

Stutter Trace and Bisimulation Equivalence

Lecture #6 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 9, 2006

Motivation

- Bisimulation, simulation and trace equivalence are *strong*
 - each transition $s \rightarrow s'$ must be matched by a **transition** of a related state
 - for comparing models at different abstraction levels, this is too fine
 - consider e.g., modeling an abstract action by a sequence of concrete actions
- Idea: allow for sequences of “invisible” actions
 - each transition $s \rightarrow s'$ must be matched by a **path fragment** of a related state
 - matching means: ending in a state related to s' , and all previous states invisible
- Abstraction of such internal computations yields coarser quotients
 - but: what kind of properties are preserved?
 - but: can such quotients still be obtained efficiently?
 - but: how to treat infinite internal computations?

Motivating example

Stuttering equivalence

- $s \rightarrow s'$ in transition system TS is a **stutter step** if $L(s) = L(s')$
 - stutter steps do not affect the state labels of successor states
- Paths π_1 and π_2 are **stuttering equivalent**, denoted $\pi_1 \cong \pi_2$:
 - if there exists an infinite sequence $A_0 A_1 A_2 \dots$ with $A_i \subseteq AP$ and
 - natural numbers $n_0, n_1, n_2, \dots, m_0, m_1, m_2, \dots \geq 1$ such that:

$$\begin{aligned} \text{trace}(\pi_1) &= \underbrace{A_0 \dots A_0}_{n_0\text{-times}} \underbrace{A_1 \dots A_1}_{n_1\text{-times}} \underbrace{A_2 \dots A_2}_{n_2\text{-times}} \dots \\ \text{trace}(\pi_2) &= \underbrace{A_0, \dots, A_0}_{m_0\text{-times}} \underbrace{A_1 \dots A_1}_{m_1\text{-times}} \underbrace{A_2 \dots A_2}_{m_2\text{-times}} \dots \end{aligned}$$

$\pi_1 \cong \pi_2$ if their traces only differ in their stutter steps
 i.e., if both their traces are of the form $A_0^+ A_1^+ A_2^+ \dots$ for $A_i \subseteq AP$

Semaphore-based mutual exclusion

Stutter trace equivalence

Transition systems TS_i over AP , $i=1, 2$, are *stutter-trace equivalent*:

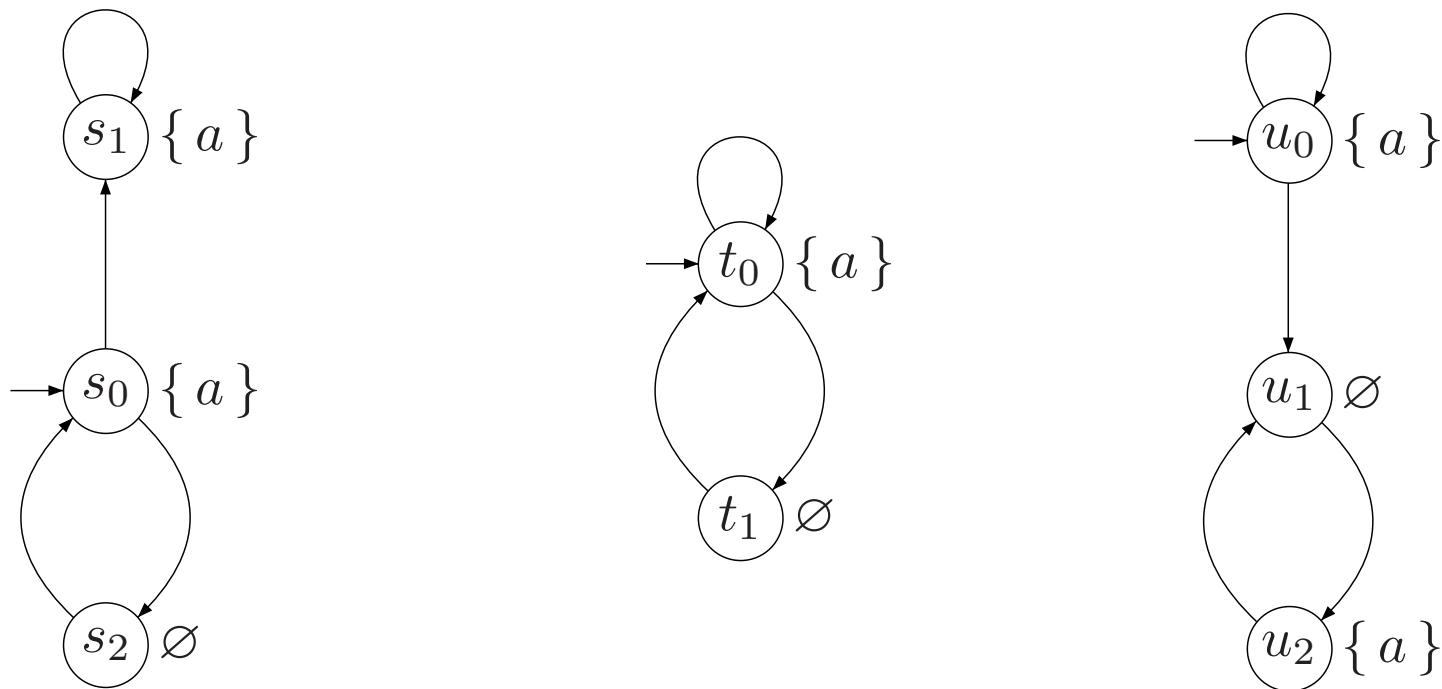
$$TS_1 \cong TS_2 \quad \text{if and only if} \quad TS_1 \sqsubseteq TS_2 \text{ and } TS_2 \sqsubseteq TS_1$$

