

Simulation Quotienting

Lecture #4 + #5 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 2+6, 2006

Simulation order

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, $i=1, 2$, be transition systems.

A *simulation* for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

1. $\forall s_1 \in I_1 \exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R}$
2. for all states $s_1 \in S_1, s_2 \in S_2$ with $(s_1, s_2) \in \mathcal{R}$ it holds:
 - (a) $L_1(s_1) = L_2(s_2)$
 - (b) if $s'_1 \in Post(s_1)$ then there exists $s'_2 \in Post(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$

$TS_1 \preceq TS_2$ iff there exists a simulation \mathcal{R} for (TS_1, TS_2)

Simulation order

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2$$

can be completed to

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

but not necessarily:

$$s_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

Example

Abstraction function

- $f : S \rightarrow \widehat{S}$ is an *abstraction function* if $f(s) = f(s') \Rightarrow L(s) = L(s')$
 - S is a set of concrete states and \widehat{S} a set of abstract states, i.e. $|\widehat{S}| \ll |S|$

- Abstraction functions are useful for:

- **data abstraction**: abstract from values of program or control variables

$f : \text{concrete data domain} \rightarrow \text{abstract data domain}$

- **predicate abstraction**: use predicates over the program variables

$f : \text{state} \rightarrow \text{valuations of the predicates}$

- **localization reduction**: partition program variables into visible and invisible

$f : \text{all variables} \rightarrow \text{visible variables}$

Abstract transition system

For $TS = (S, \text{Act}, \rightarrow, I, \text{AP}, L)$ and abstraction function $f : S \rightarrow \widehat{S}$ let:

$TS_f = (\widehat{S}, \text{Act}, \rightarrow_f, I_f, \text{AP}, L_f)$, the **abstraction** of TS under f

where

- \rightarrow_f is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{f(s) \xrightarrow{f} f(s')}$$
- $I_f = \{ f(s) \mid s \in I \}$
- $L_f(f(s)) = L(s)$; for $s \in \widehat{S} \setminus f(S)$, labeling is undefined

$\mathcal{R} = \{ (s, f(s)) \mid s \in S \}$ is a **simulation** for (TS, TS_f)

Simulation equivalence

TS_1 and TS_2 are *simulation equivalent*, denoted $TS_1 \simeq TS_2$,
if $TS_1 \preceq TS_2$ and $TS_2 \preceq TS_1$

Simulation quotient transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and simulation equivalence $\simeq \subseteq S \times S$ let

