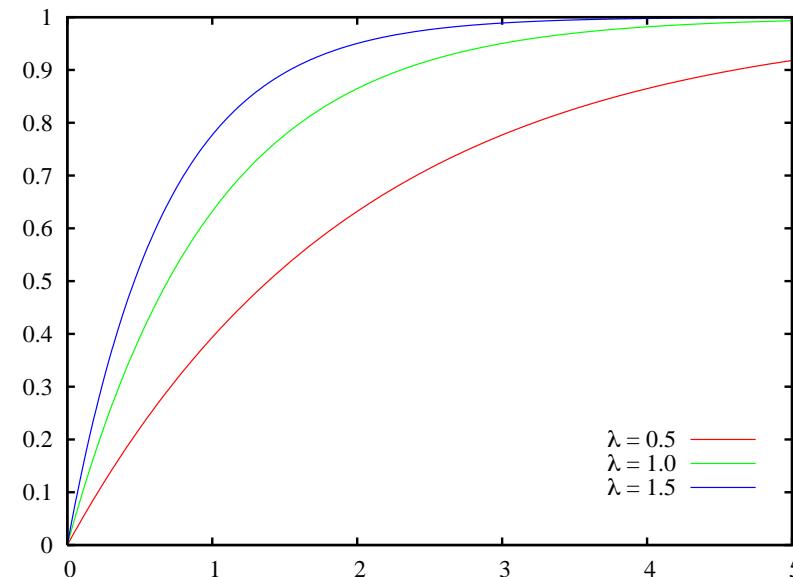
$$f(x) = \lambda \cdot e^{-\lambda \cdot x} \quad \text{for } x > 0 \quad \text{and 0 otherwise}$$

Cumulative distribution of X :

$$F_X(d) = \int_0^d \lambda \cdot e^{-\lambda \cdot x} dx = [-e^{-\lambda \cdot x}]_0^d = 1 - e^{-\lambda \cdot d}$$

- $\Pr\{X > d\} = e^{-\lambda \cdot d}$
- expectation $E[X] = \int_0^\infty x \cdot \lambda \cdot e^{-\lambda \cdot x} dx = \frac{1}{\lambda}$
- variance $\text{Var}[X] = \frac{1}{\lambda^2}$

Exponential pdf and cdf



the higher λ , the faster the cdf approaches 1

Exponential distributions

- have *nice mathematical* properties (cf. next slide)
- are *adequate* for many real-life phenomena
 - describes the time for a continuous process to change state
 - the time until you have your next car accident (failure rates)
 - the inter-arrival times (i.e., the times between customers entering a shop)
- combinations can *approximate* general distributions arbitrarily closely
- maximal *entropy* probability distribution if just the mean is known

CTMCs

A *continuous-time Markov chain* (CTMC) is a tuple (S, \mathbf{R}, L) where:

- S is a finite set of states and L the state-labelling (as before)
- $\mathbf{R} : S \times S \rightarrow \mathbb{R}_{\geq 0}$, a *rate matrix*
 - $\mathbf{R}(s, s') = \lambda$ means that the average speed of going from s to s' is $\frac{1}{\lambda}$
- $E(s) = \sum_{s' \in S} \mathbf{R}(s, s') = \mathbf{R}(s, S)$ is the *exit rate* of state s
 - s is called absorbing whenever $E(s) = 0$

⇒ a CTMC is a Kripke structure with probabilistically timed transitions

Interpretation

- The probability that transition $s \rightarrow s'$ is *enabled* in $[0, t]$:

$$1 - e^{-\mathbf{R}(s, s') \cdot t}$$

- The probability to *move* from non-absorbing s to s' in $[0, t]$ is:

$$\frac{\mathbf{R}(s, s')}{E(s)} \cdot \left(1 - e^{-E(s) \cdot t}\right)$$

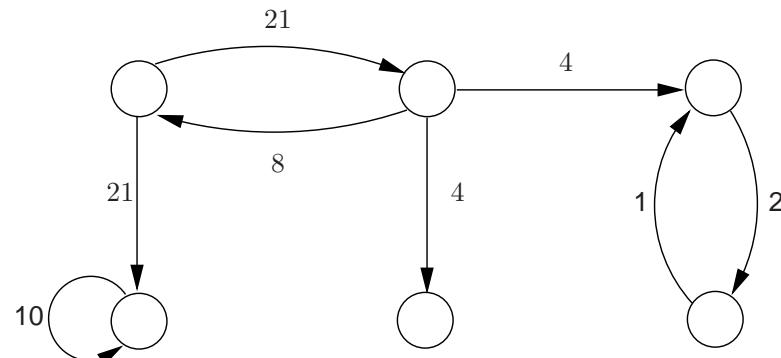
- The probability to take an outgoing transition from s within $[0, t]$ is:

$$1 - e^{-E(s) \cdot t}$$

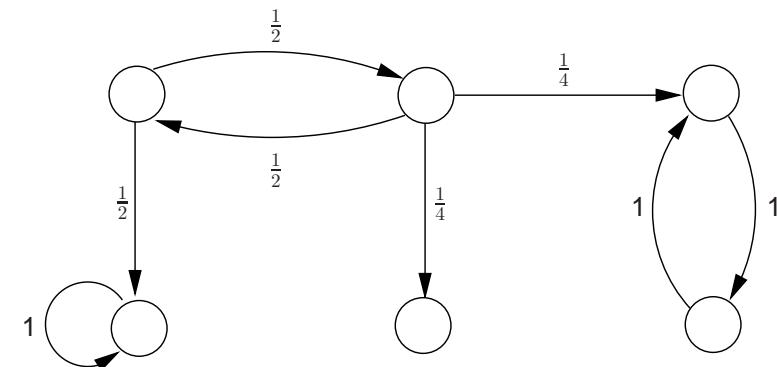
Embedded DTMC

The *embedded* DTMC of the CTMC (S, \mathbf{R}) is (S, \mathbf{P}) where

$$\mathbf{P}(s, s') = \begin{cases} \frac{\mathbf{R}(s, s')}{E(s)} & \text{if } E(s) > 0 \\ 0 & \text{otherwise} \end{cases}$$



a CTMC



its embedded DTMC

Elementary probabilities for CTMCs

- *Transient* probability vector $\underline{\pi}(t) = (\dots, \pi_i(t), \dots)$ for $t \geq 0$
 - where $\pi_i(t)$ is the probability to be in state s_i after t time units (given $\underline{\pi}(0)$)
 - $\underline{\pi}(t)$ is computed by solving a linear differential equations

$$\underline{\pi}'(t) = \underline{\pi}(t) \cdot \mathbf{Q} \quad \text{given} \quad \underline{\pi}(0) \quad \text{where} \quad \mathbf{Q} = \mathbf{R} - \text{diag}(\mathbf{E})$$

- *Steady-state* probability vector $\underline{\pi} = (\dots, \pi_i, \dots)$
 - π_i is mostly *in*dependent from the starting distribution
 - $\underline{\pi}$ is computed from a system of linear equations:

$$\underline{\pi} \cdot \mathbf{Q} = 0 \quad \text{where} \quad \sum_i \pi_i = 1$$

Continuous Stochastic Logic

State-formulas $\Phi ::= a \mid \neg \Phi \mid \Phi \vee \Phi \mid \mathbb{S}_{\leq p}(\Phi) \mid \mathbb{P}_{\leq p}(\varphi)$
 with probability p and comparison operator \leq

$\mathbb{S}_{\leq p}(\Phi)$ probability that Φ holds in steady state is $\leq p$

$\mathbb{P}_{\leq p}(\varphi)$ probability that paths fulfill φ is $\leq p$

Path-formulas $\varphi ::= \bigcirc^I \Phi \mid \Phi U^I \Phi$ with interval I

$\bigcirc^I \Phi$ next state is reached at time $t \in I$ and fulfills Φ

$\Phi U^I \Psi$ Φ holds along the path until Ψ holds at time $t \in I$

CTL operators \bigcirc and U are special cases

Example properties

- In $\geq 92\%$ of the cases, a goal state is legally reached within 3.1 sec:

$$\mathcal{P}_{\geq 0.92} (\neg \text{illegal} \ U^{\leq 3.1} \text{ goal})$$

- ... a state is soon reached guaranteeing 0.9999 long-run availability:

$$\mathcal{P}_{\geq 0.92} (\neg \text{illegal} \ U^{\leq 0.7} \mathcal{S}_{\geq 0.9999} (\text{goal}))$$

- On the long run, illegal states can (almost surely) not be reached in the next 7.2 time units:

$$\mathcal{S}_{\geq 0.9999} (\mathcal{P}_{\geq 1} (\square^{\leq 7.2} \neg \text{illegal}))$$

Semantics of CSL: state-formulas

$\mathcal{C}, s \models \Phi$ if and only if formula Φ holds in state s of CTMC \mathcal{C}

