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Advanced model checking

Exponential distribution
Continuous r.v. X is exponential with parameter A > 0 if its density is
f(zx) =Xe * forz >0 and0 otherwise

Cumulative distribution of X:
d
Fx(@) = [ A e = e = -
0

o Pr{X >d} =e
o expectation E[X] = [“x-X-e M dx =

0
e variance Var[X] = 5

1
A
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Exponential pdf and cdf

the higher )\, the faster the cdf approaches 1
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Exponential distributions

e have nice mathematical properties (cf. next slide)

e are adequate for many real-life phenomena

— describes the time for a continuous process to change state
— the time until you have your next car accident (failure rates)
— the inter-arrival times (i.e., the times between customers entering a shop)

e combinations can approximate general distributions arbitrarily closely

e maximal entropy probability distribution if just the mean is known
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CTMCs

A continuous-time Markov chain (CTMC) is a tuple (S, R, L) where:

e S is a finite set of states and L the state-labelling (as before)

e R: S5 x5 — R, arate matrix

_ . . 1
— R(s, s') = X means that the average speed of going from s to s’ is 5\

o K(s) =) .csR(s,8) =R(s,9) is the exit rate of state s

— s is called absorbing whenever E(s) = 0

= a CTMC is a Kripke structure with probabilistically timed transitions
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Interpretation
e The probability that transition s — s’ is enabled in [0, ¢]:

1 — 6—R(s,s/)-t

e The probability to move from non-absorbing s to s’ in [0, ¢] is:

e (e

e The probability to take an outgoing transition from s within |0, ¢] is:

1 — 6—E(S)-t
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Embedded DTMC

The embedded DTMC of the CTMC (S,R) is (S, P) where

R(s,s’) :
P(s.s) = ey TE(s)>0
0 otherwise

aCTMC lits embedded DTMC
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Elementary probabilities for CTMCs

e Transient probability vector 7(t) = (- -+, m;(t),--+) fort >0

— where 7;(t) is the probability to be in state s; after ¢ time units (given = (0))
— 7 (t) is computed by solving a linear differential equations

n'(t) = w(t)-Q given =(0) where Q =R — diag(F)

e Steady-state probability vector 7 = (---, 7, - - -)

— ; IS mostly independent from the starting distribution
— m is computed from a system of linear equations:

m-Q =0 where > m=1
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Continuous Stochastic Logic

State-formulas ® := a | =@ | @ V | S4,(®) | Poy(e)
with probability p and comparison operator <

S<,(®) probability that ¢ holds in steady state is <p

Po,(p) probability that paths fulfill p is <p

Path-formulas ¢ = O/ ® ‘ d Ul with interval I
() ® next state is reached at time ¢ € I and fulfills ®
o U! ® holds along the path until ¥ holds at time ¢ € I

CTL operators () and U are special cases
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Example properties

e In > 92% of the cases, a goal state is legally reached within 3.1 sec:

P= 0.92 (—illegal U= goal)

e ... astate is soon reached guaranteeing 0.9999 long-run availability:

P- 0.0 (—illegal USO7 8.4 9990 (goal))

e On the long run, illegal states can (almost surely) not be reached in
the next 7.2 time units:

820_9999 <7D> 1 (D<7°2—| lllegal))
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Semantics of CSL: state-formulas

C,s = @ if and only if formula ¢ holds in state s of CTMC C
Relation = is defined by:

s E=a iff a e L(s)

s= - Iff not (s = @)

sE® VU iff (sE®)or(spE V)

s =Sq,(®) iff lim; .. Pr{o € Paths(s) |cQt=®} dp
s E=Pa,(p) Iff Pr{ocePaths(s)|oc=¢} dp

Pr{...} is measurable by a (i.e., cone) Borel space construction on paths ina CTMC
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Semantics of CSL: path-formulas
A path in CTMC C is an infinite alternating sequence
Sotosyty... with R(Sz, S@'_|_1) >0 and t; > 0

non time-divergent paths have probability zero

Semantics of path-formulas is defined by:

cE(O®  iffo[l]=dandi,c /
cE®U' T iff3c . (V' e|0,t).cQt =P) A cQt =)

where o @t denotes the state in the path o attime ¢
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Model-checking CSL

e Check which states in a CTMC satisfy a CSL formula:

— compute recursively the set Sat(®) of states that satisfy ®
=- recursive descent computation over the parse tree of

e For the non-stochastic part: as for CTL

e For all probabilistic formulae not involving a time bound: as for PCTL

— using the embedded DTMC

e How to compute Sat(®) for the stochastic timed operators?

© JPK 12



Advanced model checking

Model-checking the steady-state operator
e For an ergodic (i.e., strongly-connected) CTMC:
s € Sat(Sq, (@) iff > 7wy dp
s‘eSat(e)
— this boils down to a standard steady-state analysis

e For an arbitrary CTMC:

— determine the bottom strongly-connected components (BSCCs)
— for BSCC B determine the steady-state probability of a $-state
— compute the probability to reach BSCC B from state s

— check whether > ° | Pr{reach Bfroms}- > a;| <p
B s'eBnSat(o)
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Verifying steady-state properties: an example

o, e -

1 3 1 2

(@ ®

determine the bottom strongly-connected components
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Verifying steady-state properties: an example

0/1\‘ ;

s = Ssors(magenta) iff  Prob(s, Catyenown) mYeo% (magenta)

+ Prob(s, Oatyye)-w0t¢(magenta) > 0.75
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Checking time-bounded reachability
e s =Py, (PUS'W) ifandonlyif Prob(s,®US'W¥) dp