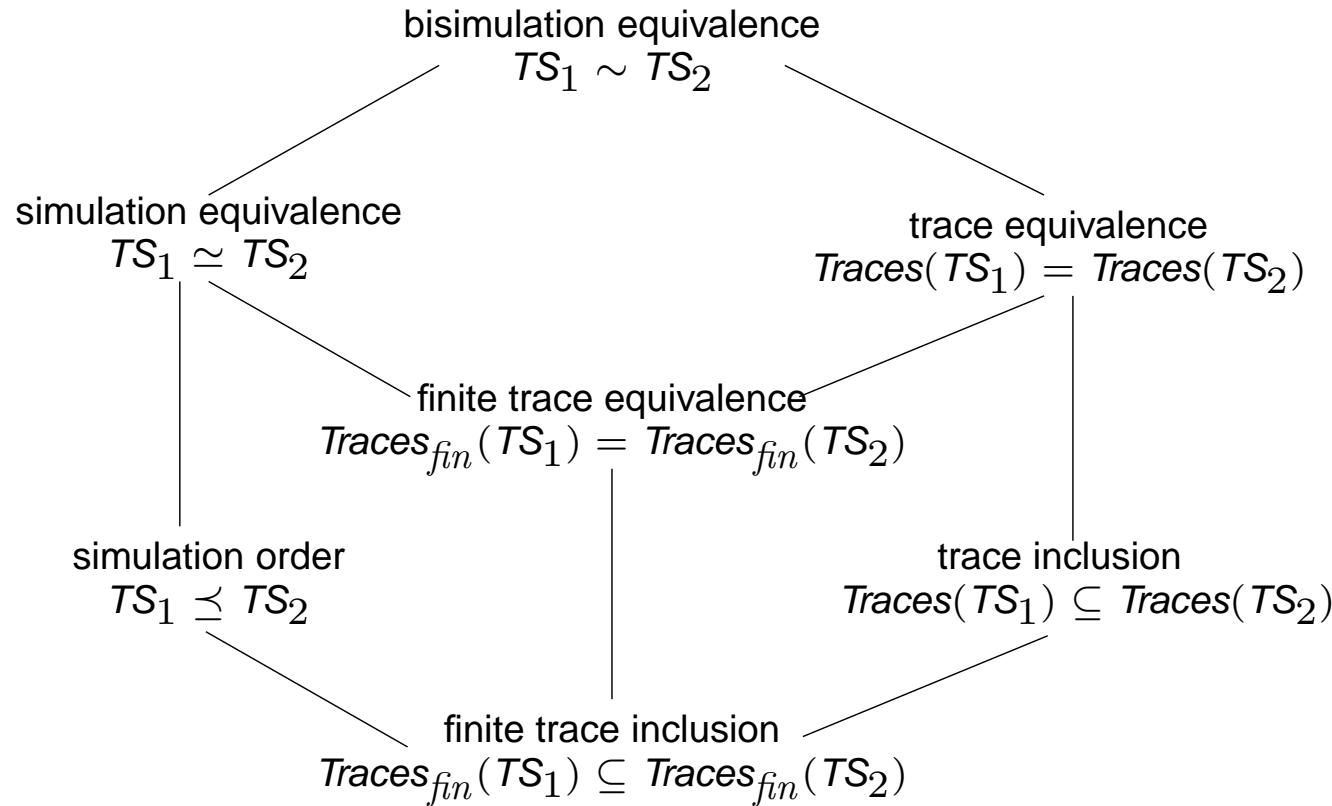
$TS/\simeq = (S', \{\tau\}, \rightarrow', I', AP, L')$, the *quotient* of TS under \simeq

where

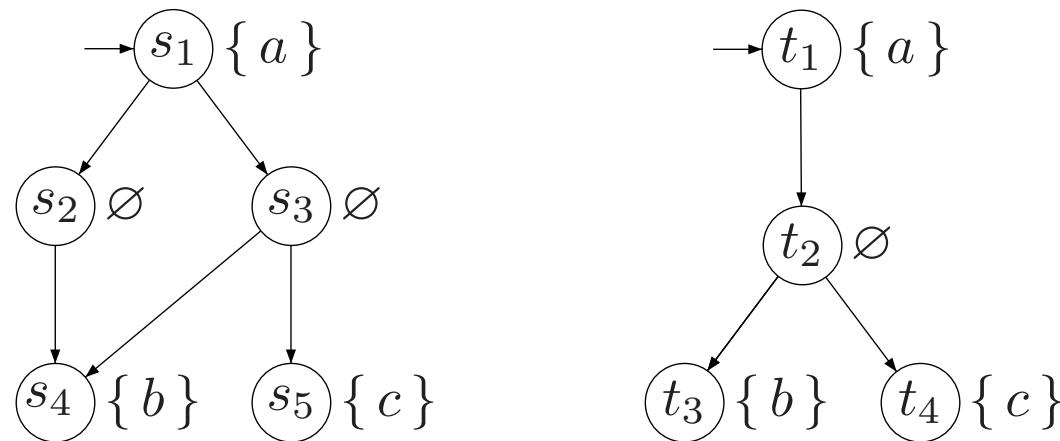
- $S' = S/\simeq = \{[s]_\simeq \mid s \in S\}$ and $I' = \{[s]_\simeq \mid s \in I\}$
- \rightarrow' is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{[s]_\simeq \xrightarrow{\tau'} [s']_\simeq}$$
- $L'([s]_\simeq) = L(s)$

lemma: $TS \simeq TS/\simeq$; proof not straightforward!