Relation \models is defined by:

$$s \models a \quad \text{iff} \quad a \in L(s)$$

$$s \models \neg \Phi \quad \text{iff} \quad \text{not } (s \models \Phi)$$

$$s \models \Phi \vee \Psi \quad \text{iff} \quad (s \models \Phi) \text{ or } (s \models \Psi)$$

$$s \models \mathbb{S}_{\leq p}(\Phi) \quad \text{iff} \quad \lim_{t \rightarrow \infty} \Pr\{ \sigma \in \text{Paths}(s) \mid \sigma @ t \models \Phi \} \leq p$$

$$s \models \mathbb{P}_{\leq p}(\varphi) \quad \text{iff} \quad \Pr\{ \sigma \in \text{Paths}(s) \mid \sigma \models \varphi \} \leq p$$

$\Pr\{\dots\}$ is measurable by a (i.e., cone) Borel space construction on paths in a CTMC

Semantics of CSL: path-formulas

A *path* in CTMC \mathcal{C} is an infinite alternating sequence

$$s_0 t_0 s_1 t_1 \dots \text{ with } R(s_i, s_{i+1}) > 0 \text{ and } t_i > 0$$

non time-divergent paths have probability zero

Semantics of path-formulas is defined by:

$$\sigma \models \bigcirc^I \Phi \quad \text{iff } \sigma[1] \models \Phi \text{ and } t_0 \in I$$

$$\sigma \models \Phi \bigcup^I \Psi \quad \text{iff } \exists t \in I. ((\forall t' \in [0, t]. \sigma @ t' \models \Phi) \wedge \sigma @ t \models \Psi)$$

where $\sigma @ t$ denotes the state in the path σ at time t

Model-checking CSL

- Check which states in a CTMC satisfy a CSL formula:
 - compute **recursively** the set $Sat(\Phi)$ of states that satisfy Φ
⇒ **recursive descent computation** over the parse tree of Φ
- For the non-stochastic part: as for CTL
- For all probabilistic formulae not involving a time bound: as for PCTL
 - using the **embedded DTMC**
- **How to compute $Sat(\Phi)$ for the stochastic **timed** operators?**

Model-checking the steady-state operator

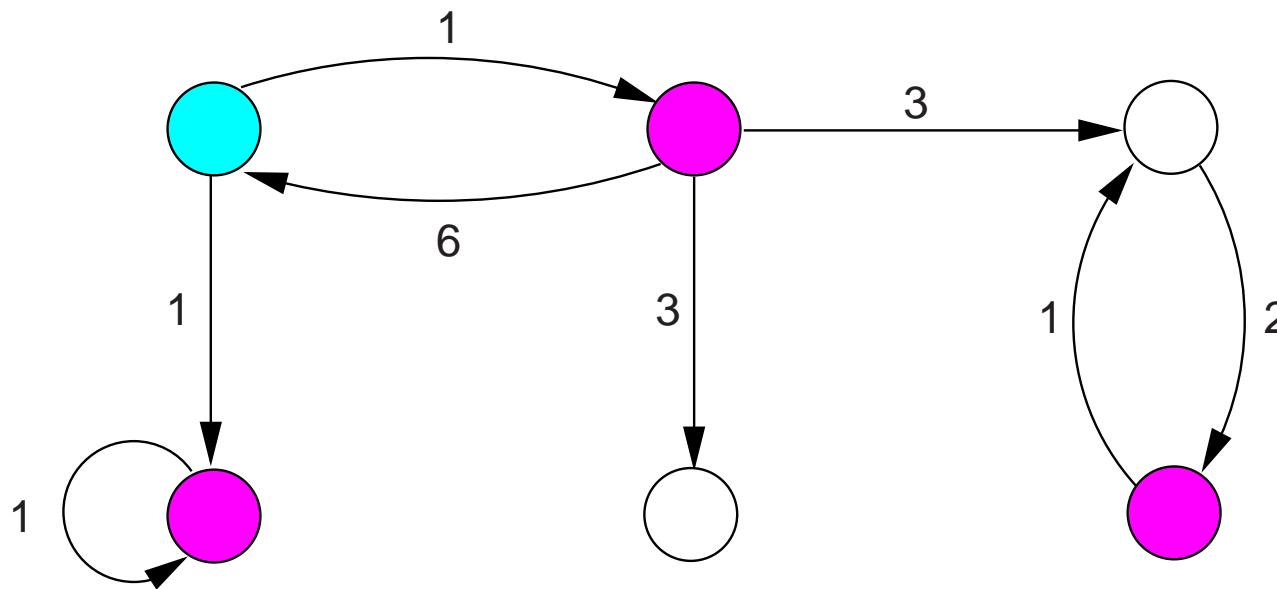
- For an ergodic (i.e., strongly-connected) CTMC:

$$s \in \mathbf{Sat}(\mathbb{S}_{\leq p}(\Phi)) \text{ iff } \sum_{s' \in \mathbf{Sat}(\Phi)} \pi_{s'} \leq p$$

⇒ this boils down to a **standard steady-state analysis**

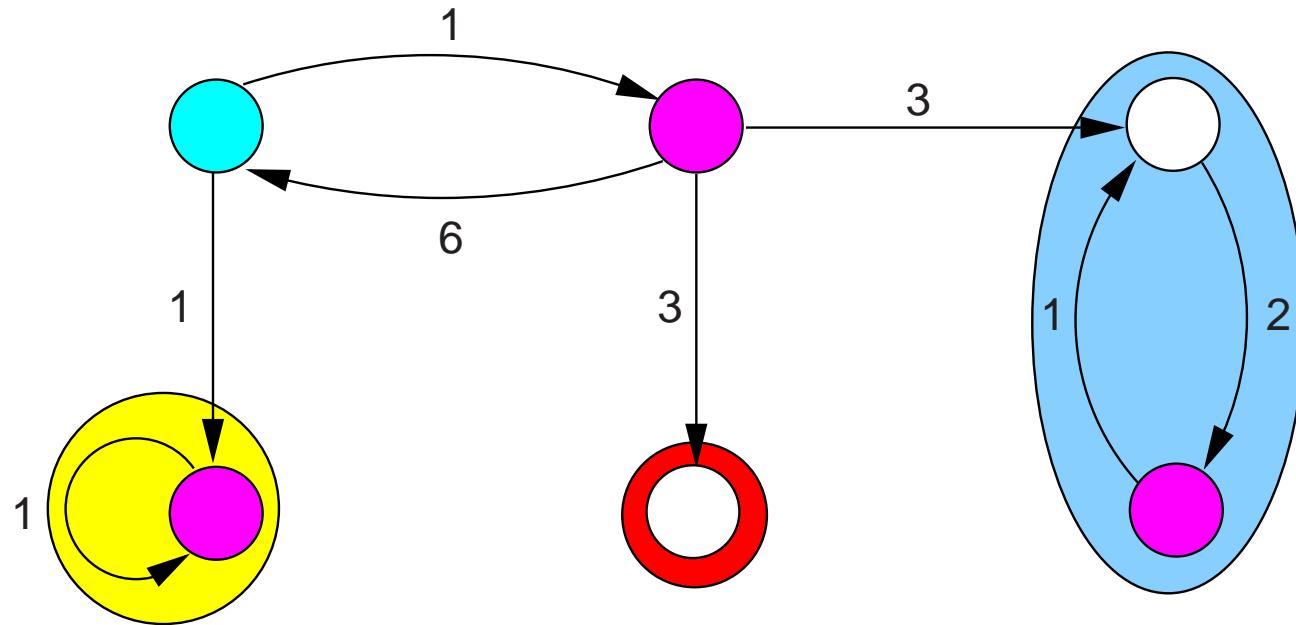
- For an arbitrary CTMC:
 - determine the *bottom* strongly-connected components (BSCCs)
 - for BSCC B determine the steady-state probability of a Φ -state
 - compute the probability to reach BSCC B from state s
 - check whether $\sum_B \left(\Pr\{ \text{reach } B \text{ from } s \} \cdot \sum_{s' \in B \cap \mathbf{Sat}(\Phi)} \pi_{s'}^B \right) \leq p$

Verifying steady-state properties: an example



determine the bottom strongly-connected components

Verifying steady-state properties: an example



$$s \models \mathbb{S}_{>0.75}(\text{magenta}) \quad \text{iff} \quad \begin{aligned} & \text{Prob}(s, \diamond \text{at}_{\text{yellow}}) \cdot \pi^{\text{yellow}}(\text{magenta}) \\ & + \text{Prob}(s, \diamond \text{at}_{\text{blue}}) \cdot \pi^{\text{blue}}(\text{magenta}) > 0.75 \end{aligned}$$

