
Stutter Trace and Bisimulation Equivalence
Lecture #6 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 9, 2006

c© JPK

Advanced model checking

Motivation

• Bisimulation, simulation and trace equivalence are strong

– each transition s → s′ must be matched by a transition of a related state
– for comparing models at different abstraction levels, this is too fine
– consider e.g., modeling an abstract action by a sequence of concrete actions

• Idea: allow for sequences of “invisible” actions

– each transition s → s′ must be matched by a path fragment of a related state
– matching means: ending in a state related to s′, and all previous states invisible

• Abstraction of such internal computations yields coarser quotients

– but: what kind of properties are preserved?
– but: can such quotients still be obtained efficiently?
– but: how to treat infinite internal computations?

c© JPK 1

Advanced model checking

Motivating example

c© JPK 2

Advanced model checking

Stuttering equivalence

• s → s′ in transition system TS is a stutter step if L(s) = L(s′)

– stutter steps do not affect the state labels of successor states

• Paths π1 and π2 are stuttering equivalent , denoted π1
∼= π2:

– if there exists an infinite sequence A0A1A2 . . . with Ai ⊆ AP and
– natural numbers n0, n1, n2, . . ., m0,m1,m2, . . . � 1 such that:

trace(π1) = A0 . . .A0
| {z }

n0-times

A1 . . .A1
| {z }

n1-times

A2 . . .A2
| {z }

n2-times

. . .

trace(π2) = A0, . . . , A0
| {z }

m0-times

A1 . . .A1
| {z }

m1-times

A2 . . .A2
| {z }

m2-times

. . .

π1
∼= π2 if their traces only differ in their stutter steps

i.e., if both their traces are of the form A+
0 A+

1 A+
2 . . . for Ai ⊆ AP

c© JPK 3

Advanced model checking

Semaphore-based mutual exclusion

c© JPK 4

Advanced model checking

Stutter trace equivalence

Transition systems TSi over AP, i=1, 2, are stutter-trace equivalent :

TS1
∼= TS2 if and only if TS1 � TS2 and TS2 � TS1

where � is defined by:

TS1�TS2 iff ∀σ1 ∈ Traces(TS1) (∃σ2 ∈ Traces(TS2). σ1
∼= σ2)

clearly: Traces(TS1) = Traces(TS2) implies TS1
∼= TS2, but not always the reverse

c© JPK 5

Advanced model checking

Example

s1 { a }

s0 { a }

s2 ∅

t0 { a }

t1 ∅

u0 { a }

u1 ∅

u2 { a }

c© JPK 6

Advanced model checking

The © operator

Stuttering equivalence does not preserve the validity of next-formulas:

σ1 = A B B B . . . and σ2 = A A A B B B B . . . for A,B ⊆ AP and A 	= B

Then for b ∈ B \ A:

σ1
∼= σ2 but σ1 |= ©b and σ2 	|= ©b.

⇒ a logical characterization of ∼= can only be obtained by omitting ©
in fact, it turns out that this is the only modal operator that is not preserved by ∼= !

c© JPK 7

Advanced model checking

Stutter trace and LTL\© equivalence

For traces σ1 and σ2 over 2AP it holds:

σ1
∼= σ2 ⇒ (σ1 |= ϕ if and only if σ2 |= ϕ)

for any LTL\© formula ϕ over AP

LTL\© denotes the class of LTL formulas without the next step operator ©

c© JPK 8

Advanced model checking

Proof

c© JPK 9

Advanced model checking

Stutter trace and LTL\© equivalence

For transition systems TS1, TS2 (over AP) without terminal states:

(a) TS1
∼= TS2 implies TS1 ≡LTL\© TS2

(b) if TS1 �TS2 then for any LTL\© formula ϕ: TS2 |= ϕ implies TS1 |= ϕ

A more general result can be established by considering
stutter-insensitive LT properties

c© JPK 10

Advanced model checking

Stutter insensitivity

• LT property P is stutter-insensitive if [σ]∼= ⊆ P , for any σ ∈ P

– P is stutter insensitive if it is closed under stutter equivalence

• For any stutter-insensitive LT property P :

TS1
∼= TS2 implies TS1 |= P iff TS2 |= P

• Moreover: TS1 �TS2 and TS2 |= P implies TS1 |= P

• For any LTL\© formula ϕ, LT property Words(ϕ) is stutter insensitive

– but: some stutter insensitive LT properties cannot be expressed in LTL\©
– for LTL formula ϕ with Words(ϕ) stutter insensitive:

there exists ψ ∈ LTL\© such that ψ ≡LTL ϕ

c© JPK 11

Advanced model checking

Stutter bisimulation

Let TS = (S, Act, →, I, AP, L) be a transition system and R ⊆ S × S

R is a stutter-bisimulation for TS if for all (s1, s2) ∈ R:

1. L(s1) = L(s2)

2. if s′1 ∈ Post(s1) with (s1, s
′
1) 	∈ R, then there exists a finite path

fragment s2 u1 . . . un s′2 with n � 0 and (s2, ui) ∈ R and (s′1, s
′
2) ∈ R

3. if s′2 ∈ Post(s2) with (s2, s
′
2) 	∈ R, then there exists a finite path

fragment s1 v1 . . . vn s′1 with n � 0 and (s1, vi) ∈ R and (s′1, s
′
2) ∈ R

s1, s2 are stutter-bisimulation equivalent, denoted s1 ≈TS s2, if there exists a stutter bisimulation R
for TS with (s1, s2) ∈ R

c© JPK 12

Advanced model checking

Stutter bisimulation

s1 ≈ s2

↓
s1 ≈ u1

↓
s1 ≈ s2 s1 ≈ u2

↓ can be completed to ↓
s′1

...
(with s1 	≈ s′1) ↓

s1 ≈ un
↓ ↓
s′1 ≈ s′2

c© JPK 13

Advanced model checking

Semaphore-based mutual exclusion

c© JPK 14

Advanced model checking

Stutter-bisimilar transition systems

Let TSi = (Si, Acti, →i, Ii, AP, Li), i = 1, 2, be transition systems over
AP

A stutter bisimulation for (TS1, TS2) is a binary relation R ⊆ S1 × S2

such that:

1. R and R−1 are stutter-bisimulations for TS1 ⊕ TS2, and

2. ∀s1 ∈ I1. (∃s2 ∈ I2. (s1, s2) ∈ R) and ∀s2 ∈ I2. (∃s1 ∈ I1. (s1, s2) ∈ R).

TS1 and TS2 are stutter-bisimulation equivalent (stutter-bisimilar, for short), denoted
TS1 ≈ TS2, if there exists a stutter bisimulation for (TS1, TS2)

c© JPK 15

Advanced model checking

Stutter bisimulation quotient
For TS = (S, Act,→, I, AP, L) and stutter bisimulation ≈ ⊆ S × S let

TS/≈ = (S′, { τ },→′, I ′, AP, L′), the quotient of TS under ≈

where

• S′ = S/≈= { [s]≈ | s ∈ S }

• →′ is defined by:
s α−−→ s′ and s 	≈ s′

[s]≈
τ−→′ [s′]≈

• I ′ = { [s]≈ | s ∈ I }
• L′([s]≈) = L(s)

note that (a) no self-loops occur in TS/≈ and (b) TS ≈ TS/≈ Why?

c© JPK 16

Advanced model checking

Semaphore-based mutual exclusion

c© JPK 17

Advanced model checking

Stutter trace and stutter bisimulation

For transition systems TS1 and TS2 over AP:

• Known fact: TS1 ∼ TS2 implies Traces(TS1) = Traces(TS2)

• But not: TS1 ≈ TS2 implies TS1
∼= TS2!

• So:

– bisimilar transition systems are trace equivalent
– but stutter-bisimilar transition systems are not always stutter trace-equivalent!

• Why? Stutter paths!

– stutter bisimulation does not impose any constraint on such paths
– but ∼= requires the existence of a stuttering equivalent trace

c© JPK 18

Advanced model checking

Stutter trace and stutter bisimulation are incomparable

∼=
	≈

	∼=
≈

c© JPK 19

Advanced model checking

Stutter bisimulation does not preserve LTL\©

t0
∅

t1

{ a }
s0

∅

s1

{ a }

TSleft ≈ TSright but TSleft 	|= �a and TSright |= �a

c© JPK 20

Advanced model checking

Summary

stutter-trace inclusion:
TS1
 TS2 iff ∀σ1 ∈ Traces(TS1) ∃σ2 ∈ Traces(TS2). π1

∼=π2

stutter-trace equivalence:
TS1

∼= TS2 iff TS1
 TS2 and TS2
 TS1

stutter-bisimulation equivalence:
TS1 ≈ TS2 iff there exists a stutter-bisimulation for (TS1, TS2)

stutter-bisimulation equivalence with divergence:
TS1 ≈div TS2 iff there exists a divergence-sensitive

stutter bisimulation for (TS1, TS2)

c© JPK 21

Advanced model checking

Comparison

TS1
 TS2

bisimulation equivalence
TS1 ∼ TS2

stutter bisimulation equivalence
divergence sensitive

TS1 ≈div TS2

stutter bisimulation equivalence

TS1 ≈ TS2

trace equivalence
Traces(T1) = Traces(TS2)

stutter trace-equivalence
TS1

∼= TS2

Traces(T1) ⊆ Traces(TS2)
trace inclusion

stutter trace inclusion

≈div will be the topic of the next lecture

c© JPK 22

