© JPK

Simulation Quotienting
Lecture #4 + #5 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

November 2+6, 2006

Advanced model checking

Simulation order

Let TS; = (5;, Act;,, —;, I;, AP, L;), i=1, 2, be transition systems.

A simulation for (TS, TS,) is a binary relation R C S; x S5 such that:

1. Vs € I{dsy € Is. (81,82) ER

2. for all states sy € 51, so € Se with (s1,s2) € R it holds:
(@) Li(s1) = La(s2)

(b) if s} € Post(sq) then there exists si, € Post(ss) with (s7,s,) € R
1 2 122

TS; <X TS, iff there exists a simulation R for (TS, TS,)

© JPK

Advanced model checking

but not necessarily:

S1

R

So — S

Simulation order

can be completed to

can be completed to

© JPK

Advanced model checking

Example

© JPK

Advanced model checking

Abstraction function

AN

e f:5 — Sisan abstraction function if f(s) = f(s’) = L(s) = L(s')
— S is a set of concrete states and S a set of abstract states, i.e. |§ |<<| S|
e Abstraction functions are useful for:
— data abstraction: abstract from values of program or control variables
f : concrete data domain — abstract data domain
— predicate abstraction: use predicates over the program variables
f : state — valuations of the predicates
— localization reduction: partition program variables into visible and invisible

f : all variables — visible variables

© JPK 4

Advanced model checking

Abstract transition system
For TS = (S, Act, —, I, AP, L) and abstraction function f : S — S let:

TS, = (§, Act,—¢, I¢+,AP,L;), the abstraction of TS under f

where
s 254
o — Is defined by:
f(s) == f(s")

o Ir={f(s)|sel}

e L;(f(s))=L(s), forse S\ £(9), labeling is undefined

R ={(s,f(s))| s € S}isasimulation for (TS, TSy)

© JPK 5

Advanced model checking

Simulation equivalence

TS, and TS, are simulation equivalent, denoted TS ~ TS,
If TS <X TS, and TS, < TS,

© JPK

Advanced model checking

Simulation quotient transition system

For TS = (S, Act, —, I, AP, L) and simulation equivalence ~ C S x S let
TS/ ~= (8 {r},—',I')AP, L"), the quotient of TS under ~

where

o '=5/~= {[sl~|seS}tandI'={[s|~|sel}

« /
S—S

[s]~ = [s]~

e —'is defined by:

o L'([s]~) = L(s)

lemma: TS ~ TS/~ ; proof not straightforward!

© JPK .

Advanced model checking

Trace, bisimulation and simulation equivalence

bisimulation equivalence

/ TSl - TS2 \

simulation equivalence trace equivalence
TS) =TS9 Traces(TS1) = Traces(TSo)

\ finite trace equivalenC/

Traces g, (TSq) = Traces fin (TS9)

simulation order trace inclusion
TS1 X TSy Traces(TSq) C Traces(TS9)

\ finite trace inclusion /

Traces ﬁn(Tsl) C Tracesg, (TS9)

© JPK

Advanced model checking

Similar but not bisimilar

(s1){a} (t){a}
(52, (53)2 OF

saj{b} (s5){c} (ts){b} (t){c}

TSleft =~ TSright but TSleft ’7(‘ TSrz'ght

© JPK

Advanced model checking

Terminal states and determinism
For transition systems TS; and TS, over AP:

e If TS; has no terminal states:

TS; <X TSy implies Traces(TS;) C Traces(TS,)

o If TS; Is AP-deterministic:

TS, ~ TSy iff Traces(TS;) = Traces(TS,) iff TS; ~ TS,

e TS = (S,Act,—, I, AP, L) is AP-deterministic if:

1. for ACAP: |IN{s|L(s)=A} < 1,and
2. s> s"and s = s" and L(s") = L(s") implies s’ = 5"