Checking time-bounded reachability

- $s \models \mathbb{P}_{\leq p}(\Phi \cup^{\leq t} \Psi)$ if and only if $Prob(s, \Phi \cup^{\leq t} \Psi) \leq p$
- $Prob(s, \Phi \cup^{\leq t} \Psi)$ is the least solution of: (Baier, Katoen & Hermanns, 1999)
 - 1 if $s \models \Psi$
 - if $s \models \Phi \wedge \neg \Psi$:

$$\int_0^t \sum_{s' \in S} \underbrace{\mathbf{P}(s, s') \cdot E(s) \cdot e^{-\mathbf{E}(s) \cdot x}}_{\text{probability to move to state } s' \text{ at time } x} \cdot \underbrace{Prob(s', \Phi \cup^{\leq t-x} \Psi)}_{\substack{\text{probability to fulfill } \Phi \cup \Psi \\ \text{before time } t-x \text{ from } s'}} dx$$

- 0 otherwise

Reduction to transient analysis

(Baier, Haverkort, Hermanns & Katoen, 2000)

- Make all Ψ - and all $\neg(\Phi \vee \Psi)$ -states absorbing in \mathcal{C}
- Check $\diamond^{=t} \Psi$ in the obtained CTMC \mathcal{C}'
- This is a standard transient analysis in \mathcal{C}' :

$$\sum_{s' \models \Psi} \Pr\{\sigma \in \text{Paths}(s) \mid \sigma @ t = s'\}$$

- compute by solving linear differential equations, or discretization

⇒ Discretization + matrix-vector multiplication + Poisson probabilities

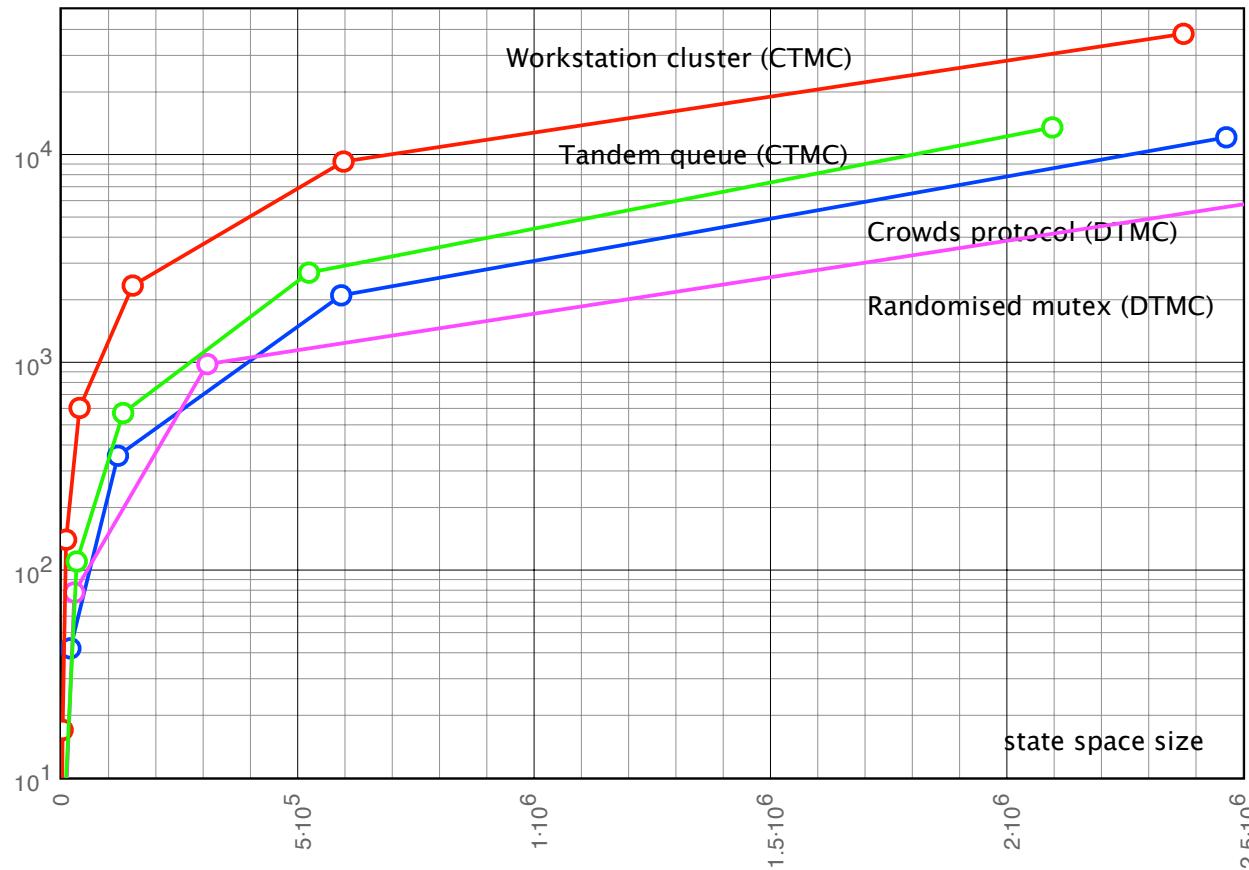
Markov reward model checker (MRMC)

(Zapreev & Meyer-Kayser, 2000/2005)

- Supports **DTMCs**, **CTMCs** and **cost-based extensions thereof**
 - temporal logics: P(R)CTL and CS(R)L
 - bounded until, long run properties, and interval bounded until
- **Sparse-matrix** representation
- **Command-line** tool (in c)
 - experimental platform for new (e.g., reward) techniques
 - back-end of GreatSPN, PEPA WB, PRISM and stochastic GG tool
 - freely downloadable under Gnu GPL license
- Experiments: Pentium 4, 2.66 GHz, 1 GB RAM

Verification times

verification time (in ms)



Probabilistic bisimulation

- Let $\mathcal{D} = (S, \mathbf{P}, L)$ be a DTMC and R an equivalence relation on S
- R is a *probabilistic bisimulation* on S if for any $(s, s') \in R$:

$$L(s) = L(s') \text{ and } \mathbf{P}(s, C) = \mathbf{P}(s', C) \quad \text{for all } C \text{ in } S/R$$

where $\mathbf{P}(s, C) = \sum_{s' \in C} \mathbf{P}(s, s')$ (Larsen & Shou, 1989)

- $s \sim s'$ if \exists a probabilistic bisimulation R on S with $(s, s') \in R$

$$s \sim s' \Leftrightarrow (\forall \Phi \in PCTL : s \models \Phi \text{ if and only if } s' \models \Phi)$$