° PTOb(S, () Ugtqj) IS the least solution of: (Baier, Katoen & Hermanns, 1999)

—1ifsE=U

—ifsE® A U

/ P(s,s) E(s) - e Bls)a, Prob(s', U™ W) du

7

Ve

° ES probability to move to probability to fulfill ® U W

state s’ at time x before time t—x from s’

— 0 otherwise
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Reduction to transient analysis

(Baier, Haverkort, Hermanns & Katoen, 2000)
e Make all U- and all - (® Vv W)-states absorbing in C

e Check ¢=t ¥ in the obtained CTMC C’

e This is a standard transient analysis in C:

Z Pr{o € Paths(s) | c@Qt = s’}

s'E=w
— compute by solving linear differential equations, or discretization

=- Discretization + matrix-vector multiplication + Poisson probabilities
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Markov reward model checker (MRMC)

(Zapreev & Meyer-Kayser, 2000/2005)

e Supports DTMCs, CTMCs and cost-based extensions thereof
— temporal logics: P(R)CTL and CS(R)L
— bounded until, long run properties, and interval bounded until

e Sparse-matrix representation

e Command-line tool (in C)

— experimental platform for new (e.g., reward) techniques
— back-end of GreatSPN, PEPA WB, PRISM and stochastic GG tool
— freely downloadable under Gnu GPL license

e Experiments: Pentium 4, 2.66 GHz, 1 GB RAM
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Verification times

verification time (in ms)
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Probabilistic bisimulation

e LetD = (S,P,L) be a DTMC and R an equivalence relation on S
e R is a probabilistic bisimulation on S if for any (s, s’) € R:
L(s)=L(s") and P(s,C) =P(s',C) forall CinS/R
where P(s,C) = > .~ P(s,s") (Larsen & Shou, 1989)

e s ~ s’ if 4 a probabilistic bisimulation R on S with (s,s’) € R

s~s < (VP ePCTL: s =®ifand only if s’ = ®)
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Quotient DTMC under ~

D/~ = (5 ,P' L"), the quotientof D = (S,P, L) under ~:

¢ S'=5/~= {ls]~|s5€ S5}

e P'([s].,C)=P(s,C)

get D/ ~ by partition-refinement in time O (M- log N + |AP|-N)

(Derisavi et al., 2001)
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Craps

Douhle

B
Mu
=¥
L |
L |
L—
L o |
!
-r
L)
-
S
-
=
]
m..
(=¥

22

© JPK



Advanced model checking

Craps

e Roll two dice and bet on outcome

e Come-out roll (“pass line” wager):

— outcome 7 or 11: win
— outcome 2, 3, and 12: loss (“craps”)
— any other outcome: roll again (outcome is “point”)

e Repeat until 7 or the “point” is thrown:

— outcome 7: loss (“seven-out”)
— outcome the point: win
— any other outcome: roll again
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A DTMC model of Craps

© JPK
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Minimizing Craps

initial partitioning for the atomic propositions AP = { loss }
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e\

N[OV

A first refinement

refine (“split”) with respect to the set of red states
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A second refinement

refine (“split”) with respect to the set of green states
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Quotient DTMC
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Property-driven bisimulation

e For DTMC D, set I’ of PCTL-formulas, and equivalence R on S
e R is a probabilistic F-bisimulation on S if for any (s, s’) € R:
Lr(s)=Lp(s') and P(s,C) =P(s',C) forall CinS/R
where Lp(s) ={®P e F|sE=®} (Baier et al., 2000)

e s ~p s if 4a probabilistic F-bisimulation R on S with (s,s’) € R

s~ps < (VO € PCTLr : s = ®ifand only if s" = ®)
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Minimization for ® until ¥

e Initial partition for ~: s;y = { s’ | L(s") = L(s) }

— independent of the formula to be checked

e Now: exploit the structure of the formula to be checked

e Bounded until:

—take F ={ V¥V, - O AU, OA -V}
— initial partition IT = { sy, sS—ppr-w, Sat(® A =) }
— of, for non-recurrent DTMCs: P<y(® U W) instead of =P A =W

e Standard until:
—take FF = { P>1(PU W), Po(PU W), Poo(PUT) APy (PUT) }

NV
single state in IT  single state in I1
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Workstation cluster maverkort et al., 2001)

state space size
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verification (+ lumping) time (in ms)
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Cyclic polling system e s mivedi, 1089)

state space size
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Cyclic polling system

verification (+ lumping) time (in ms)
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Crowds protocol (reier & rubin, 1008)

e A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)

e Hide user’'s communication by random routing within a crowd

— sender selects a crowd member randomly using a uniform distribution
— selected router flips a biased coin:

x With probability 1 — p: direct delivery to final destination

x otherwise: select a next router randomly (uniformly)
— once a routing path has been established, use it until crowd changes

e Rebuild routing paths on crowd changes (R times)

e Probable innocence:

— probability real sender is discovered < 1 if N > —Z4-(c+1)
1

. . . 2
— where N is crowd’s size and c is number of corrupt crowd members
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Crowds protocol

state space size
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Crowds protocol

verification (+ lumping) time (in ms)
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It mostly pays off!

e Significant state space reductions

— reduction factors varying from O to 3 orders of magnitude
— property-driven bisimulation yields better results
— ... even after symmetry reduction

e Mostly a reduction of the total verification time

— depends on “denseness” and structure of the Markov chain
— long run: convergence rate of numerical computations
— reward models: huge reductions of verification time (up to 4 orders)

e Possibility to exploit component-wise minimisation
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