
Bisimulation Minimization
Lecture #3 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

October 29, 2006

c© JPK

Advanced model checking

Implementation relations

• A binary relation on transition systems

– when does a transition systems correctly implements another?

• Important for system synthesis

– stepwise refinement of a system specification TS into an “implementation” TS ′

• Important for system analysis

– use the implementation relation as a means for abstraction
– replace TS |= ϕ by TS′ |= ϕ where | TS′ | << | TS | such that

TS |= ϕ iff TS′ |= ϕ or TS′ |= ϕ ⇒ TS |= ϕ

⇒ Focus on state-based bisimulation and simulation

– definition, logical characterization, and quotienting algorithms
– variants that allow for stuttering of (internal) steps

c© JPK 1

Advanced model checking

Bisimulation

Let TSi = (Si, Acti,→i, Ii, AP, Li), i=1, 2, be transition systems

A bisimulation for (TS1, TS2) is a binary relation R ⊆ S1 × S2 such that:

1. ∀s1 ∈ I1 ∃s2 ∈ I2. (s1, s2) ∈ R and ∀s2 ∈ I2 ∃s1 ∈ I1. (s1, s2) ∈ R

2. for all states s1 ∈ S1, s2 ∈ S2 with (s1, s2) ∈ R it holds:

(a) L1(s1) = L2(s2)

(b) if s′1 ∈ Post(s1) then there exists s′2 ∈ Post(s2) with (s′1, s
′
2) ∈ R

(c) if s′2 ∈ Post(s2) then there exists s′1 ∈ Post(s1) with (s′1, s
′
2) ∈ R

TS1 and TS2 are bisimilar, denoted TS1 ∼ TS2, if there exists a bisimulation for (TS1, TS2)

c© JPK 2

Advanced model checking

Bisimulation equivalence

s1 −→ s′1 s1 −→ s′1
R can be completed to R R
s2 s2 −→ s′2

and

s1 s1 −→ s′1
R can be completed to R R
s2 −→ s′2 s2 −→ s′2

c© JPK 3

Advanced model checking

Bisimulation on states
A bisimulation on TS = (S, Act,→, I, AP, L) is an equivalence relation
R on S such that for all (s1, s2) ∈ R:

1. L(s1) = L(s2)

2. if s′1 ∈ Post(s1) then there exists an s′2 ∈ Post(s2) with (s′1, s
′
2) ∈ R

3. if s′2 ∈ Post(s2) then there exists an s′1 ∈ Post(s1) with (s′1, s
′
2) ∈ R

s1 and s2 are bisimilar, denoted s1 ∼TS s2,
if there exists a bisimulation R for TS with (s1, s2) ∈ R

s1 ∼TS s2 if and only if TSs1 ∼ TSs2

c© JPK 4

Advanced model checking

Quotient transition system

For TS = (S, Act,→, I, AP, L) and bisimulation ∼ ⊆ S × S let

TS/∼ = (S′, { τ },→′, I ′, AP, L′), the quotient of TS under ∼

where

• S′ = S/∼= { [s]∼ | s ∈ S } with [s]∼ = { s′ ∈ S | s ∼ s′ }

• →′ is defined by:
s α−−→ s′

[s]∼
τ−→′ [s′]∼

• I ′ = { [s]∼ | s ∈ I }
• L′([s]∼) = L(s)

c© JPK 5

Advanced model checking

The Bakery algorithm

Process 1:
.

while true {
.

n1 : x1 := x2 + 1;

w1 : wait until(x2 = 0 ||x1 < x2) {
c1 : . . . critical section . . .}

x1 := 0;

.

}

Process 2:
.

while true {
.

n2 : x2 := x1 + 1;

w2 : wait until(x1 = 0 ||x2 < x1) {
c2 : . . . critical section . . .}

x2 := 0;

.