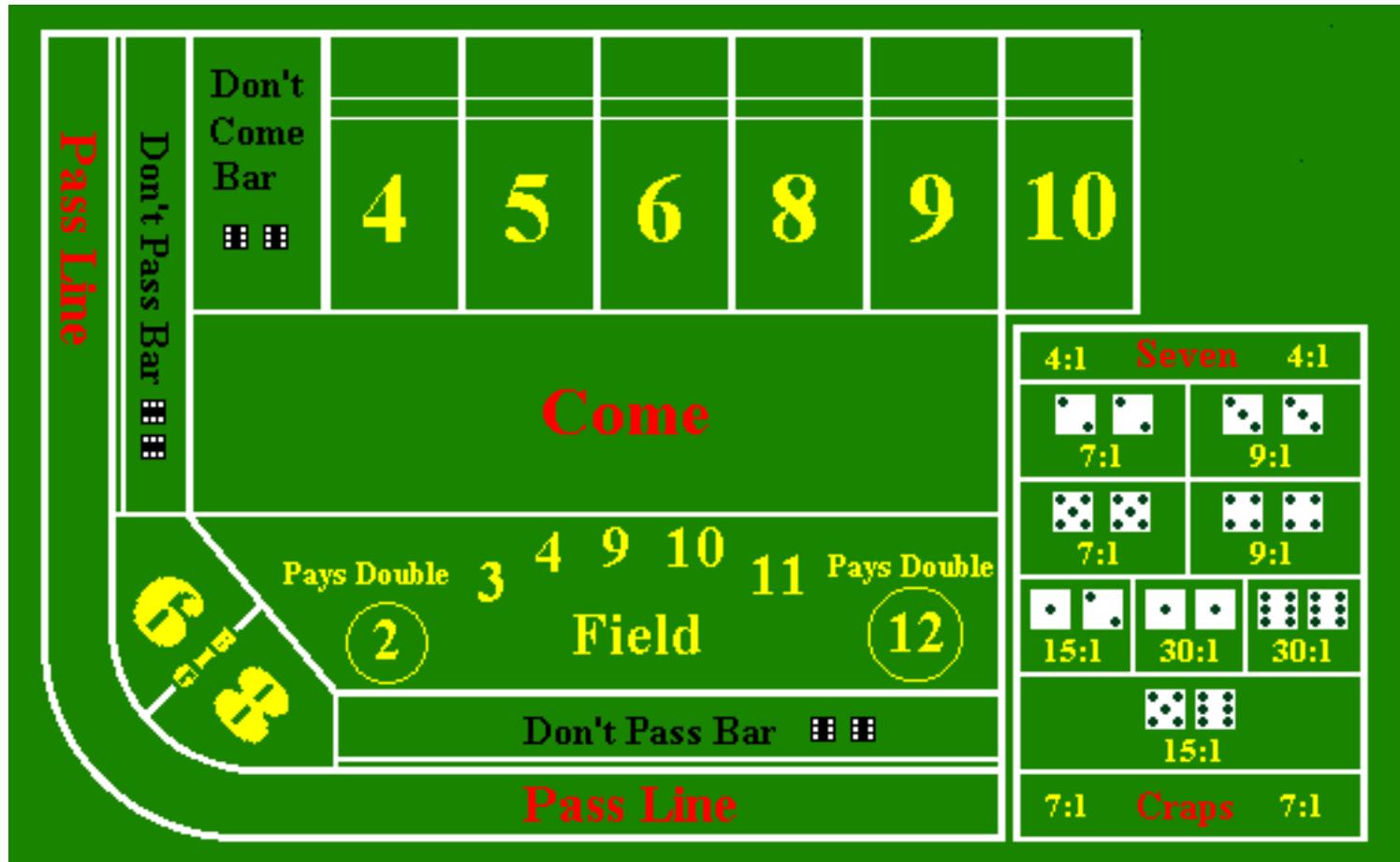
Quotient DTMC under \sim

$\mathcal{D}/\sim = (S', \mathbf{P}', L')$, the **quotient** of $\mathcal{D} = (S, \mathbf{P}, L)$ under \sim :

- $S' = S/\sim = \{ [s]_\sim \mid s \in S \}$
- $\mathbf{P}'([s]_\sim, C) = \mathbf{P}(s, C)$
- $L'([s]_\sim) = L(s)$

get \mathcal{D}/\sim by partition-refinement in time $\mathcal{O}(M \cdot \log N + |AP| \cdot N)$ (Derisavi et al., 2001)

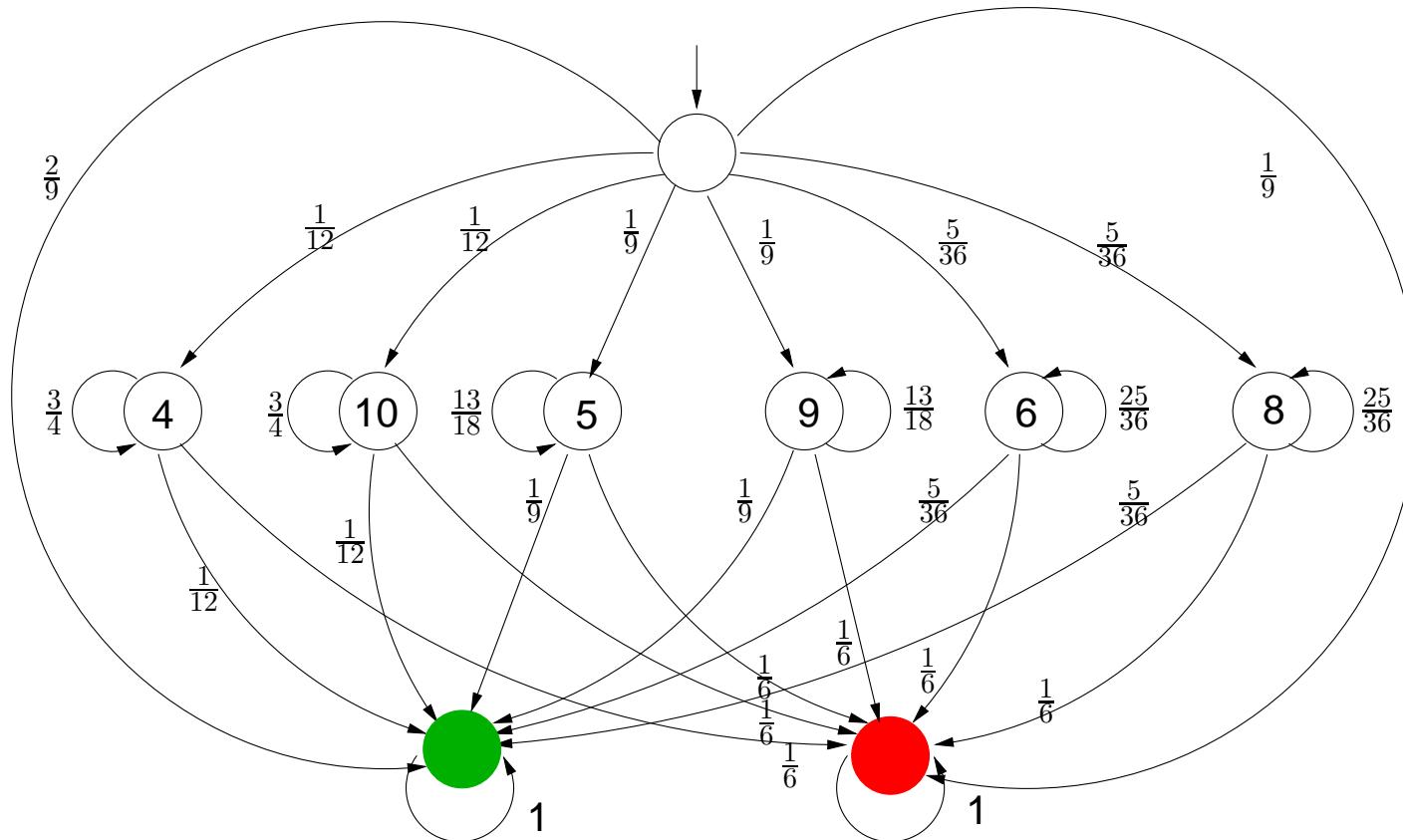
Craps



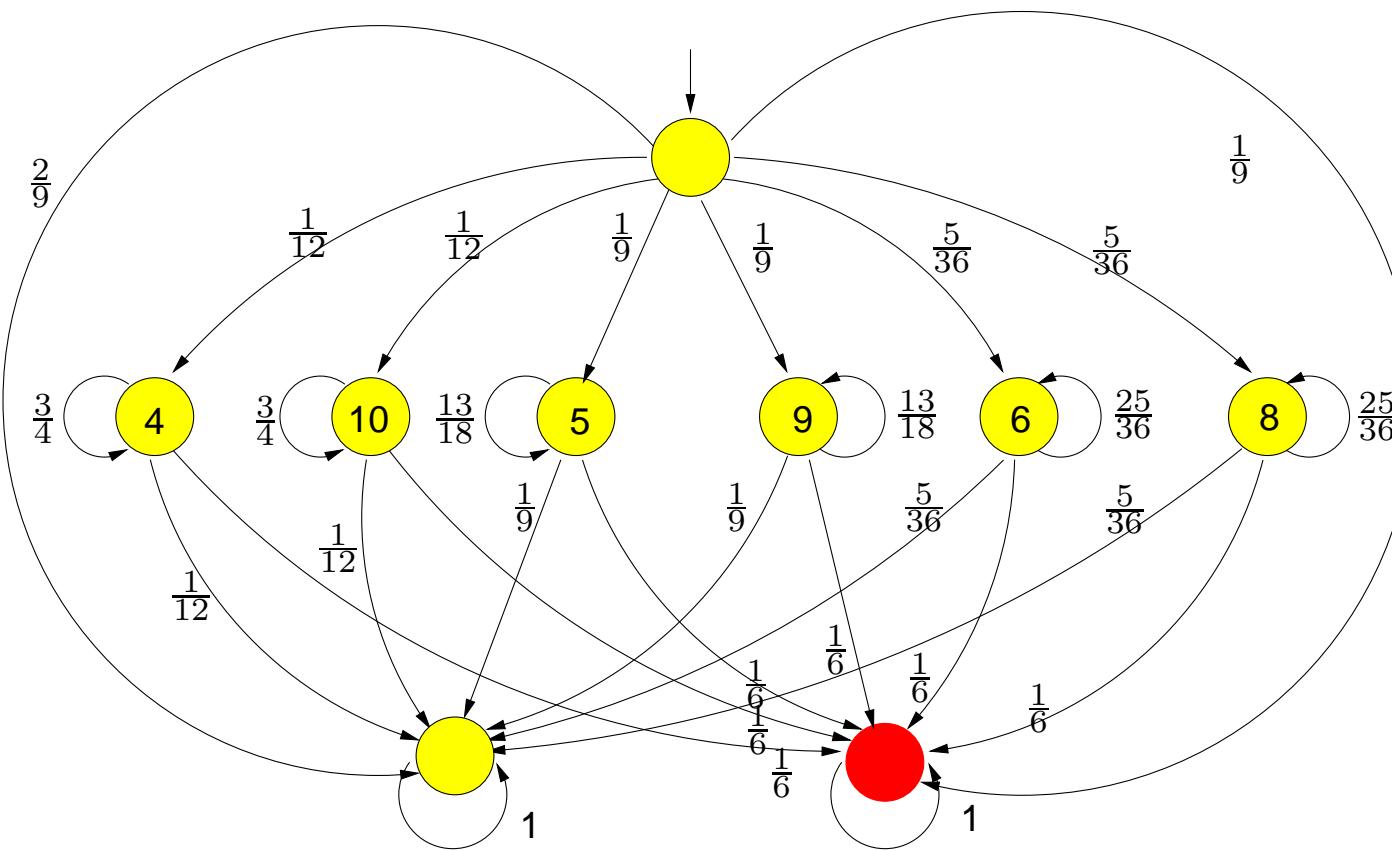
Craps

- Roll two dice and bet on outcome
- Come-out roll (“pass line” wager):
 - outcome 7 or 11: win
 - outcome 2, 3, and 12: loss (“craps”)
 - any other outcome: roll again (outcome is “**point**”)
- Repeat until 7 or the “**point**” is thrown:
 - outcome 7: loss (“seven-out”)
 - outcome the **point**: win
 - any other outcome: roll again