where \sqsubseteq is defined by:

$$TS_1 \sqsubseteq TS_2 \quad \text{iff} \quad \forall \sigma_1 \in \text{Traces}(TS_1) \ (\exists \sigma_2 \in \text{Traces}(TS_2). \ \sigma_1 \cong \sigma_2)$$

clearly: $\text{Traces}(TS_1) = \text{Traces}(TS_2)$ implies $TS_1 \cong TS_2$, but not always the reverse

Example



The \bigcirc operator

Stuttering equivalence does not preserve the validity of next-formulas:

$\sigma_1 = ABBB\dots$ and $\sigma_2 = AAABBBB\dots$ for $A, B \subseteq AP$ and $A \neq B$

Then for $b \in B \setminus A$:

$$\sigma_1 \cong \sigma_2 \quad \text{but} \quad \sigma_1 \models \bigcirc b \quad \text{and} \quad \sigma_2 \not\models \bigcirc b.$$

⇒ a logical characterization of \cong can only be obtained by omitting \bigcirc

in fact, it turns out that this is the only modal operator that is not preserved by \cong !

Stutter trace and $\text{LTL}_{\setminus \bigcirc}$ equivalence

For traces σ_1 and σ_2 over 2^{AP} it holds:

$\sigma_1 \cong \sigma_2 \Rightarrow (\sigma_1 \models \varphi \text{ if and only if } \sigma_2 \models \varphi)$
for any $\text{LTL}_{\setminus \bigcirc}$ formula φ over AP

$\text{LTL}_{\setminus \bigcirc}$ denotes the class of LTL formulas without the next step operator \bigcirc

Proof

Stutter trace and $LTL_{\setminus \Diamond}$ equivalence

For transition systems TS_1, TS_2 (over AP) without terminal states:

- (a) $TS_1 \cong TS_2$ implies $TS_1 \equiv_{LTL_{\setminus \Diamond}} TS_2$
- (b) if $TS_1 \sqsubseteq TS_2$ then for any $LTL_{\setminus \Diamond}$ formula φ : $TS_2 \models \varphi$ implies $TS_1 \models \varphi$

A more general result can be established by considering
stutter-insensitive LT properties

Stutter insensitivity

- LT property P is *stutter-insensitive* if $[\sigma] \cong \subseteq P$, for any $\sigma \in P$
 - P is stutter insensitive if it is closed under stutter equivalence
- For any stutter-insensitive LT property P :

$$TS_1 \cong TS_2 \text{ implies } TS_1 \models P \text{ iff } TS_2 \models P$$

- Moreover: $TS_1 \sqsubseteq TS_2$ and $TS_2 \models P$ implies $TS_1 \models P$
- For any $LTL_{\setminus \bigcirc}$ formula φ , LT property $Words(\varphi)$ is stutter insensitive
 - but: some stutter insensitive LT properties cannot be expressed in $LTL_{\setminus \bigcirc}$
 - for LTL formula φ with $Words(\varphi)$ stutter insensitive:

there exists $\psi \in LTL_{\setminus \bigcirc}$ such that $\psi \equiv_{LTL} \varphi$

Stutter bisimulation

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system and $\mathcal{R} \subseteq S \times S$

\mathcal{R} is a *stutter-bisimulation* for TS if for all $(s_1, s_2) \in \mathcal{R}$:

1. $L(s_1) = L(s_2)$
2. if $s'_1 \in Post(s_1)$ with $(s_1, s'_1) \notin \mathcal{R}$, then there exists a finite path fragment $s_2 u_1 \dots u_n s'_2$ with $n \geq 0$ and $(s_2, u_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$
3. if $s'_2 \in Post(s_2)$ with $(s_2, s'_2) \notin \mathcal{R}$, then there exists a finite path fragment $s_1 v_1 \dots v_n s'_1$ with $n \geq 0$ and $(s_1, v_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$

s_1, s_2 are *stutter-bisimulation equivalent*, denoted $s_1 \approx_{TS} s_2$, if there exists a stutter bisimulation \mathcal{R} for TS with $(s_1, s_2) \in \mathcal{R}$