}

this algorithm can be applied to an arbitrary number of processes

c© JPK 6

Advanced model checking

Infinite transition system

n1 n2
x1 � 0
x2 � 0

n1 c2
x1 � 0
x2 � 1

n1 w2
x1 � 0

w1 w2
x1 � 2
x2 � 1

c1 w2
x1 � 1
x2 � 2

c1 n2
x1 � 1
x2 � 0

w1 n2
x1 � 1
x2 � 0

w1 c2

n1 c2
x1 � 0

n1 w2
x1 � 0

x1 � 3

c1 n2

x2 � 0

x2 � 0

x2 � 3
x1 � 0

x2 � 0

x2 � 1

w1 w2
x1 � 1
x2 � 2

x1 � 2
x2 � 1

x2 � 2

x2 � 2

w1 w2

x2 � 2

c1 w2 w1 c2

� � � � � �

n1 w2 w1 n2

� � � � � �

w1 w2
x1 � 2

w1 n2
x1 � 2

x1 � 2

c1 n2
x1 � 3

n1 c2

x2 � 3

� � � � � �

c© JPK 7

Advanced model checking

Bisimulation quotient

n1 n2

x1 = 0
x2 = 1

n1 w2

x1 = 0
x2 > 0

w1 n2

x1 > 0
x2 = 0

n1 c2

x1 = 0
x2 > 0

c1 n2

x1 > 0
x2 = 0

w1 w2

x1 > x2 > 0
w1 w2

x2 > x1 > 0

c1 w2

x2 > x1 > 0
w1 c2

x1 > x2 > 0

c© JPK 8

Advanced model checking

Data abstraction

c© JPK 9

Advanced model checking

Bisimulation on paths

Whenever for bisimulation R we have:

s0 −→ s1 −→ s2 −→ s3 −→ s4

R
t0

this can be completed to:

s0 −→ s1 −→ s2 −→ s3 −→ s4

R R R R R
t0 −→ t1 −→ t2 −→ t3 −→ t4

proof: by induction on index i of state si

c© JPK 10

Advanced model checking

Bisimulation vs. trace equivalence

• Bisimulation is finer than trace equivalence:

TS1 ∼ TS2 implies Traces(TS1) = Traces(TS2)

• As trace-equivalent systems satisfy the same LT-properties:

TS1 ∼ TS2 implies TS1 |= ϕ iff TS2 |= ϕ for any LTL formula ϕ

• To check TS |= ϕ, it suffices to check TS/∼ |= ϕ

– recall that TS/∼ may be much smaller than TS!
– this does not only apply to any LTL-formula, but to any formula in CTL∗

c© JPK 11

Advanced model checking

Syntax of CTL∗

CTL∗ state-formulas are formed according to:

Φ ::= true
∣∣
∣ a

∣∣
∣ Φ1 ∧Φ2

∣∣
∣ ¬Φ

∣∣
∣ ∃ϕ

where a ∈ AP and ϕ is a path-formula

CTL∗ path-formulas are formed according to the grammar:

ϕ ::= Φ
∣∣
∣ ϕ1∧ϕ2

∣∣
∣ ¬ϕ

∣∣
∣ © ϕ

∣∣
∣ ϕ1 U ϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas

in CTL∗: ∀ϕ = ¬∃¬ϕ. This does not hold in CTL!

c© JPK 12

Advanced model checking

Relationship between LTL, CTL and CTL∗

�(a∧ © a)
��a

�(a∧ © a)

∀�∃�a

LTL CTL

CTL∗

∨
∀�∃�a

c© JPK 13

Advanced model checking

CTL∗ equivalence

States s1 and s2 in TS (over AP) are CTL∗-equivalent:

s1 ≡CTL∗ s2 if and only if (s1 |= Φ iff s2 |= Φ)

for all CTL∗ state formulas over AP

TS1 ≡CTL∗ TS2 if and only if (TS1 |= Φ iff TS2 |= Φ)

for any sublogic of CTL∗, logical equivalence is defined analogously

c© JPK 14

Advanced model checking

Bisimulation vs. CTL∗ and CTL equivalence

Let TS be a finite transition system (without terminal states) and s, s ′ states in TS.

The following statements are equivalent:

(1) s ∼TS s′

(2) s and s′ are CTL-equivalent, i.e., s ≡CTL s′

(3) s and s′ are CTL∗-equivalent, i.e., s ≡CTL∗ s′

this is proven in three steps: ≡CTL ⊆ ∼ ⊆ ≡CTL∗ ⊆ ≡CTL

important: equivalence is also obtained for any sub-logic containing ¬, ∧ and ©

c© JPK 15

Advanced model checking

Example

c© JPK 16

Advanced model checking

Bisimulation vs. CTL∗-equivalence

For any transition systems TS and TS′ (over AP) without terminal states:

TS ∼ TS′ if and only if TS ≡CTL TS′ if and only if TS ≡CTL∗ TS′

⇒ prior to model-check Φ, it is safe to first minimize TS wrt. ∼

how to obtain such bisimulation quotients?

c© JPK 17

Advanced model checking

Basic fixpoint characterization

Consider the function F : 2S×S → 2S×S:

F(R) = { (s, t) | L(s) = L(t) ∧ ∀s′ ∈ S.