A DTMC model of Craps

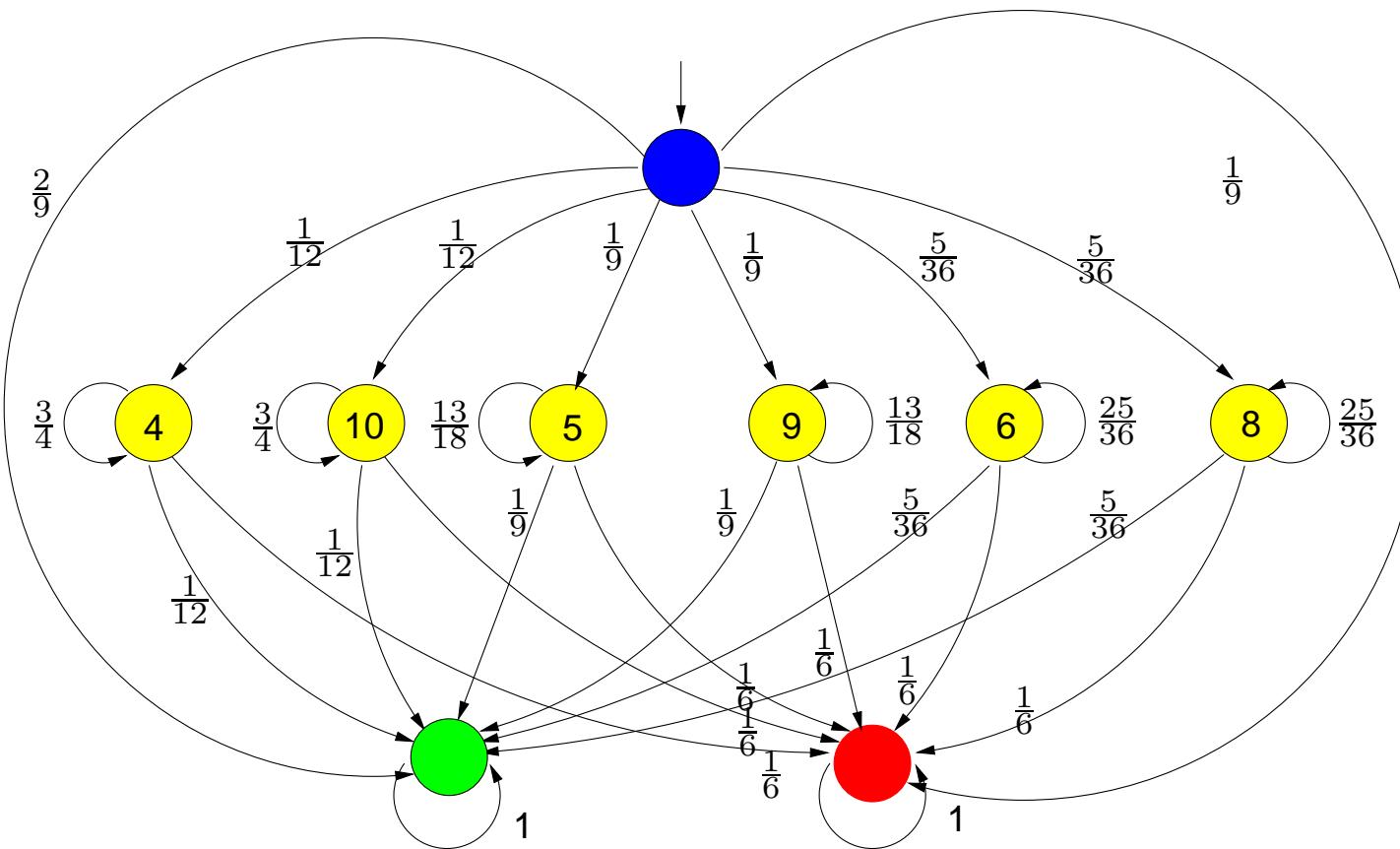


Minimizing Craps



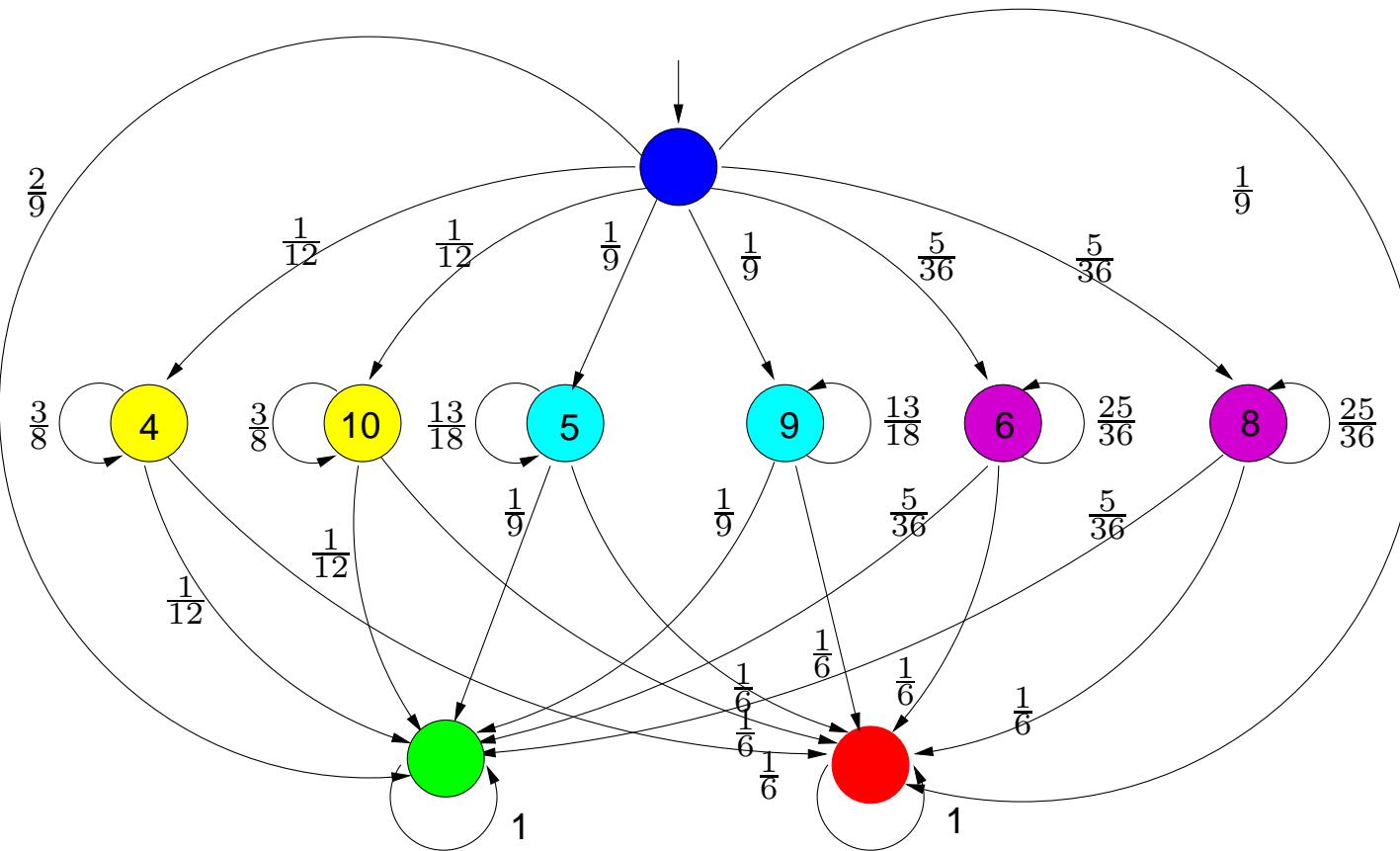
initial partitioning for the atomic propositions $AP = \{ \text{loss} \}$