© JPK 10

Advanced model checking

Universal fragment of CTL*

VCTL" state-formulas are formed according to:
® ::= true ‘ false | a | —a ‘ d,; N Dy | &, Vv P | Vo

where a € AP and ¢ Is a path-formula

VCTL" path-formulas are formed according to:

p = @ | O | 01\ P2 | ©1 V P2 | 01 U o ‘ ©1 R 9

where @ is a state-formula, and ¢, ¢, and ¢, are path-formulas

in VCTL, the only path operators are (O®, &, U $, and &, R &,

© JPK 11

Advanced model checking

Universal CTL* contains LTL

For every LTL formula there exists an equivalent VCTL™ formula

© JPK

12

Advanced model checking

Simulation order and VCTL"

Let TS be a finite transition system (without terminal states) and s, s’ states in TS.
The following statements are equivalent:
1) s =15 &
(2) for all VCTL*-formulas ®: s’ = ® implies s = ®
(3) for all VCTL-formulas ®: s’ = ® implies s = ®

proof is carried out in three steps: (1) = (2) = (3) = (1)

© JPK 13

Advanced model checking

Example

© JPK

14

Advanced model checking

Existential fragment of CTL*

JCTL" state-formulas are formed according to:
® ::= true ‘ false | a | —a ‘ d,; N Dy | &, Vv P | Jp

where a € AP and ¢ Is a path-formula

JCTL™ path-formulas are formed according to:

p = @ | O | 01\ P2 | ©1 V P2 | 01 U o ‘ ©1 R 9

where @ is a state-formula, and ¢, ¢, and ¢, are path-formulas

in ACTL, the only path operators are (O®, &, U $, and &, R &,

© JPK 15

Advanced model checking

Simulation order and 3CTL"

Let TS be a finite transition system (without terminal states) and s, s’ states in TS.
The following statements are equivalent:
1) s =7s s
(2) for all 3CTL*-formulas ®: s = ® implies s’ |= ®
(3) for all ICTL-formulas ®: s |= ® implies s’ |= ®

© JPK 16

Advanced model checking

~, VCTL", and 3CTL" equivalence

For finite transition system TS without terminal states:

=Ts = =yCTL"* — =VvCTL = =3CTL* = =3CTL

© JPK

17

Advanced model checking

Basic fixpoint characterization
Consider the function G : 25%5 — 25%5:

G(R) = { (s,t)|L(s)=L(t) N Vs €S8.
(s—%¢ = I eSSt A (s,t) €R)

< = @(=X) and for any R such that G(R) = Ritholds R C <

© JPK

18

Advanced model checking

How to compute the fixpoint of G?

Let TS = (S, Act, —, I) be an image-finite transition system

Then:
where =; is defined by:

=0 = {(s,t) e SxS|L(s)=L(t)}

<it1 = G(2))

this constitutes the basis for the algorithms to follow

© JPK 19

Advanced model checking

Skeleton for simulation preorder checking
Input: finite transition system TS over AP with state space S
Output: simulation order <tg

R = { (81, 82) | L(Sl) = L(SQ) };

while R is not a simulation do
choose (s1, s2) € R suchthats; — s/, butforall s; with s, — s}, and (sa, s},) &
R,
R =R\ {(s1,s2) }

od

return R

The number of iterations is bounded above by |S|?, since:

© JPK 20

Advanced model checking

Algorithm to compute < (1)
Input: finite transition system TS over AP with state space S

Output: simulation order <tg

forall s; € Sdo
Sim(s1) := {s2 € S| L(s1) = L(s2) }; (* initialization *)
od

while 3(s1, s2) € S x Sim(sy). 3s| € Post(s;) with Post(sz) N Sim(s}) = @ do

choose such a pair of states (s1, s2); (* s1 A1s s2%)
Sim(Sl) = Slm(Sl) \ {82 },
od

(* Sim(s) = Simrg(s) for any s *)
return { (s, s2) | s2 € Sim(sy) }

Simgr(s) ={s" | (s,s) e R}
g C SimRO(S) C Sile(s) C ... C Slmnn(s) = Simj(s)

© JPK 21

Advanced model checking

For TS = (S,Act, —, I, AP, L) with M > |S|, the # edges in TS:

Time complexity

Time complexity of computing <s is O(M-]S]S)

in each iteration a single pair is deleted; can we do better?