(s−→ s′ ⇒ ∃t′ ∈ S. t−→ t′ ∧ (s′, t′) ∈ R) ∧
(t−→ s′ ⇒ ∃u′ ∈ S. s−→u′ ∧ (s′, u′) ∈ R) ∧

}

∼TS = F(∼TS) and for any R such that F(R) = R it holds R ⊆ ∼TS

c© JPK 18

Advanced model checking

How to compute the fixpoint of F?

For finite transition system TS = (S, Act,→, I, AP, L):

∼TS =
⋂∞

i=0 ∼i that is: s ∼TS s′ iff s ∼i s′ for all i � 0

where ∼i is defined by:

∼0 = { (s, t) ∈ S × S | L(s) = L(t) }
∼i+1 = F(∼i)

this constitutes the basis for the algorithms to follow

c© JPK 19

Advanced model checking

Partitions

• A partition Π = {B1, . . . , Bk } of S satisfies:

– Bi is non-empty; Bi is called a block
– Bi ∩ Bj = ∅ for all i, j with i �= j

– B1 ∪ . . . ∪ Bk = S

• C ⊆ S is a super-block of partition Π of S if

C = Bi1 ∪ . . . ∪ Bil for Bij ∈ Π for 0 < j � l

• Partition Π is finer than partition Π′ if:

∀B ∈ Π. (∃B′ ∈ Π′. B ⊆ B′)

⇒ each block of Π′ equals the disjoint union of a set of blocks in Π

– Π is strictly finer than Π′ if it is finer than Π′ and Π �= Π′

c© JPK 20

Advanced model checking

Partitions and equivalences

• R is an equivalence on S ⇒ S/R is a partition of S

• Partition Π = {B1, . . . , Bk } of S induces the equivalence relation

RΠ = { (s, t) | ∃Bi ∈ Π. s ∈ Bi ∧ t ∈ Bi }

• S/RΠ = Π

⇒ there is a one-to-one relationship between partitions and equivalences

c© JPK 21

Advanced model checking

Skeleton for bisimulation checking
from now on, we assume that TS is finite

• Iteratively compute a partition of S

• Initially: Π0 equals ΠAP = { (s, t) ∈ S × S | L(s) = L(t) }

• Repeat until no change: Πi+1 := Refine(Πi)

– loop invariant: Πi is coarser than S/∼ and finer than {S }

• Return Πi

– termination: RΠ0
� RΠ1

� RΠ2
� . . . � RΠi

= ∼TS

– time complexity: maximally |S | iterations needed

this is a partition-refinement algorithm

c© JPK 22

Advanced model checking

Computing the initial partition ΠAP

• Main idea: construct a decision tree of height k for AP = { a1, . . . , ak }

• Node at depth i < k of the tree: ai ∈ L(s) or ai
∈ L(s)?

• Leaf v represents equally labeled states:

– s ∈ states(v) if and only if decision path for L(s) leads from root to v

• Decision tree is created step-by-step

– new nodes are created when a state is encountered with a new labeling

• Time complexity Θ(|S|·|AP|)
– a single tree traversal is needed for each state

c© JPK 23

Advanced model checking

Example

c© JPK 24

Advanced model checking

Theorem

S/∼ is the coarsest partition Π of S such that

(i) Π is finer than the initial partition ΠAP, and

(ii) B ∩ Pre(C) = ∅ or B ⊆ Pre(C) for all B,C ∈ Π

If (ii) holds for Π, then it holds for all super-blocks C of Π

• No state in B has a direct successor in C, or

• All states in B have a direct successor in C

c© JPK 25

Advanced model checking

Proof

c© JPK 26

Advanced model checking

How to compute the fixpoint of F?