A first refinement



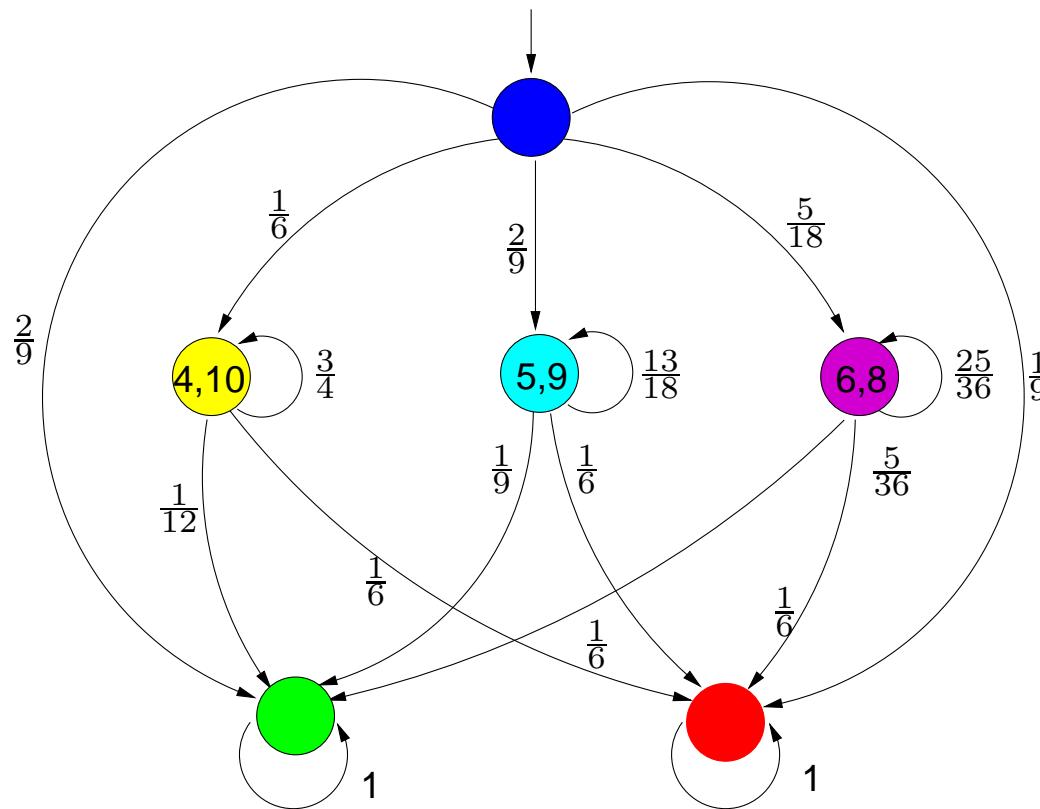
refine (“split”) with respect to the set of red states

A second refinement



refine (“split”) with respect to the set of green states

Quotient DTMC



Property-driven bisimulation

- For DTMC \mathcal{D} , set \mathcal{F} of PCTL-formulas, and equivalence R on S
- R is a probabilistic \mathcal{F} -bisimulation on S if for any $(s, s') \in R$:

$$L_{\mathcal{F}}(s) = L_{\mathcal{F}}(s') \text{ and } \mathbf{P}(s, C) = \mathbf{P}(s', C) \quad \text{for all } C \text{ in } S/R$$

where $L_{\mathcal{F}}(s) = \{ \Phi \in \mathcal{F} \mid s \models \Phi \}$ (Baier et al., 2000)

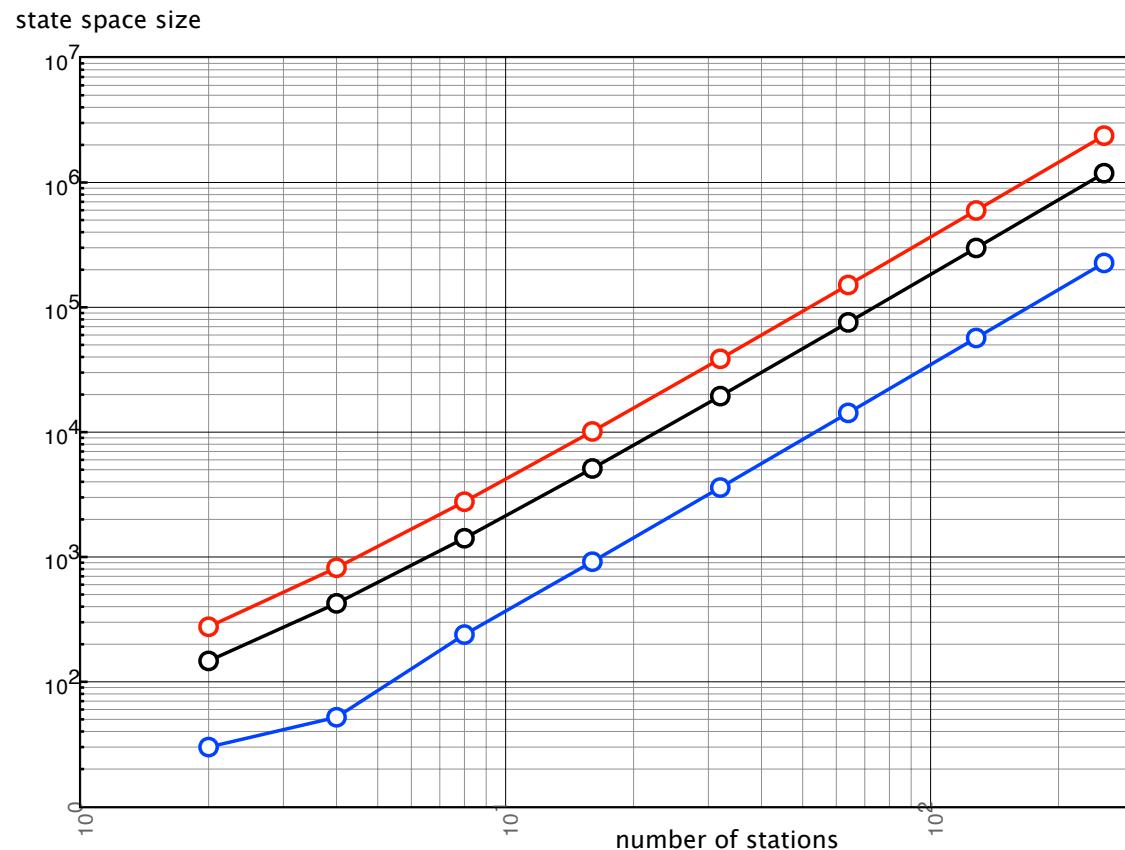
- $s \sim_{\mathcal{F}} s'$ if \exists a probabilistic \mathcal{F} -bisimulation R on S with $(s, s') \in R$

$$s \sim_{\mathcal{F}} s' \Leftrightarrow (\forall \Phi \in \text{PCTL}_{\mathcal{F}} : s \models \Phi \text{ if and only if } s' \models \Phi)$$