Trace, bisimulation and simulation equivalence



Similar but not bisimilar



$TS_{left} \simeq TS_{right}$ but $TS_{left} \not\sim TS_{right}$

Terminal states and determinism

For transition systems TS_1 and TS_2 over AP :

- If TS_1 has no terminal states:

$$TS_1 \preceq TS_2 \text{ implies } \text{Traces}(TS_1) \subseteq \text{Traces}(TS_2)$$

- If TS_1 is AP -deterministic:

$$TS_1 \simeq TS_2 \text{ iff } \text{Traces}(TS_1) = \text{Traces}(TS_2) \text{ iff } TS_1 \sim TS_2$$

- $TS = (S, Act, \rightarrow, I, AP, L)$ is **AP -deterministic** if:

1. for $A \subseteq AP$: $|I \cap \{s \mid L(s) = A\}| \leq 1$, and
2. $s \xrightarrow{\alpha} s'$ and $s \xrightarrow{\alpha} s''$ and $L(s') = L(s'')$ implies $s' = s''$

Universal fragment of CTL^{*}

\forall CTL^{*} *state-formulas* are formed according to:

$$\Phi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \forall \varphi$$

where $a \in AP$ and φ is a path-formula

\forall CTL^{*} *path-formulas* are formed according to:

$$\varphi ::= \Phi \mid \bigcirc \varphi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \mathsf{U} \varphi_2 \mid \varphi_1 \mathsf{R} \varphi_2$$

where Φ is a state-formula, and φ, φ_1 and φ_2 are path-formulas

in \forall CTL, the only path operators are $\bigcirc \Phi, \Phi_1 \mathsf{U} \Phi_2$ and $\Phi_1 \mathsf{R} \Phi_2$

Universal CTL* contains LTL

For every LTL formula there exists an equivalent \forall CTL* formula

Simulation order and \forall CTL^{*}

Let TS be a finite transition system (without terminal states) and s, s' states in TS .

The following statements are equivalent:

- (1) $s \preceq_{TS} s'$
- (2) for all \forall CTL^{*}-formulas Φ : $s' \models \Phi$ implies $s \models \Phi$
- (3) for all \forall CTL-formulas Φ : $s' \models \Phi$ implies $s \models \Phi$

proof is carried out in three steps: (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)

Example

Existential fragment of CTL^{*}

\exists CTL^{*} *state-formulas* are formed according to:

$$\Phi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \exists \varphi$$

where $a \in AP$ and φ is a path-formula

\exists CTL^{*} *path-formulas* are formed according to:

$$\varphi ::= \Phi \mid \bigcirc \varphi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \mathsf{U} \varphi_2 \mid \varphi_1 \mathsf{R} \varphi_2$$

where Φ is a state-formula, and φ, φ_1 and φ_2 are path-formulas

in \exists CTL, the only path operators are $\bigcirc \Phi, \Phi_1 \mathsf{U} \Phi_2$ and $\Phi_1 \mathsf{R} \Phi_2$

Simulation order and \exists CTL*

Let TS be a finite transition system (without terminal states) and s, s' states in TS .

The following statements are equivalent:

- (1) $s \preceq_{TS} s'$
- (2) for all \exists CTL* -formulas Φ : $s \models \Phi$ implies $s' \models \Phi$
- (3) for all \exists CTL-formulas Φ : $s \models \Phi$ implies $s' \models \Phi$

\simeq , $\forall\text{CTL}^*$, and $\exists\text{CTL}^*$ equivalence

For finite transition system TS without terminal states:

$$\simeq_{TS} = \equiv_{\forall\text{CTL}^*} = \equiv_{\forall\text{CTL}} = \equiv_{\exists\text{CTL}^*} = \equiv_{\exists\text{CTL}}$$

Basic fixpoint characterization

Consider the function $\mathcal{G} : 2^{S \times S} \rightarrow 2^{S \times S}$:

$$\begin{aligned}\mathcal{G}(R) = & \{ (s, t) \mid L(s) = L(t) \wedge \forall s' \in S. \\ & (s \xrightarrow{\alpha} s' \Rightarrow \exists t' \in S. t \xrightarrow{\alpha} t' \wedge (s', t') \in R)\} \end{aligned}$$

$\preceq = \mathcal{G}(\preceq)$ and for any R such that $\mathcal{G}(R) = R$ it holds $R \subseteq \preceq$

How to compute the fixpoint of \mathcal{G} ?

