© JPK

Bisimulation Minimization
Lecture #3 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

October 29, 2006

Advanced model checking

Implementation relations

e A binary relation on transition systems

— when does a transition systems correctly implements another?

e Important for system synthesis

/

— stepwise refinement of a system specification TS into an “implementation” TS

e Important for system analysis

— use the implementation relation as a means for abstraction
— replace TS |= ¢ by TS' |= ¢ where | TS'| << | TS| such that

TS @iff TS = or TS ' =p = TSk

= Focus on state-based bisimulation and simulation

— definition, logical characterization, and quotienting algorithms
— variants that allow for stuttering of (internal) steps

© JPK 1

Advanced model checking

Bisimulation

Let TS; = (5;, Act;, —;, I;, AP, L;), i=1, 2, be transition systems
A bisimulation for (TS, TS,) is a binary relation R C S; x S5 such that:

1. Vs € I1dsy € Is. (81,82) cR and Vs, € [5ds; € 1. (81,82) ER

2. for all states s; € 51, so € So with (s1,s9) € R it holds:
(@) Li(s1) = La(s2)
(b) if s} € Post(s1) then there exists s, € Post(ss) with (s}, s5) € R

(c) if s;, € Post(ss) then there exists s} € Post(sy) with (s},s5) € R
2 1 122

TS and TS, are bisimilar, denoted TS| ~ TSy, if there exists a bisimulation for (TS, TSy)

© JPK

Advanced model checking

Bisimulation equivalence

s1 — 81 S1 — 51
R can be completed to R R
S9 S22 — 59
and
S1 St — 53
R can be completed to R R
Sa — 8y S2. — 83

© JPK 3

Advanced model checking

Bisimulation on states

A bisimulation on TS = (S, Act, —, I, AP, L) is an equivalence relation
R on S such that for all (s1, s2) € R:

2. if s7 € Post(s1) then there exists an s, € Post(ss) with (s7,s5) € R

3. if s, € Post(ss) then there exists an s} € Post(s;) with (s}, s5) € R

s1 and sy are bisimilar, denoted s; ~tg s9,
if there exists a bisimulation R for TS with (s1, s2) € R

s1 ~t1s s2 Ifandonlyif TS, ~ TS,

© JPK 4

Advanced model checking

Quotient transition system
For TS = (S, Act, —, I, AP, L) and bisimulation ~ C § x S let
TS/~ = (8", {r},—',I' /AP, L"), the quotient of TS under ~
where

o '=5/~= {[s]o|seS}with[s]. = {se€S5|s~s"}

« /
S—S

[s]~ =[]~

e —'is defined by:

o I'={ls]l~|sel}

© JPK 5

Advanced model checking

The Bakery algorithm

Process 1: Process 2:
while true { while true {
ni : 1 = x9 + 1; no : xo = x1 + 1;
wy wait until(zo = 0 ||z1 < z2){ wo wait until(z1 =0 || z2 < z1) {
c1 : ... critical section . . .} cy : ... critical section . . .}
xq = 0; xo 1= 0;
} }

this algorithm can be applied to an arbitrary number of processes

© JPK 6

Advanced model checking

Infinite transition system

© JPK

Advanced model checking

Bisimulation quotient

T

1 N2
Ir1 =
ro =

w1 W2 w1 Wo
r1 > x9 >0 To >x1 >0

wi Co
1 > x9 >0

© JPK

Advanced model checking

Data abstraction

© JPK

Advanced model checking

Bisimulation on paths

Whenever for bisimulation R we have:

so — S1 — 852
R
to

this can be completed to:
so — S1 — 82
R R R

to — 11 — 12

proof: by induction on index ¢ of state s;

© JPK

10

Advanced model checking

Bisimulation vs. trace equivalence

e Bisimulation is finer than trace equivalence:

TS; ~ TS, implies Traces(TS;) = Traces(TSsy)

e As trace-equivalent systems satisfy the same LT-properties:

TS; ~ TSy, implies TS; | ¢ iff TSy = ¢ for any LTL formula ¢

e Tocheck TS = ¢, it suffices to check TS/~ = ¢

— recall that TS/~ may be much smaller than TS!
— this does not only apply to any LTL-formula, but to any formula in CTL"

© JPK 11

Advanced model checking

Syntax of CTL*

CTL" state-formulas are formed according to:
O = true ‘ a ‘ O, A D, | ~® | I

where a € AP and ¢ Is a path-formula

CTL" path-formulas are formed according to the grammar:

@ =P ‘ w1 N\ P2 ‘ =P ‘ Op ‘ ©1 U g

where & is a state-formula, and ¢, ¢, and ¢, are path-formulas

in CTL*: Vo = —3d-. This does not hold in CTL!