Minimization for Φ until Ψ

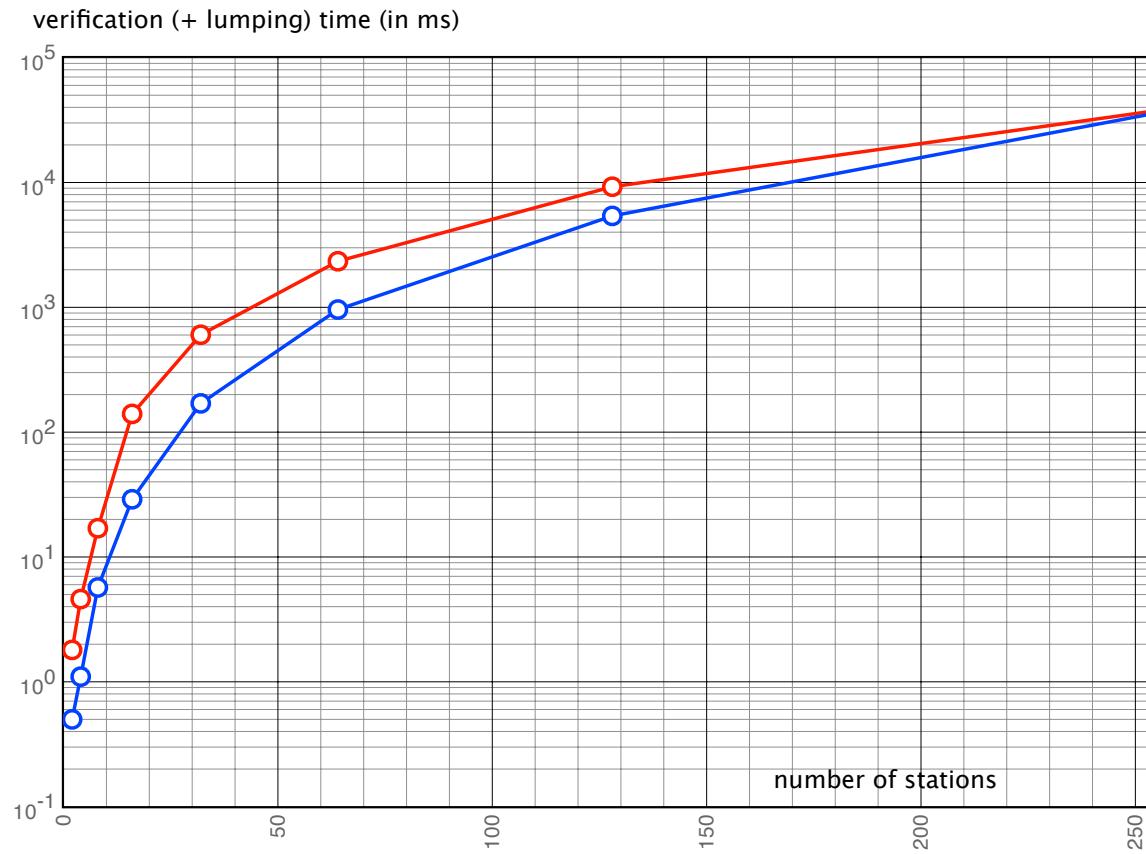
- Initial partition for \sim : $s_\Pi = \{ s' \mid L(s') = L(s) \}$
 - independent of the formula to be checked
- Now: exploit the structure of the formula to be checked
- Bounded until:
 - take $F = \{ \Psi, \neg\Phi \wedge \neg\Psi, \Phi \wedge \neg\Psi \}$
 - initial partition $\Pi = \{ s_\Psi, s_{\neg\Phi \wedge \neg\Psi}, \text{Sat}(\Phi \wedge \neg\Psi) \}$
 - or, for non-recurrent DTMCs: $\mathcal{P}_{\leq 0}(\Phi \cup \Psi)$ instead of $\neg\Phi \wedge \neg\Psi$
- Standard until:
 - take $F = \{ \underbrace{\mathcal{P}_{\geq 1}(\Phi \cup \Psi)}_{\text{single state in } \Pi}, \underbrace{\mathcal{P}_{\leq 0}(\Phi \cup \Psi)}_{\text{single state in } \Pi}, \mathcal{P}_{> 0}(\Phi \cup \Psi) \wedge \mathcal{P}_{< 1}(\Phi \cup \Psi) \}$

Workstation cluster (Haverkort et al., 2001)



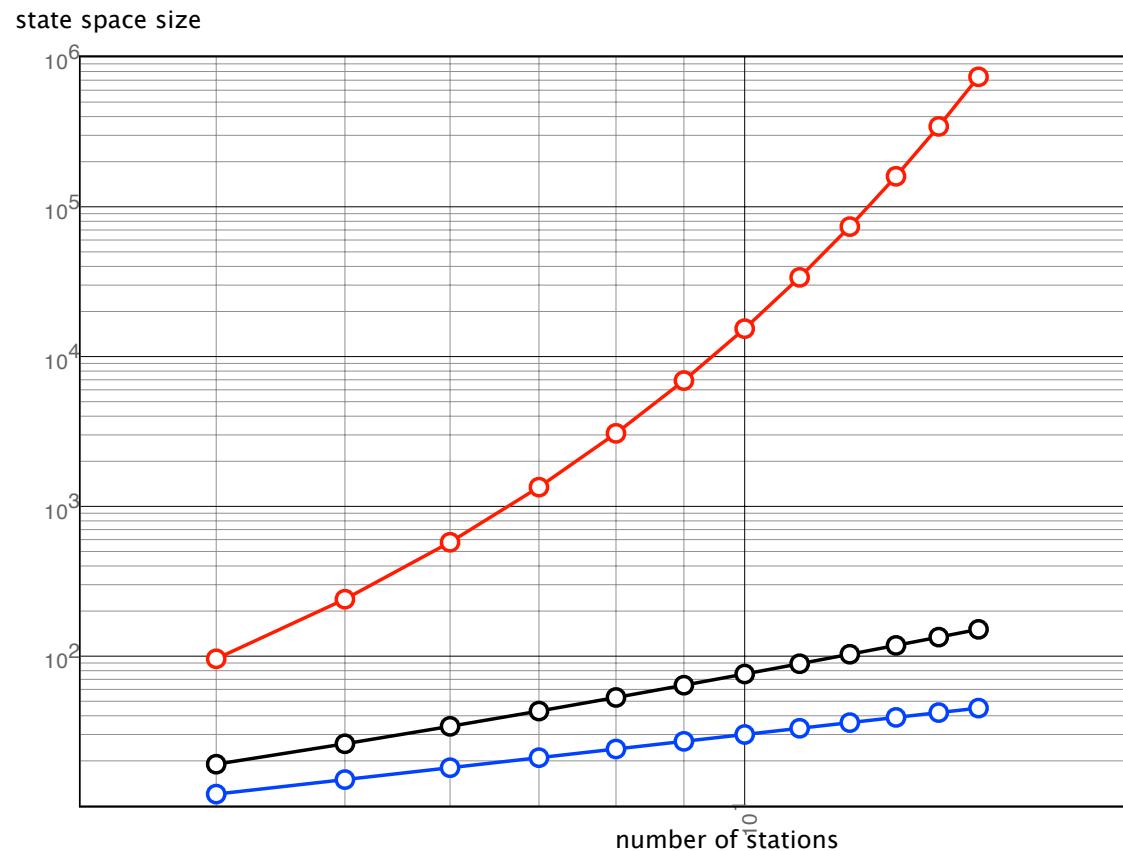
state space reductions for $\mathbb{P}_{\leq q}(\text{minimum } U \leq 510 \text{ premium})$

Workstation cluster



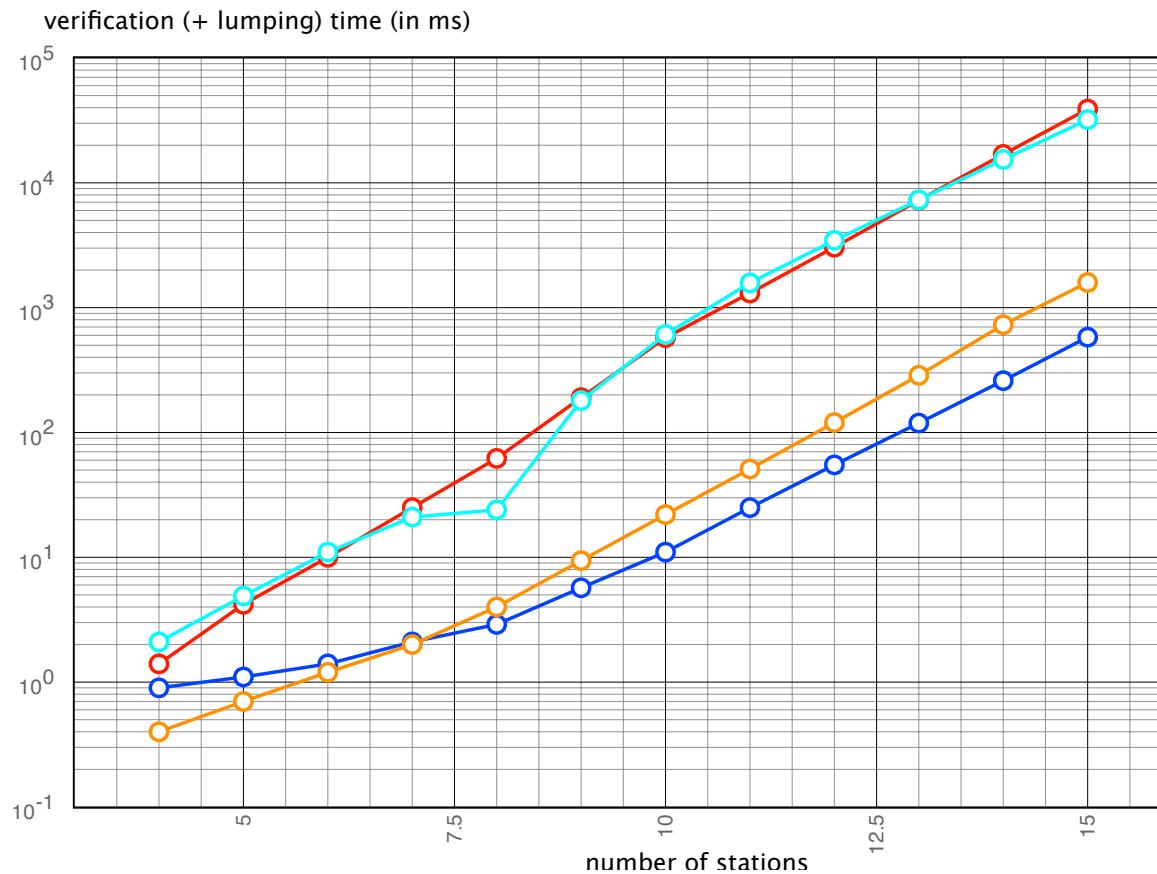
verification (+ lumping) times (in ms) for $\mathbb{P}_{\leqslant q}(\text{minimum } U \leqslant 510 \text{ premium})$

