
Divergence-Sensitive Stutter Bisimulation
Lecture #7 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 16, 2006

c© JPK

Advanced model checking

Stutter bisimulation

Let TS = (S, Act, →, I, AP, L) be a transition system and R ⊆ S × S

R is a stutter-bisimulation for TS if for all (s1, s2) ∈ R:

1. L(s1) = L(s2)

2. if s′1 ∈ Post(s1) with (s1, s
′
1) �∈ R, then there exists a finite path

fragment s2 u1 . . . un s′2 with n � 0 and (s2, ui) ∈ R and (s′1, s
′
2) ∈ R

3. if s′2 ∈ Post(s2) with (s2, s
′
2) �∈ R, then there exists a finite path

fragment s1 v1 . . . vn s′1 with n � 0 and (s1, vi) ∈ R and (s′1, s
′
2) ∈ R

s1, s2 are stutter-bisimulation equivalent, denoted s1 ≈TS s2, if there exists a stutter bisimulation R
for TS with (s1, s2) ∈ R

c© JPK 1

Advanced model checking

Stutter bisimulation

s1 ≈TS s2

↓
s1 ≈TS u1

↓
s1 ≈TS s2 s1 ≈TS u2

↓ can be completed to ↓
s′1

...
(with s1 �≈TS s′1) ↓

s1 ≈TS un

↓ ↓
s′1 ≈TS s′2

c© JPK 2

Advanced model checking

Example

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

R inducing the following partitioning of the state space is a stutter bisimulation:

{{〈n1, n2〉, 〈n1, w2〉, 〈w1, n2〉, 〈w1, w2〉}, {〈c1, n2〉, 〈c1, w2〉}, {〈c2, n1〉, 〈w1, c2〉}}

In fact, this is the coarsest stutter bisimulation, i.e., R equals ≈TS

c© JPK 3

Advanced model checking

Stutter trace and stutter bisimulation are incomparable

∼=
�≈

�∼=
≈

main reason: ≈ does not impose constraints on stutter paths

c© JPK 4

Advanced model checking

Stutter bisimulation does not preserve LTL\©

t0
∅

t1

{ a }
s0

∅

s1

{ a }

TSleft ≈ TSright but TSleft �|= �a and TSright |= �a

main reason: presence of stutter paths

c© JPK 5

Advanced model checking

Divergence sensitivity
• Stutter paths are paths that only consist of stutter steps

– no restrictions are imposed on such paths by stutter bisimulation
⇒ stutter trace-equivalence (∼=) and stutter bisimulation (≈) are incomparable
⇒ ≈ and LTL\© equivalence are incomparable

• Stutter paths diverge: they never leave an equivalence class

• Remedy: only relate divergent states or non-divergent states

– divergent state = a state that has a stutter path
⇒ relate states only if they either both have stutter paths or none of them

• This yields divergence-sensitive stutter bisimulation (≈div)

⇒ ≈div is strictly finer than ∼= (and ≈)
⇒ ≈div and CTL∗

\© equivalence coincide

c© JPK 6

Advanced model checking

Divergence sensitivity

Let TS be a transition system and R an equivalence relation on S

• s is R-divergent if there exists an infinite path fragment

s s1 s2 . . . ∈ Paths(s) such that (s, sj) ∈ R for all j > 0

– s is R-divergent if there is an infinite path starting in s that only visits [s]R

• R is divergence sensitive if for any (s1, s2) ∈ R:

s1 is R-divergent implies s2 is R-divergent

– R is divergence-sensitive if in any [s]R either all or none states are R-divergent

c© JPK 7

Advanced model checking

Example

c© JPK 8

Advanced model checking

Divergent-sensitive stutter bisimulation

s1, s2 in TS are divergent stutter-bisimilar , denoted s1 ≈div
TS s2, if:

∃ divergent-sensitive stutter bisimulation R on TS such that (s1, s2) ∈ R

≈div
TS is an equivalence, the coarsest divergence-sensitive stutter bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS

c© JPK 9

Advanced model checking

Example

c© JPK 10

Advanced model checking

Quotient transition system under ≈div

TS/≈div = (S′, { τ },→′, I ′, AP, L′), the quotient of TS under ≈div

where

• S′, I ′ and L′ are defined as usual (for eq. classes [s]div under ≈div)