For finite transition system TS = (S, Act,→, I, AP, L):

∼ =
⋂∞

i=0 ∼i

where ∼i is defined by:

∼0 = { (s, t) ∈ S × S | L(s) = L(t) }
∼i+1 = ∼i ∩ {(s, t) | ∀C ∈ S/∼i . s ∈ Pre(C) iff t ∈ Pre(C)}

the block C is called a splitter

each relation ∼i is an equivalence relation

c© JPK 27

Advanced model checking

The refinement operator
• Let: Refine(Π, C) =

⋃
B∈Π Refine(B,C) for C a superblock of Π

– where Refine(B, C) =
n

B ∩ Pre(C), B \ Pre(C)
o

\ {∅}

block B superblock C

B\Pre(C)

B∩Pre(C)

• Basic properties:

– for Π finer than ΠAP and coarser than S/∼:

Refine(Π, C) is finer than Π and Refine(Π, C) is coarser than S/∼

– Π is strictly coarser than S/∼ if and only if there exists a splitter for Π

c© JPK 28

Advanced model checking

A partition-refinement algorithm

Input: finite transition system TS with state space S

Output: bisimulation quotient space S/∼

Π := ΠAP;
Πold := {S }; (* Πold is the “previous” partition *)

(* loop invariant: Π is coarser than S/∼ and finer than ΠAP and Πold *)
repeat

Πold := Π;
for all C ∈ Πold do

Π := Refine(Π, C);
od

until Π = Πold

return Π

c© JPK 29

Advanced model checking

Example

c© JPK 30

Advanced model checking

Time complexity

For TS = (S, Act,→, I, AP, L) with M � |S|, the # edges in TS:

The partition-refinement algorithm to compute TS/∼
has a worst-case time complexity in O(|S| · (|AP| + M)

)

c© JPK 31

Advanced model checking

Proof

c© JPK 32

Advanced model checking

An efficiency improvement

• Not necessary to refine with respect to all blocks C ∈ Πold

⇒ Consider only the “smaller” subblocks of a previous refinement

• Step i: refine C ′ into C1 = C′ ∩ Pre(D) and C2 = C′ \ Pre(D)

• Step i+1: use the smallest C ∈ {C1, C2 } as splitter candidate

– let C be such that |C| � |C ′|/2, thus |C| � |C ′ \ C|
– combine the refinement steps with respect to C and C ′ \ C

• Refine(Π, C, C ′ \C) = Refine
“

Refine(Π, C), C ′ \C
”

where |C| � |C ′ \C|

– the decomposed blocks are stable with respect to C and C ′ \ C

c© JPK 33

Advanced model checking

The new refinement operator

• Let: Refine(Π, C, C ′ \ C) =
⋃

B∈Π Refine(B,C,C ′ \ C)

– where Refine(B, C, C ′ \ C) = {B1, B2, B3 } \ {∅ } with:

B1 = B ∩ Pre(C) ∩ Pre(C ′ \ C) to both C and C \ C ′

B2 = (B ∩ Pre(C)) \ Pre(C ′ \ C) only to C

B3 = (B ∩ Pre(C ′ \ C)) \ Pre(C) only to C ′ \ C

⇒ blocks B1, B2, B3 are stable with respect to C and C ′ \ C

block B

B3
B1

B2
C

C′ \C

c© JPK 34

Advanced model checking

Improved partition-refinement algorithm

Input: finite transition system TS with state space S

Output: bisimulation quotient space S/∼

Πold := {S };
Π := Refine(ΠAP, S);

(* loop invariant: Π is coarser than S/∼ and finer than ΠAP and Πold , *)
(* and Π is stable with respect to any block in Πold *)

while Π �= Πold do
choose block C ′ ∈ Πold \ Π and block C ∈ Π with C ⊆ C ′ and |C| � |C′|

2 ;
Π := Refine(Π, C, C ′ \ C);
Πold := Πold \ {C′ } ∪ {C, C ′ \ C };

od
return Π

c© JPK 35

Advanced model checking

Example

c© JPK 36

Advanced model checking

Implementation details

c© JPK 37

Advanced model checking

Time complexity

For TS = (S, Act,→, I, AP, L) with M � |S|, the # edges in TS:

Time complexity of computing TS/∼ is O(|S|·|AP| + M · log(|S|))

c© JPK 38

Advanced model checking

Proof

c© JPK 39