Let $TS = (S, Act, \rightarrow, I)$ be an *image-finite* transition system

Then:

$$\preceq = \bigcap_{i=0}^{\infty} \preceq_i$$

where \preceq_i is defined by:

$$\preceq_0 = \{ (s, t) \in S \times S \mid L(s) = L(t) \}$$

$$\preceq_{i+1} = \mathcal{G}(\preceq_i)$$

this constitutes the basis for the algorithms to follow

Skeleton for simulation preorder checking

Input: finite transition system TS over AP with state space S

Output: simulation order \preceq_{TS}

$\mathcal{R} := \{ (s_1, s_2) \mid L(s_1) = L(s_2) \};$

while \mathcal{R} is not a simulation **do**

choose $(s_1, s_2) \in \mathcal{R}$ such that $s_1 \rightarrow s'_1$, but for all s'_2 with $s_2 \rightarrow s'_2$ and $(s_2, s'_2) \notin \mathcal{R}$;

$\mathcal{R} := \mathcal{R} \setminus \{ (s_1, s_2) \}$

od

return \mathcal{R}

The number of iterations is bounded above by $|S|^2$, since:

$$S \times S \supseteq \mathcal{R}_0 \supsetneq \mathcal{R}_1 \supsetneq \mathcal{R}_2 \supsetneq \dots \supsetneq \mathcal{R}_n = \preceq$$

Algorithm to compute \llcorner (1)

Input: finite transition system TS over AP with state space \overline{S}

Output: simulation order \preceq_{TS}

for all $s_1 \in S$ **do**

$$Sim(s_1) := \{ s_2 \in S \mid L(s_1) = L(s_2) \}; \quad \quad \quad (* \text{ initialization } *)$$

od

while $\exists (s_1, s_2) \in S \times Sim(s_1)$. $\exists s'_1 \in Post(s_1)$ with $Post(s_2) \cap Sim(s'_1) = \emptyset$ **do**

choose such a pair of states (s_1, s_2) ; (* $s_1 \not\leq_{TS} s_2$ *)

$$Sim(s_1) := Sim(s_1) \setminus \{ s_2 \};$$

od

(* $\text{Sim}(s) = \text{Sim}_{TS}(s)$ for any s *)

return $\{ (s_1, s_2) \mid s_2 \in \text{Sim}(s_1) \}$

$$Sim_{\mathcal{R}}(s) = \{ s' \mid (s, s') \in \mathcal{R} \}$$

$$\emptyset \subseteq Sim_{\mathcal{R}_0}(s) \subseteq Sim_{\mathcal{R}_1}(s) \subseteq \dots \subseteq Sim_{\mathcal{R}_n}(s) = Sim_{\prec}(s)$$

Time complexity

For $TS = (S, Act, \rightarrow, I, AP, L)$ with $M \geq |S|$, the # edges in TS :

Time complexity of computing \prec_{TS} is $\mathcal{O}(M \cdot |S|^3)$

in each iteration a single pair is deleted; can we do better?

Proof

First Observation

$$\begin{array}{ccc} s_1 & \longrightarrow & s'_1 \\ \mathcal{R} & & \mathcal{R} \\ s_2 & \longrightarrow & s'_2 \end{array}$$

- Assume: s'_2 is the *only* successor of s_2 related to s'_1 (*)
 - $Sim_{\mathcal{R}}(s'_1) \cap Post(s_2) = \{ s'_2 \}$ where $Sim_{\mathcal{R}}(s) = \{ s' \in S \mid (s, s') \in \mathcal{R} \}$
- Remove (s'_1, s'_2) from \mathcal{R} implies that $s_1 \not\preceq s_2$
 $\Rightarrow (s_1, s_2)$ can thus also be removed from \mathcal{R}
- This applies to *all* direct predecessors of s'_2 satisfying (*)

Algorithm to compute \preceq (2)

Input: finite transition system TS over AP with state space S

Output: simulation order \preceq_{TS}

```

for all  $s_1 \in S$  do
   $Sim_{old}(s_1) := S;$ 
   $Sim(s_1) := \{ s_2 \in S \mid L(s_1) = L(s_2) \};$ 
od
while  $\exists s \in S$  with  $Sim_{old}(s) \neq Sim(s)$  do
  choose  $s'_1$  such that  $Sim_{old}(s'_1) \neq Sim(s'_1)$ ;
   $Remove := Pre(Sim_{old}(s'_1)) \setminus Pre(Sim(s'_1));$ 
  for all  $s_1 \in Pre(s'_1)$  do
     $Sim(s_1) := Sim(s_1) \setminus Remove;$ 
  od
   $Sim_{old}(s'_1) := Sim(s'_1);$ 
od
return  $\{ (s_1, s_2) \mid s_2 \in Sim(s_1) \}$ 