Stutter bisimulation

$$\begin{array}{c} s_1 \approx s_2 \\ \downarrow \\ s'_1 \end{array} \quad \text{(with } s_1 \not\approx s'_1\text{)}$$

can be completed to

$$\begin{array}{c} s_1 \approx s_2 \\ \downarrow \\ s_1 \approx u_1 \\ \downarrow \\ s_1 \approx u_2 \\ \vdots \\ \downarrow \\ s_1 \approx u_n \\ \downarrow \\ s'_1 \approx s'_2 \end{array}$$

Semaphore-based mutual exclusion

Stutter-bisimilar transition systems

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, $i = 1, 2$, be transition systems over AP

A *stutter bisimulation* for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

1. \mathcal{R} and \mathcal{R}^{-1} are stutter-bisimulations for $TS_1 \oplus TS_2$, and
2. $\forall s_1 \in I_1. (\exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R})$ and $\forall s_2 \in I_2. (\exists s_1 \in I_1. (s_1, s_2) \in \mathcal{R})$.

TS_1 and TS_2 are stutter-bisimulation equivalent (stutter-bisimilar, for short), denoted $TS_1 \approx TS_2$, if there exists a stutter bisimulation for (TS_1, TS_2)

Stutter bisimulation quotient

For $TS = (S, Act, \rightarrow, I, AP, L)$ and stutter bisimulation $\approx \subseteq S \times S$ let

$TS/\approx = (S', \{\tau\}, \rightarrow', I', AP, L')$, the *quotient* of TS under \approx

where

- $S' = S/\approx = \{[s]_\approx \mid s \in S\}$
- \rightarrow' is defined by:
$$\frac{s \xrightarrow{\alpha} s' \text{ and } s \not\approx s'}{[s]_\approx \xrightarrow{\tau'} [s']_\approx}$$
- $I' = \{[s]_\approx \mid s \in I\}$
- $L'([s]_\approx) = L(s)$

note that (a) no self-loops occur in TS/\approx and (b) $TS \approx TS/\approx$ Why?

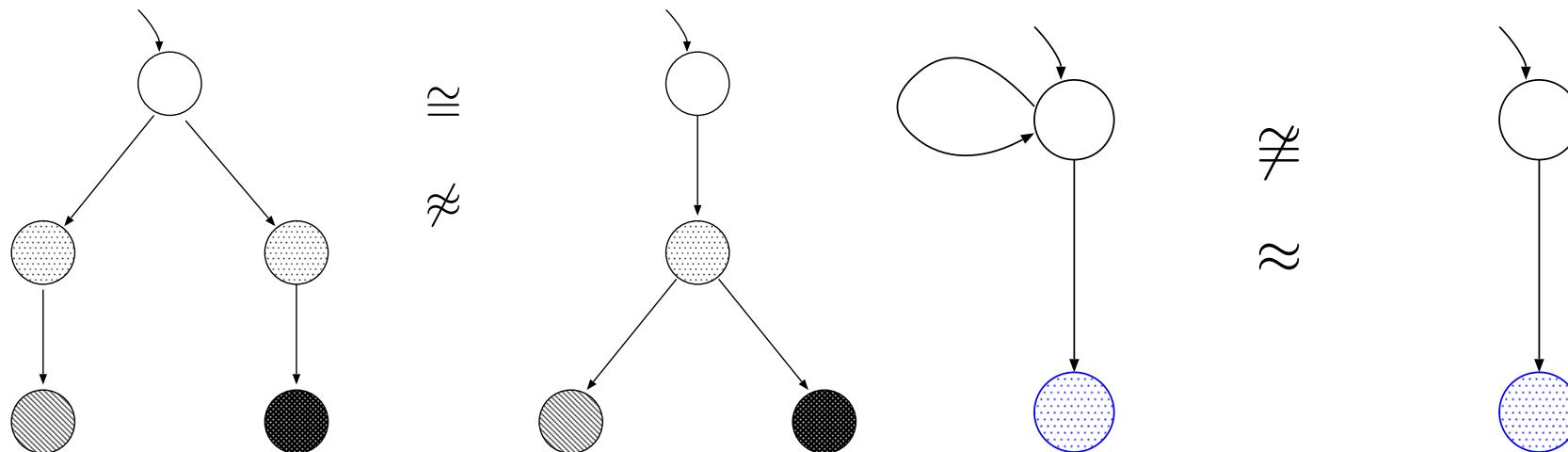
Semaphore-based mutual exclusion

Stutter trace and stutter bisimulation

For transition systems TS_1 and TS_2 over AP :

