
Continuous Stochastic Logic
Lecture #22 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

February 5, 2007

c© JPK

Advanced model checking

Exponential distribution

Continuous r.v. X is exponential with parameter λ > 0 if its density is

f(x) = λ·e−λ·x for x > 0 and 0 otherwise

Cumulative distribution of X :

FX(d) =
∫ d

0

λ·e−λ·x dx = [−e−λ·x]d0 = 1 − e−λ·d

• Pr{X > d} = e−λ·d

• expectation E[X] =
R ∞

0
x·λ·e−λ·x dx = 1

λ

• variance Var[X] = 1
λ2

c© JPK 1

Advanced model checking

Exponential pdf and cdf

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 1 2 3 4 5

λ = 0.5
λ = 1.0
λ = 1.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

λ = 0.5
λ = 1.0
λ = 1.5

the higher λ, the faster the cdf approaches 1

c© JPK 2

Advanced model checking

Exponential distributions

• have nice mathematical properties (cf. next slide)

• are adequate for many real-life phenomena

– describes the time for a continuous process to change state
– the time until you have your next car accident (failure rates)
– the inter-arrival times (i.e., the times between customers entering a shop)

• combinations can approximate general distributions arbitrarily closely

• maximal entropy probability distribution if just the mean is known

c© JPK 3

Advanced model checking

CTMCs

A continuous-time Markov chain (CTMC) is a tuple (S, R, L) where:

• S is a finite set of states and L the state-labelling (as before)

• R : S × S → R�0, a rate matrix

– R(s, s′) = λ means that the average speed of going from s to s′ is 1
λ

• E(s) =
∑

s′∈S R(s, s′) = R(s, S) is the exit rate of state s

– s is called absorbing whenever E(s) = 0

⇒ a CTMC is a Kripke structure with probabilistically timed transitions

c© JPK 4

Advanced model checking

Interpretation

• The probability that transition s → s′ is enabled in [0, t]:

1 − e−R(s,s′)·t

• The probability to move from non-absorbing s to s′ in [0, t] is:

R(s, s′)
E(s)

·
(
1 − e−E(s)·t

)

• The probability to take an outgoing transition from s within [0, t] is:

1 − e−E(s)·t

c© JPK 5

Advanced model checking

Embedded DTMC

The embedded DTMC of the CTMC (S, R) is (S,P) where

P(s, s′) =

{
R(s,s′)
E(s) if E(s) > 0

0 otherwise

1 2

21

21
8

4

4

10

a CTMC

1 1

1
2

1
2

1
4

1
4

1
2

1

iits embedded DTMC

c© JPK 6

Advanced model checking

Elementary probabilities for CTMCs

• Transient probability vector π(t) = (· · · , πi(t), · · ·) for t � 0

– where πi(t) is the probability to be in state si after t time units (given π(0))
– π(t) is computed by solving a linear differential equations

π′(t) = π(t) · Q given π(0) where Q = R − diag(E)

• Steady-state probability vector π = (· · · , πi, · · ·)
– πi is mostly independent from the starting distribution
– π is computed from a system of linear equations:

π · Q = 0 where
P

i πi = 1

c© JPK 7

Advanced model checking

Continuous Stochastic Logic

State-formulas Φ ::= a | ¬Φ | Φ ∨ Φ | S�p(Φ) | P�p(ϕ)
with probability p and comparison operator �

S�p(Φ) probability that Φ holds in steady state is � p

P�p(ϕ) probability that paths fulfill ϕ is � p

Path-formulas ϕ ::= ©I Φ | Φ UI Φ with interval I

©I Φ next state is reached at time t ∈ I and fulfills Φ

Φ UI Ψ Φ holds along the path until Ψ holds at time t ∈ I

CTL operators © and U are special cases

c© JPK 8

Advanced model checking

Example properties

• In � 92% of the cases, a goal state is legally reached within 3.1 sec:

P� 0.92

(¬ illegal U� 3.1 goal
)

• . . . a state is soon reached guaranteeing 0.9999 long-run availability:

P� 0.92

(¬ illegal U�0.7 S�0.9999 (goal)
)

• On the long run, illegal states can (almost surely) not be reached in
the next 7.2 time units:

S�0.9999

(P� 1

(
��7.2¬ illegal

))

c© JPK 9

Advanced model checking

Semantics of CSL: state-formulas

C, s |= Φ if and only if formula Φ holds in state s of CTMC C

Relation |= is defined by:

s |= a iff a ∈ L(s)

s |= ¬Φ iff not (s |= Φ)

s |= Φ ∨ Ψ iff (s |= Φ) or (s |= Ψ)

s |= S�p(Φ) iff limt→∞ Pr{σ ∈ Paths(s) | σ@t |= Φ } � p

s |= P�p(ϕ) iff Pr{σ ∈ Paths(s) | σ |= ϕ } � p

Pr{. . .} is measurable by a (i.e., cone) Borel space construction on paths in a CTMC

c© JPK 10

Advanced model checking

Semantics of CSL: path-formulas

A path in CTMC C is an infinite alternating sequence

s0 t0 s1 t1 . . . with R(si, si+1) > 0 and ti > 0

non time-divergent paths have probability zero

Semantics of path-formulas is defined by:

σ |= ©IΦ iff σ[1] |= Φ and t0 ∈ I

σ |= Φ UI Ψ iff ∃t ∈ I. ((∀t′ ∈ [0, t). σ@t′ |= Φ) ∧ σ@t |= Ψ)

where σ@t denotes the state in the path σ at time t

c© JPK 11

Advanced model checking

Model-checking CSL

• Check which states in a CTMC satisfy a CSL formula:

– compute recursively the set Sat(Φ) of states that satisfy Φ
⇒ recursive descent computation over the parse tree of Φ

• For the non-stochastic part: as for CTL

• For all probabilistic formulae not involving a time bound: as for PCTL

– using the embedded DTMC

• How to compute Sat(Φ) for the stochastic timed operators?

c© JPK 12

Advanced model checking

Model-checking the steady-state operator

• For an ergodic (i.e., strongly-connected) CTMC:

s ∈ Sat(S�p(Φ)) iff
∑

s′∈Sat(Φ)

πs′ � p

=⇒ this boils down to a standard steady-state analysis

• For an arbitrary CTMC:

– determine the bottom strongly-connected components (BSCCs)
– for BSCC B determine the steady-state probability of a Φ-state
– compute the probability to reach BSCC B from state s

– check whether
X

B

0
B@Pr{ reach B from s } ·

X
s′∈B∩Sat(Φ)

π
B
s′

1
CA � p

c© JPK 13

Advanced model checking

Verifying steady-state properties: an example

1

1

6

3 1 2

3

1

determine the bottom strongly-connected components

c© JPK 14

Advanced model checking

Verifying steady-state properties: an example

1

1

6

3 1 2

3

1

s |= S>0.75(magenta) iff Prob(s, �atyellow)·πyellow(magenta)

+Prob(s, �atblue)·πblue(magenta) > 0.75

c© JPK 15

Advanced model checking

Checking time-bounded reachability

• s |= P�p(Φ U�t Ψ) if and only if Prob(s,Φ U�t Ψ) � p

• Prob(s,Φ U�tΨ) is the least solution of: (Baier, Katoen & Hermanns, 1999)

– 1 if s |= Ψ

– if s |= Φ ∧ ¬Ψ:

∫ t

0

∑
s′∈S

P(s, s′) · E(s) · e−E(s)·x︸ ︷︷ ︸
probability to move to

state s′ at time x

· Prob(s′,Φ U�t−x Ψ)︸ ︷︷ ︸
probability to fulfill Φ UΨ
before time t−x from s′

dx

– 0 otherwise

c© JPK 16

Advanced model checking

Reduction to transient analysis

(Baier, Haverkort, Hermanns & Katoen, 2000)

• Make all Ψ- and all ¬ (Φ ∨ Ψ)-states absorbing in C

• Check �=t Ψ in the obtained CTMC C′

• This is a standard transient analysis in C′:
X
s′|=Ψ

Pr{σ ∈ Paths(s) | σ@t = s
′}

– compute by solving linear differential equations, or discretization

⇒ Discretization + matrix-vector multiplication + Poisson probabilities

c© JPK 17

Advanced model checking

Markov reward model checker (MRMC)
(Zapreev & Meyer-Kayser, 2000/2005)

• Supports DTMCs, CTMCs and cost-based extensions thereof

– temporal logics: P(R)CTL and CS(R)L
– bounded until, long run properties, and interval bounded until