© JPK

12

Advanced model checking

Relationship between LTL, CTL and CTL*

m SlaN Oa)
> V

> YO30a

O0&a vOd5a

© JPK 13

Advanced model checking

CTL* equivalence

States s; and s, in TS (over AP) are CTL"-equivalent:
S1 =cTL* S2 If and Only If (81 ‘: o iff S9 ‘: (I))

for all CTL™ state formulas over AP

TS =c1+ TSy ifandonlyif (TS; =@ iff TS, = @)

for any sublogic of CTL", logical equivalence is defined analogously

© JPK

14

Advanced model checking

Bisimulation vs. CTL* and CTL equivalence

Let TS be a finite transition system (without terminal states) and s, s’ states in TS.
The following statements are equivalent:
1) s ~7s s
(2) s and s’ are CTL-equivalent, i.e., s =c1L s’

3) s and s’ are CTL"-equivalent, i.e., s =~ = s’
CTL

this is proven in three steps: =1 € ~ C =cTL* C =cTL

important: equivalence is also obtained for any sub-logic containing —, A and O

© JPK 15

Advanced model checking

Example

© JPK

16

Advanced model checking

Bisimulation vs. CTL*-equivalence

For any transition systems TS and TS’ (over AP) without terminal states:
TS ~ TS' ifandonlyif TS =cp TS ifandonlyif TS = q+ TS

= prior to model-check &, it is safe to first minimize TS wrt. ~

how to obtain such bisimulation quotients?

© JPK

17

Advanced model checking

Basic fixpoint characterization

Consider the function F : 25%5 — 25%5:

FMR) = { (s,t)| L(s)=L(t) N Vs €S5.
(s —s" = HeSt—t N(\)eR) A
(t—s = eSS s—u N (su')eR) A

~1s = F(~r7s) and for any R such that 7(R) = R itholds R C ~rg

© JPK

18

Advanced model checking

How to compute the fixpoint of F7?

For finite transition system TS = (S, Act, —, I, AP, L):

o

~rs = [img ~i thatis: s ~qgs'iff s ~; s’ foralli >0
where ~; is defined by:
~0 = {(st) €S xS | L(s)=L(1)}

~ipr = F(~)

this constitutes the basis for the algorithms to follow

© JPK 19

Advanced model checking

Partitions

e A partition Il = { By,..., By } of S satisfies:

— B, is non-empty; B; is called a block
— B, N B; =wforall¢,j withe # j
— BiU...UB,=S

e (' C Sis asuper-block of partition IT of S if
C = B;; U...U B forBZ-j ellfor0<j <l

e Partition II is finer than partition II” if:
VB ell. (3B’ Il'. B C B’

= each block of IT’ equals the disjoint union of a set of blocks in II
— I is strictly finer than IT’ if it is finer than IT" and IT £ IT’

© JPK

20

Advanced model checking

Partitions and equivalences

e R is an equivalenceon S = S/R s a partition of S

e Partition II = { By, ..., By } of S induces the equivalence relation

Ruo=1{(s,t)|3B;e€ll.s€ B; A t€ B;}

OS/RH = 11

= there is a one-to-one relationship between partitions and equivalences

© JPK 21

Advanced model checking

Skeleton for bisimulation checking

from now on, we assume that TS is finite

e lteratively compute a partition of S

e Initially: ITy equals Ilap = { (s,t) € S x S | L(s) = L(?) }

e Repeat until no change:

— loop invariant: I1; is coarser than S/ ~ and finer than { S }

e Return II;

— termination: Ry, 2 Rm; 2 R, 2 --- 2 R, = ~7s

I1;,1 := Refine(I;)

— time complexity: maximally | S | iterations needed

this is a partition-refinement algorithm

© JPK

22

Advanced model checking

Computing the initial partition Il,p
e Main idea: construct a decision tree of height k for AP = { a4, ..., a; }

e Node at depth ¢ < k of the tree: a; € L(s) ora; & L(s)?

e Leaf v represents equally labeled states:

— s € states(v) if and only if decision path for L(s) leads from root to v

e Decision tree Is created step-by-step

— new nodes are created when a state is encountered with a new labeling

e Time complexity ©(|S|-|AP|)

— asingle tree traversal is needed for each state

© JPK 23

Advanced model checking

Example

© JPK

24

Advanced model checking

Theorem

S/~ is the coarsest partition IT of S such that
() II is finer than the initial partition II5p, and
(i) BN Pre(C)=2orBCPre(C) forall B,Cell

If (i) holds for II, then it holds for all super-blocks C' of I1

e No state in B has a direct successor in C, or

e All states in B have a direct successor in ('

© JPK

25

Advanced model checking

Proof

© JPK

26

Advanced model checking

How to compute the fixpoint of F7?