© JPK

22

Advanced model checking

Proof

© JPK

23

Advanced model checking

First Observation

e Assume: sj is the only successor of s, related to s/ (%)
— Simgz(s}) N Post(sy) = { s, } where Simg(s) = {s' € S| (s,5") € R}
e Remove (s7, s5) from R implies that s; £ so
= (s1, s2) can thus also be removed from R
e This applies to all direct predecessors of s/, satisfying (x)
© IPK 24

Advanced model checking

Algorithm to compute < (2)

Input: finite transition system TS over AP with state space S
Output: simulation order <tg

forall s; € S do
Simold(sl) = S;
Sim(Sl) = {82 e S | L(Sl) = L(SQ) };
od
while 3s € S with Sim,;;(s) # Sim(s) do
choose s/ such that Sim,;;(s]) # Sim(s});
Remove := Pre (Simold(s’l)) \ Pre(Sim(s}));
for all s; € Pre(s]) do
Sim(sy) := Sim(s1) \ Remove;
od
Sim(s}) := Sim(s});
od
return { (s1, s2) | s2 € Sim(s1) }

© JPK

25

Advanced model checking

Implementation details

e Introduce for any state s the set Remove(s’)
— contains all states s» to be removed from Sim(s;) for s; € Pre(s)):
Remove(s;) = Pre(Sim,;(s})) \ Pre(Sim(s}))

= the sets Sim,;; are superfluous
= loop condition: Remove(s}) # @

e Let so € Remove(s)) and s; € Pre(s))

— then s; — s} but no transition sy, — s, with s}, € Sim(s})
— then s; A s2, SO s, can be removed from Sim(s):
= extend Remove(s;) with s € Pre(sy) and Post(s) N Sim(sy) = @

© JPK 26

Advanced model checking

Algorithm to compute < (3)

forall s; € Sdo

Sim(s1) :={s2 € S| L(s1) = L(s2) }; (* initialization *)
Remove(sy) := S \ Pre(Sim(s1));
od

(* loop invariant: Remove(s}) = Pre (Sim,;;(s})) \ Pre (Sim(s})) *)
while (3s € S with Remove(s)) # @) do
choose s’ such that Remove(s)) # &;
for all s € Remove(s)) do
for all s; € Pre(s)) do
if so € Sim(s1) then
Sim(sy) := Sim(s1) \ { s2 }; (* s2 € Simyy(s1) \ Sim(sy) *)
for all s € Pre(sy) with Post(s) N Sim(s1) = @ do
(* s € Pre (Sim,;;(s1)) \ Pre(Sim(sy)) *)
Remove(s;) := Remove(sy) U {s };
od
fi
od
od
Remove(s}) := &; (* Sim;q(s]) := Sim(s}) %
od
return { (s1,s2) | s2 € Sim(s1) }

© JPK 27

Advanced model checking

Time complexity

For TS = (S,Act, —, I, AP, L) with M > |S|, the # edges in TS:

Time complexity of computing <+s is O(|S|-|AP| + M-|S])

© JPK

28

Advanced model checking

Proof

© JPK

29

Advanced model checking

Checking trace equivalence

Let TS; and TSs be finite transition systems over AP. Then:

1. The problem whether

Traces;, (TS;) = Tracesg, (TS2) is PSPACE-complete

2. The problem whether

Traces(TS;) = Traces(TSy) is PSPACE-complete

© JPK

30

Advanced model checking

Proof

© JPK

31

Advanced model checking

Overview implementation relations

bisimulation simulation trace
equivalence order equivalence
preservation of CTL* VCTL*/3CTL" LTL
temporal-logical CTL VCTL/3ACTL (LT properties)
properties
checking PTIME PTIME PSPACE-
equivalence complete
graph PTIME PTIME —
minimization O(M log |S]) O(M-|S|)

© JPK

32