```

Implementation details

- Introduce for any state s'_1 the set $\text{Remove}(s'_1)$
 - contains all states s_2 to be removed from $\text{Sim}(s_1)$ for $s_1 \in \text{Pre}(s'_1)$:

$$\text{Remove}(s'_1) = \text{Pre}(\text{Sim}_{\text{old}}(s'_1)) \setminus \text{Pre}(\text{Sim}(s'_1))$$

- ⇒ the sets Sim_{old} are superfluous
- ⇒ loop condition: $\text{Remove}(s'_1) \neq \emptyset$

- Let $s_2 \in \text{Remove}(s'_1)$ and $s_1 \in \text{Pre}(s'_1)$
 - then $s_1 \rightarrow s'_1$ but no transition $s_2 \rightarrow s'_2$ with $s'_2 \in \text{Sim}(s'_1)$
 - then $s_1 \not\preceq s_2$, so s_2 can be removed from $\text{Sim}(s_1)$:
- ⇒ extend $\text{Remove}(s_1)$ with $s \in \text{Pre}(s_2)$ and $\text{Post}(s) \cap \text{Sim}(s_1) = \emptyset$

Algorithm to compute \preceq (3)

```

for all  $s_1 \in S$  do
   $Sim(s_1) := \{ s_2 \in S \mid L(s_1) = L(s_2) \}$ ; (* initialization *)
   $Remove(s_1) := S \setminus Pre(Sim(s_1))$ ;
od
(* loop invariant:  $Remove(s'_1) = Pre(Sim_{old}(s'_1)) \setminus Pre(Sim(s'_1))$  *)
while ( $\exists s'_1 \in S$  with  $Remove(s'_1) \neq \emptyset$ ) do
  choose  $s'_1$  such that  $Remove(s'_1) \neq \emptyset$ ;
  for all  $s_2 \in Remove(s'_1)$  do
    for all  $s_1 \in Pre(s'_1)$  do
      if  $s_2 \in Sim(s_1)$  then
         $Sim(s_1) := Sim(s_1) \setminus \{ s_2 \}$ ; (*  $s_2 \in Sim_{old}(s_1) \setminus Sim(s_1)$  *)
        for all  $s \in Pre(s_2)$  with  $Post(s) \cap Sim(s_1) = \emptyset$  do
          (*  $s \in Pre(Sim_{old}(s_1)) \setminus Pre(Sim(s_1))$  *)
           $Remove(s_1) := Remove(s_1) \cup \{ s \}$ ;
        od
      fi
    od
  od
   $Remove(s'_1) := \emptyset$ ; (*  $Sim_{old}(s'_1) := Sim(s'_1)$  *)
od
return  $\{ (s_1, s_2) \mid s_2 \in Sim(s_1) \}$ 

```

Time complexity

For $TS = (S, Act, \rightarrow, I, AP, L)$ with $M \geq |S|$, the # edges in TS :

Time complexity of computing \prec_{TS} is $\mathcal{O}(|S| \cdot |AP| + M \cdot |S|)$

Proof

Checking trace equivalence

Let TS_1 and TS_2 be finite transition systems over AP . Then:

1. The problem whether

$$Traces_{fin}(TS_1) = Traces_{fin}(TS_2) \quad \text{is PSPACE-complete}$$

2. The problem whether

$$Traces(TS_1) = Traces(TS_2) \quad \text{is PSPACE-complete}$$

Proof

Overview implementation relations

	bisimulation equivalence	simulation order	trace equivalence
preservation of temporal-logical properties	CTL* CTL	\forall CTL*/ \exists CTL* \forall CTL/ \exists CTL	LTL (LT properties)
checking equivalence	PTIME	PTIME	PSPACE-complete
graph minimization	PTIME $\mathcal{O}(M \log S)$	PTIME $\mathcal{O}(M \cdot S)$	—