For finite transition system TS = (S, Act, —, [, AP, L):

where ~; is defined by:
~o = {(s,t) € SxS|L(s)=L(t) }

~iv1 = ~; NA{(s,t) | VC € S/~;.sePre(C)ifft € Pre(C)}

the block C' is called a splitter

each relation ~; is an equivalence relation

© JPK 27

Advanced model checking

The refinement operator
o Let: Refine(Il,C) = Uz Refine(B,C) for C asuperblock of I1

— where Refine(B,C) = {B N Pre(C), B\ Pre(C)} \ {2}

block B superblock C

e Basic properties:

— for II finer than I1pp and coarser than S /~:
Refine(I1, C') is finer than IT and Refine(II, C') is coarser than S/~

— Il is strictly coarser than S/~ if and only if there exists a splitter for I1

© JPK

28

Advanced model checking

A partition-refinement algorithm

Input: finite transition system TS with state space S
Output: bisimulation quotient space S/~

II := HAP;
[y :={S}; (* IL,;4 is the “previous” partition *)
(* loop invariant: II is coarser than S/~ and finer than ITap and I1,;; *)
repeat
11,y = 11,

forall C € 11,, do
IT := Refine(II, C);
od
until II = 11,4
return II

© JPK 29

Advanced model checking

Example

© JPK

30

Advanced model checking

Time complexity

For TS = (S, Act, —, I, AP, L) with M > |S|, the # edges in TS:

The partition-refinement algorithm to compute TS/ ~

has a worst-case time complexity in O(|S| - (|AP| + M))

© JPK

31

Advanced model checking

Proof

© JPK

32

Advanced model checking

An efficiency improvement

e Not necessary to refine with respect to all blocks C € 11,
=- Consider only the “smaller” subblocks of a previous refinement
e Step i: refine ¢’ into Cy = C'NPre(D) and Cy = C" \ Pre(D)

e Step ¢+1: use the smallest C' € { (', C5 } as splitter candidate

— let C be such that |C| < |C’|/2, thus |C| < |C"\ C|
— combine the refinement steps with respectto C and C’ \ C

e Refine(Il,C,C'\ C) = Refine(Refine(11, C), C’\C) where |C| < |C'\ O

— the decomposed blocks are stable with respectto C and C' \ C

© JPK 33

Advanced model checking

The new refinement operator

o Let: Refine(IL,C,C"\ C) = Jgey Refine(B,C,C"\ C)
— where Refine(B, C,C’'\ C) = { B1, B2, B3 } \ { @ } with:

By = BnNPre(C)nPre(C'\ C) toboth Cand C \ C’
By = (BnPre(C))\ Pre(C"\ O) only to C
B3 = (BnPre(C'\C))\ Pre(C) onlyto C'\ C

= blocks B1, By, B3 are stable with respectto C and C’ \ C

T

B1

block B

© JPK

34

Advanced model checking

Improved partition-refinement algorithm

Input: finite transition system TS with state space S
Output: bisimulation quotient space S/~

Hyg :={S };
IT := Refine(Ilpp, S);

(* loop invariant: II is coarser than S/~ and finer than IT,p and I1,;,, *)
(* and II is stable with respect to any block in IT,;; *)

while I1 75 I, do

choose block C' € 11, \ II and block C' € IT with C C C’ and |C| < %;
I1 := Refine(II, C, C" \ O);
11, := Hold\{Cl} U {C,C/\C},

od

return II

© JPK 35

Advanced model checking

Example

© JPK

36

Advanced model checking

Implementation details

© JPK

37

Advanced model checking

Time complexity

For TS = (S,Act, —, I, AP, L) with M > |S|, the # edges in TS:

Time complexity of computing TS/~ is O(|S|-|AP| + M-log(|S|))

© JPK

38

Advanced model checking

Proof

© JPK

39