- Known fact: $TS_1 \sim TS_2$ implies $Traces(TS_1) = Traces(TS_2)$
- But *not*: $TS_1 \approx TS_2$ implies $TS_1 \cong TS_2$!
- So:
 - bisimilar transition systems are trace equivalent
 - **but** stutter-bisimilar transition systems are not always stutter trace-equivalent!
- Why? Stutter paths!
 - stutter bisimulation does not impose any constraint on such paths
 - **but** \cong requires the existence of a stuttering equivalent trace

Stutter trace and stutter bisimulation are incomparable



Stutter bisimulation does not preserve $\text{LTL}_{\setminus \Diamond}$

$TS_{left} \approx TS_{right}$ but $TS_{left} \not\models \Diamond a$ and $TS_{right} \models \Diamond a$

Summary

stutter-trace inclusion:

$$TS_1 \sqsubseteq TS_2 \quad \text{iff} \quad \forall \sigma_1 \in \text{Traces}(TS_1) \exists \sigma_2 \in \text{Traces}(TS_2). \ \pi_1 \cong \pi_2$$

stutter-trace equivalence:

$$TS_1 \cong TS_2 \quad \text{iff} \quad TS_1 \sqsubseteq TS_2 \text{ and } TS_2 \sqsubseteq TS_1$$

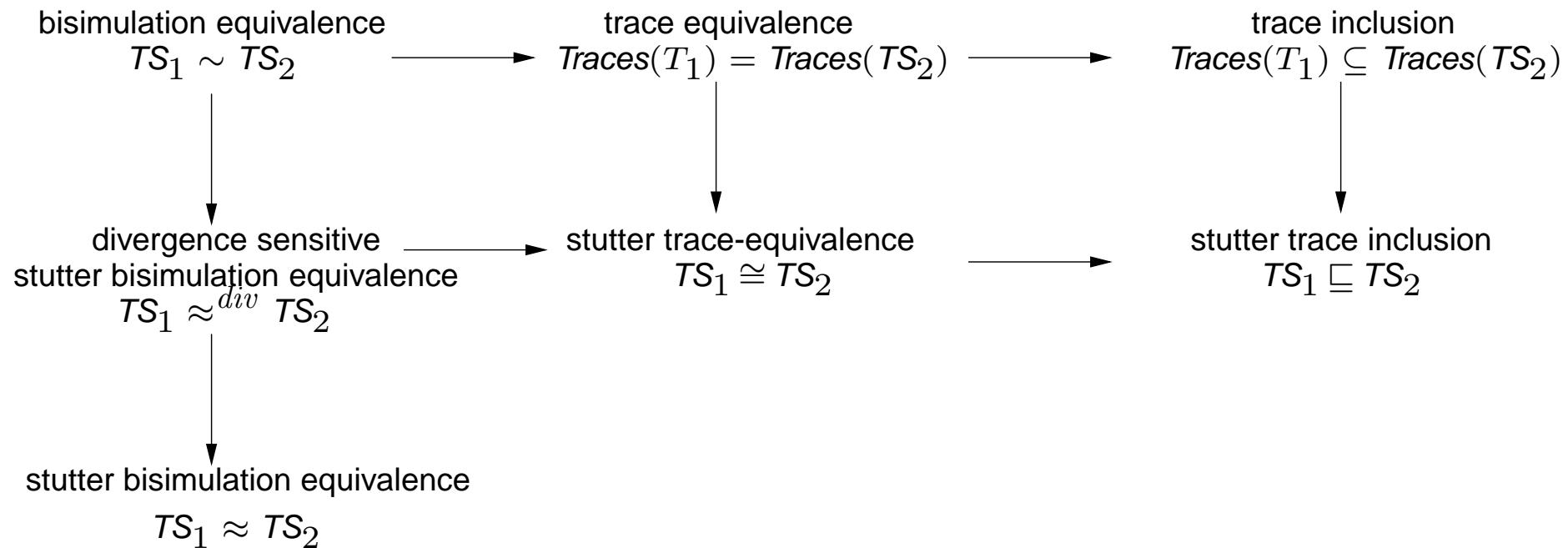
stutter-bisimulation equivalence:

$$TS_1 \approx TS_2 \quad \text{iff} \quad \text{there exists a stutter-bisimulation for } (TS_1, TS_2)$$

stutter-bisimulation equivalence with divergence:

$$TS_1 \approx^{div} TS_2 \quad \text{iff} \quad \text{there exists a divergence-sensitive} \\ \text{stutter bisimulation for } (TS_1, TS_2)$$

Comparison



\approx^{div} will be the topic of the next lecture