• →′ is defined by:

s α−−→ s′ ∧ s �≈div s′

[s]div
τ−→ ′

div [s′]div

and
s is ≈div-divergent

[s]div
τ−→ ′

div [s]div

note that TS ≈div TS/≈div

c© JPK 11

Advanced model checking

Example

s3

∅

s2

{ a }
s0

{ a }
s1

{ a }
transition system TS

[s3]≈
∅

[s0]≈
{ a }

transition system TS/≈

[s3]div
∅

[s2]div
{ a }

[s0]div
{ a }

transition system TS/≈div

c© JPK 12

Advanced model checking

A remark on purely divergent states

• spd is purely divergent if all paths of s are infinite and divergent

• sterm is a terminal state if it has no outgoing transitions

• if L(spd) = L(sterm) then sterm ≈TS spd and sterm �≈div
TS spd

• sterm ≈div
TS s implies

– L(s) = L(sterm) and each path of s is finite and divergent

c© JPK 13

Advanced model checking

≈div on paths

For infinite path fragments πi = s0,i s1,i s2,i . . ., i = 1, 2, in TS:

π1 ≈div
TS π2

if and only if there exists an infinite sequence of indexes

0 = j0 < j1 < j2 < . . . and 0 = k0 < k1 < k2 < . . .

with:

sj,1 ≈div
TS sk,2 for all jr−1 � j < jr and kr−1 � k < kr with r = 1, 2,

≈div on finite paths can be defined similarly

c© JPK 14

Advanced model checking

Example

c© JPK 15

Advanced model checking

Comparing paths by ≈div

Let TS = (S, Act, →, I, AP, L) be a transition system, s1, s2 ∈ S. Then:

s1 ≈div
TS s2 implies ∀π1 ∈ Paths(s1).

(∃π2 ∈ Paths(s2). π1 ≈div
TS π2

)

c© JPK 16

Advanced model checking

Proof

c© JPK 17

Advanced model checking

Stutter equivalence versus ≈div

Let TS1 and TS2 be transition systems over AP. Then:

TS1 ≈div TS2︸ ︷︷ ︸
stutter-bisimulation equivalence

with divergence

implies TS1
∼= TS2︸ ︷︷ ︸

stutter-trace equivalence

whereas the reverse implication does not hold in general

c© JPK 18

Advanced model checking

CTL∗
\© equivalence and ≈div

For finite transition system TS without terminal states, and s1, s2 in TS:

s1 ≈div
TS s2 iff s1 ≡CTL∗

\© s2 iff s1 ≡CTL\© s2

divergent-sensitive stutter bisimulation coincides with CTL\© and CTL∗
\© equivalence

c© JPK 19

Advanced model checking

Proof

c© JPK 20

Advanced model checking

A producer-consumer example

Producer
in := 0;

while true {
produce d1, . . . , dn;

for i = 1 to n {
wait until (buffer[in] = ⊥) {

buffer[in] := di;

in := (in + 1) mod m; }
}

}

Consumer
out := 0;

while true {
for j = 1 to n {
wait until (buffer[out] �= ⊥) {

ej := buffer[out];

buffer[out] := ⊥;

out := (out + 1) mod m; }
}
consume e1, . . . , en

}

c© JPK 21

Advanced model checking

An abstraction

Producer
while true {

produce;

for i = 1 to n {
wait until (free > 0) {

free := free − 1;

}
}

Consumer
while true {

for j = 1 to n {
wait until (free < m) {

free := free + 1;

}
consume

}

c© JPK 22

Advanced model checking

Abstract transition system
00200

00000

21211

01101

11101

21011

10200

02200

12200

22110

02000

12000

20110

10000

�0 : produce
�1 : 〈if (free > 0) then i := 1; free−− fi〉
�2 : 〈if (free > 0) then i := 0; free−− fi〉

c© JPK 23

Advanced model checking

Comparative semantics

LTL\© equivalence

bisimulation equivalence
TS1 ∼ TS2

stutter bisimulation equivalence
divergence sensitive

TS1 ≈div TS2

trace equivalence
Traces(T1) = Traces(TS2)

stutter trace-equivalence
TS1

∼= TS2

Traces(T1) ⊆ Traces(TS2)
trace inclusion

stutter trace inclusion
TS1
 TS2

CTL∗\© equivalence

CTL∗\© equivalence LTL\© equivalence

c© JPK 24

Advanced model checking

AP determinism

LTL\© equivalence

bisimulation equivalence
TS1 ∼ TS2

stutter bisimulation equivalence
divergence sensitive

TS1 ≈div TS2

trace equivalence
Traces(T1) = Traces(TS2)

stutter trace-equivalence
TS1

∼= TS2

Traces(T1) ⊆ Traces(TS2)
trace inclusion

stutter trace inclusion
TS1
 TS2

CTL∗\© equivalence

CTL∗\© equivalence LTL\© equivalence

c© JPK 25