• Sparse-matrix representation

• Command-line tool (in C)

– experimental platform for new (e.g., reward) techniques
– back-end of GreatSPN, PEPA WB, PRISM and stochastic GG tool
– freely downloadable under Gnu GPL license

• Experiments: Pentium 4, 2.66 GHz, 1 GB RAM

c© JPK 18

Advanced model checking

Verification times

0

5
⋅1
0
5

1
⋅1
0
6

1
.5
⋅1
0
6

2
⋅1
0
6

2
.5
⋅1
0
6

101

102

103

104

Crowds protocol (DTMC)

Randomised mutex (DTMC)

Workstation cluster (CTMC)

Tandem queue (CTMC)

verification time (in ms)

state space size

c© JPK 19

Advanced model checking

Probabilistic bisimulation

• Let D = (S,P, L) be a DTMC and R an equivalence relation on S

• R is a probabilistic bisimulation on S if for any (s, s′) ∈ R:

L(s) = L(s′) and P(s, C) = P(s′, C) for all C in S/R

where P(s, C) =
∑

s′∈C P(s, s′) (Larsen & Shou, 1989)

• s ∼ s′ if ∃ a probabilistic bisimulation R on S with (s, s′) ∈ R

s ∼ s′ ⇔ (∀Φ ∈ PCTL : s |= Φ if and only if s′ |= Φ)

c© JPK 20

Advanced model checking

Quotient DTMC under ∼

D/∼ = (S′,P′, L′), the quotient of D = (S,P, L) under ∼:

• S′ = S/∼= { [s]∼ | s ∈ S }

• P′([s]∼, C) = P(s, C)

• L′([s]∼) = L(s)

get D/∼ by partition-refinement in time O(M · log N + |AP|·N) (Derisavi et al., 2001)

c© JPK 21

Advanced model checking

Craps

c© JPK 22

Advanced model checking

Craps

• Roll two dice and bet on outcome

• Come-out roll (“pass line” wager):

– outcome 7 or 11: win
– outcome 2, 3, and 12: loss (“craps”)
– any other outcome: roll again (outcome is “point”)

• Repeat until 7 or the “point” is thrown:

– outcome 7: loss (“seven-out”)
– outcome the point: win
– any other outcome: roll again

c© JPK 23

Advanced model checking

A DTMC model of Craps

1
9

1 1

3
4

13
18

13
18

25
36

25
36

1
12

1
12 5

36
5
36

1
9

1
9

4 10 5 9 6 8

1
12

1
12

1
9

1
9

5
36

5
36

1
6

1
6

1
6

1
6 1

6 1
6

3
4

2
9

c© JPK 24

Advanced model checking

Minimizing Craps

1
9

1 1

3
4

13
18

13
18

25
36

25
36

1
12

1
12 5

36
5
36

1
9

1
9

4 10 5 9 6 8

1
12

1
12

1
9

1
9

5
36

5
36

1
6

1
6

1
6

1
6 1

6 1
6

3
4

2
9

initial partitioning for the atomic propositions AP = { loss }

c© JPK 25

Advanced model checking

A first refinement

1
9

1 1

3
4

13
18

13
18

25
36

25
36

1
12

1
12 5

36
5
36

1
9

1
9

4 10 5 9 6 8

1
12

1
12

1
9

1
9

5
36

5
36

1
6

1
6

1
6

1
6 1

6 1
6

3
4

2
9

refine (“split”) with respect to the set of red states

c© JPK 26

Advanced model checking

A second refinement

1
9

1 1

3
8

13
18

13
18

25
36

25
36

1
12

1
12 5

36
5
36

1
9

1
9

4 10 5 9 8

1
12

1
12

1
9

1
9

5
36

5
36

1
6

1
6

1
6

1
6 1

6 1
6

3
8

2
9

6

refine (“split”) with respect to the set of green states

c© JPK 27

Advanced model checking

Quotient DTMC

5
36

1 1

25
364,10

1
12

1
6

6,85,9
2
9 3

4
13
18

1
6 2

9

5
18

1
9

1
6 1

6

1
9

1
6

c© JPK 28

Advanced model checking

Property-driven bisimulation

• For DTMC D, set F of PCTL-formulas, and equivalence R on S

• R is a probabilistic F -bisimulation on S if for any (s, s′) ∈ R:

LF (s) = LF (s′) and P(s, C) = P(s′, C) for all C in S/R

where LF (s) = {Φ ∈ F | s |= Φ } (Baier et al., 2000)

• s ∼F s′ if ∃ a probabilistic F -bisimulation R on S with (s, s′) ∈ R

s ∼F s′ ⇔ (∀Φ ∈ PCTLF : s |= Φ if and only if s′ |= Φ)

c© JPK 29

Advanced model checking

Minimization for Φ until Ψ

• Initial partition for ∼: sΠ = { s′ | L(s′) = L(s) }
– independent of the formula to be checked

• Now: exploit the structure of the formula to be checked

• Bounded until:

– take F = {Ψ,¬Φ ∧ ¬Ψ, Φ ∧ ¬Ψ }
– initial partition Π = { sΨ, s¬Φ∧¬Ψ, Sat(Φ ∧ ¬Ψ) }
– or, for non-recurrent DTMCs: P�0(Φ U Ψ) instead of ¬Φ ∧ ¬Ψ

• Standard until:

– take F = {P�1(Φ U Ψ)| {z }
single state in Π

,P�0(Φ U Ψ)| {z }
single state in Π

,P>0(Φ U Ψ) ∧ P<1(Φ U Ψ) }

c© JPK 30

Advanced model checking

Workstation cluster (Haverkort et al., 2001)

1
0
0

1
0
1

1
0
2

102

103

104

105

106

107

number of stations

state space size

state space reductions for P�q(minimum U �510 premium)

c© JPK 31

Advanced model checking

Workstation cluster

0

5
0

1
0
0

1
5
0

2
0
0

2
5
010-1

100

101

102

103

104

105

number of stations

verification (+ lumping) time (in ms)

verification (+ lumping) times (in ms) for P�q(minimum U �510 premium)

c© JPK 32

Advanced model checking

Cyclic polling system (Ibe & Trivedi, 1989)

1
0
1

102

103

104

105

106

number of stations

state space size

state space reductions for P�q(¬serve1 U �1010 serve1) and P�q(¬serve1 U serve1)

c© JPK 33

Advanced model checking

Cyclic polling system

5

7
.5 1
0

1
2
.5 1
510-1

100

101

102

103

104

105

number of stations

verification (+ lumping) time (in ms)

run times for P�q(¬serve1 U �1010 serve1) and P�q(¬serve1 U serve1)

c© JPK 34

Advanced model checking

Crowds protocol (Reiter & Rubin, 1998)

• A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)

• Hide user’s communication by random routing within a crowd

– sender selects a crowd member randomly using a uniform distribution
– selected router flips a biased coin:

∗ with probability 1 − p: direct delivery to final destination
∗ otherwise: select a next router randomly (uniformly)

– once a routing path has been established, use it until crowd changes

• Rebuild routing paths on crowd changes (R times)

• Probable innocence:

– probability real sender is discovered < 1
2 if N � p

p−1
2
·(c+1)

– where N is crowd’s size and c is number of corrupt crowd members

c© JPK 35

Advanced model checking

Crowds protocol

2
.8

3
.2

3
.6 4

4
.4

4
.8

5
.2

5
.6 6

6
.4

101

102

103

104

105

106

107

N = 10

N = 15

N = 10

N = 15

state space size

number of protocol runs

state space reductions for eventually observer the real sender more than once

c© JPK 36

Advanced model checking

Crowds protocol

2
.8

3
.2

3
.6 4

4
.4

4
.8

5
.2

5
.6 6

6
.4

101

102

103

104

N = 10

N = 15

N = 10
N = 15

verification (+ lumping) time (in ms)

number of protocol runs

run times for eventually observer the real sender more than once

c© JPK 37

Advanced model checking

It mostly pays off!

• Significant state space reductions

– reduction factors varying from 0 to 3 orders of magnitude
– property-driven bisimulation yields better results
– . . . even after symmetry reduction

• Mostly a reduction of the total verification time

– depends on “denseness” and structure of the Markov chain
– long run: convergence rate of numerical computations
– reward models: huge reductions of verification time (up to 4 orders)

• Possibility to exploit component-wise minimisation

c© JPK 38