Cyclic polling system (Ibe & Trivedi, 1989)



state space reductions for $\mathbb{P}_{\leq q}(\neg \text{serve}_1 \cup \text{serve}_1) \leq 10^{10}$ and $\mathbb{P}_{\leq q}(\neg \text{serve}_1 \cup \text{serve}_1) \leq 10^{10}$

Cyclic polling system

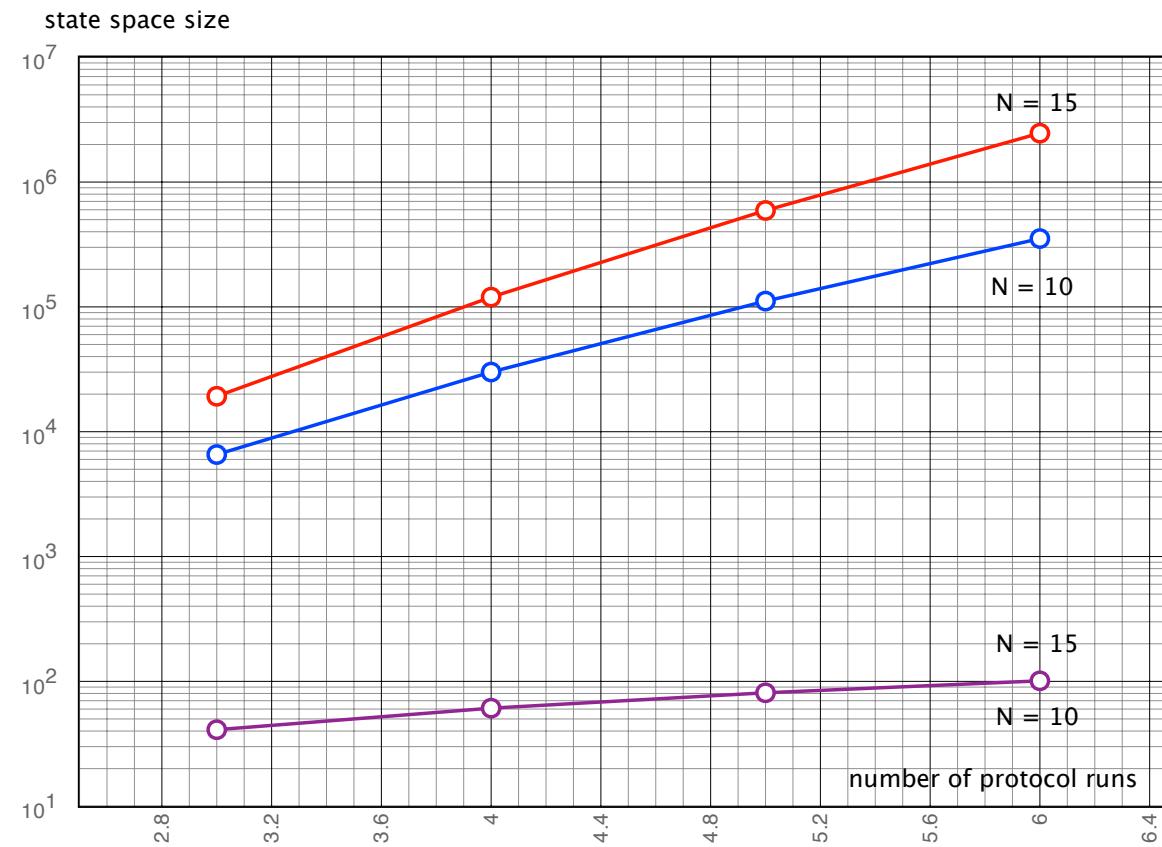


run times for $\mathbb{P}_{\leq q}(\neg \text{serve}_1 \cup \leq 10^{10} \text{serve}_1)$ and $\mathbb{P}_{\leq q}(\neg \text{serve}_1 \cup \text{serve}_1)$

Crowds protocol (Reiter & Rubin, 1998)

- A protocol for **anonymous web browsing** (variants: mCrowds, BT-Crowds)
- Hide user's communication by **random routing** within a crowd
 - sender selects a crowd member randomly using a uniform distribution
 - selected router flips a biased coin:
 - * with probability $1 - p$: direct delivery to final destination
 - * otherwise: select a next router randomly (uniformly)
 - once a routing path has been established, use it until crowd changes
- Rebuild routing paths on crowd changes (R times)
- **Probable innocence:**
 - probability real sender is discovered $< \frac{1}{2}$ if $N \geq \frac{p}{p-1} \cdot (c+1)$
 - where N is crowd's size and c is number of corrupt crowd members

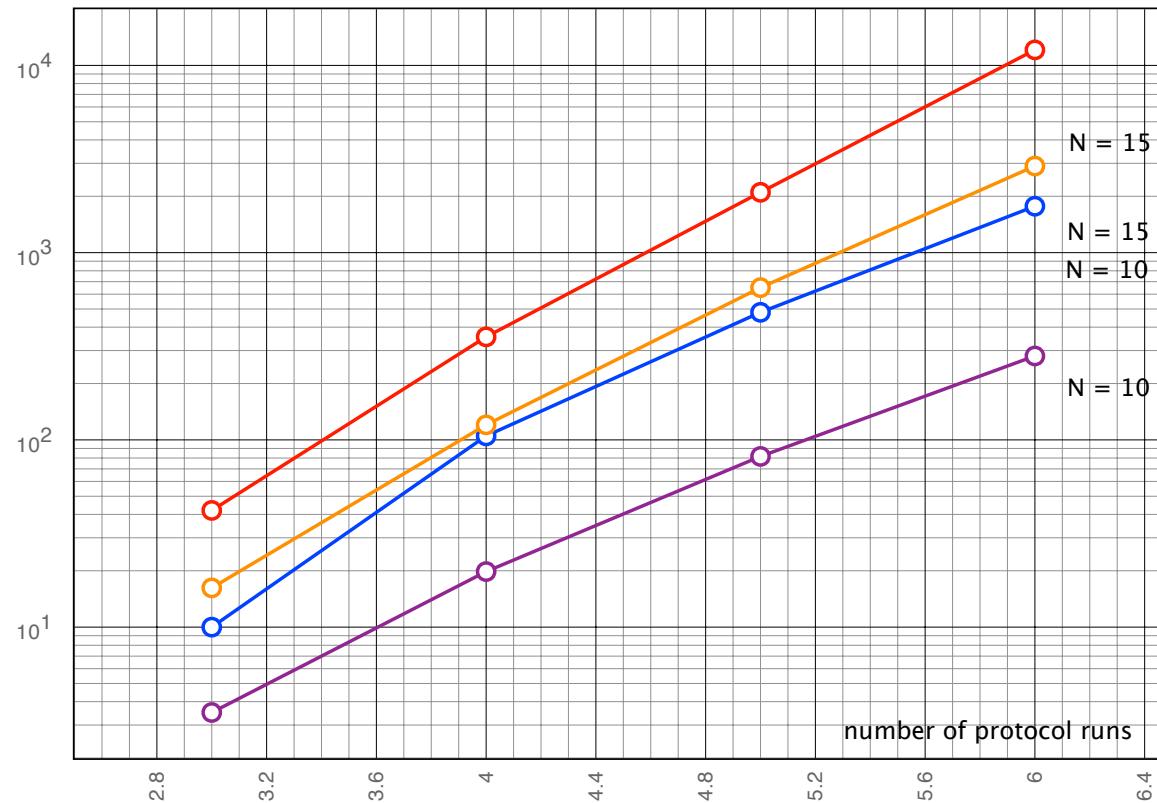
Crowds protocol



state space reductions for eventually observe the real sender more than once

Crowds protocol

verification (+ lumping) time (in ms)



run times for eventually observe the real sender more than once

It mostly pays off!

- Significant state space reductions
 - reduction factors varying from 0 to 3 orders of magnitude
 - property-driven bisimulation yields better results
 - . . . even after symmetry reduction
- Mostly a reduction of the total verification time
 - depends on “densemess” and structure of the Markov chain
 - long run: convergence rate of numerical computations
 - reward models: huge reductions of verification time (up to 4 orders)
- Possibility to exploit component-wise minimisation