

Stutter Bisimulation Quotienting

Lecture #8 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 20, 2006

Motivation

- Quotienting wrt. \approx^{div} allows to *abstract from stutter steps*
 - in particular $TS \approx^{\text{div}} TS/\approx^{\text{div}}$
 - typically we have $|TS| \ll |TS/\approx^{\text{div}}|$
- $TS_1 \approx^{\text{div}} TS_2$ if and only if $(TS_1 \models \Phi \text{ iff } TS_2 \models \Phi)$
 - for any $\text{CTL}_{\setminus \bigcirc}^*$ (or $\text{CTL}_{\setminus \bigcirc}$) formula Φ

\Rightarrow To check $TS \models \Phi$, it suffices to check whether $TS/\approx^{\text{div}} \models \Phi$

- quotienting with respect to \approx^{div} is a useful preprocessing step of model checking
- quotienting can be used to determine whether $TS_1 \approx^{\text{div}} TS_2$

Approach

[Groote and Vaandrager, 1990]

1. A quotienting algorithm to determine TS/\approx :

- remove *stutter cycles* from TS
- a refine operator to *efficiently split* (blocks of) partitions
- exploit partition-refinement (as for bisimulation \sim)

2. A quotienting algorithm to determine TS/\approx^{div} :

- *transform* TS into a (divergence-sensitive) transition system \overline{TS}
- \overline{TS} is divergent-sensitive, i.e., $\approx_{\overline{TS}}$ and $\approx^{\text{div}}_{\overline{TS}}$ coincide
- determine \overline{TS}/\approx using the quotienting algorithm for \approx
- “distill” TS/\approx^{div} from \overline{TS}/\approx

Stutter bisimulation

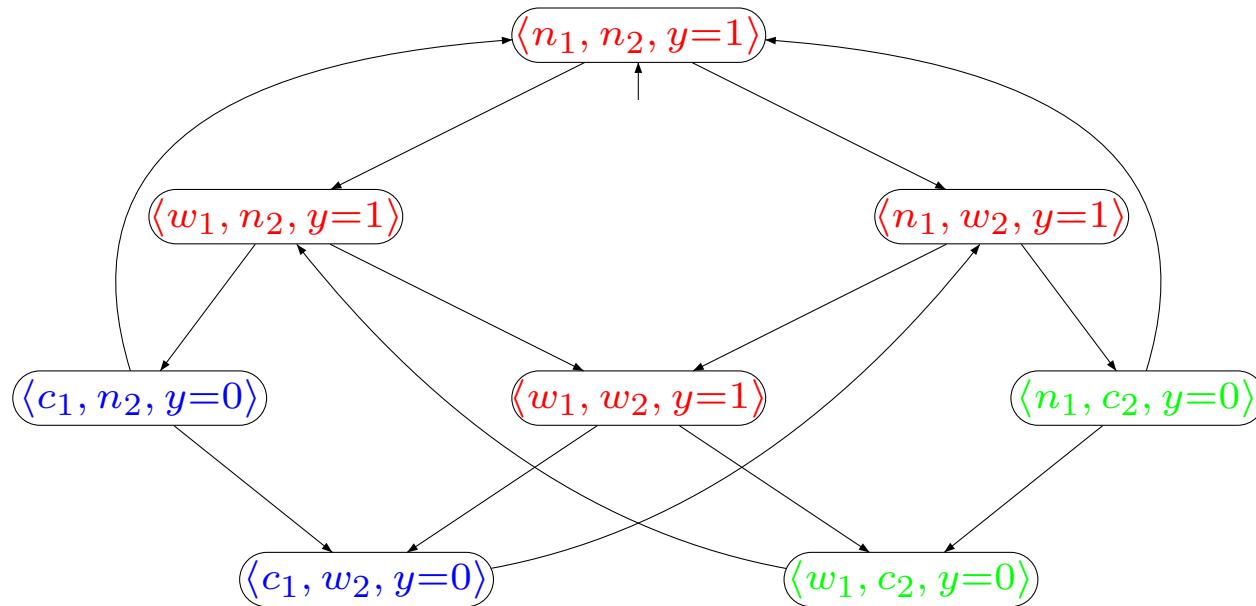
Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system and $\mathcal{R} \subseteq S \times S$

\mathcal{R} is a *stutter-bisimulation* for TS if for all $(s_1, s_2) \in \mathcal{R}$:

1. $L(s_1) = L(s_2)$
2. if $s'_1 \in Post(s_1)$ with $(s_1, s'_1) \notin \mathcal{R}$, then there exists a finite path fragment $s_2 u_1 \dots u_n s'_2$ with $n \geq 0$ and $(s_2, u_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$
3. if $s'_2 \in Post(s_2)$ with $(s_2, s'_2) \notin \mathcal{R}$, then there exists a finite path fragment $s_1 v_1 \dots v_n s'_1$ with $n \geq 0$ and $(s_1, v_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$

s_1, s_2 are *stutter-bisimulation equivalent*, denoted $s_1 \approx_{TS} s_2$, if there exists a stutter bisimulation \mathcal{R} for TS with $(s_1, s_2) \in \mathcal{R}$

Example



\mathcal{R} inducing the following partitioning of the state space is a stutter bisimulation:

$$\{\{\langle n_1, n_2 \rangle, \langle n_1, w_2 \rangle, \langle w_1, n_2 \rangle, \langle w_1, w_2 \rangle\}, \{\langle c_1, n_2 \rangle, \langle c_1, w_2 \rangle\}, \{\langle c_2, n_1 \rangle, \langle w_1, c_2 \rangle\}\}\}$$

In fact, this is the coarsest stutter bisimulation, i.e., \mathcal{R} equals \approx_{TS}

Quotient transition system

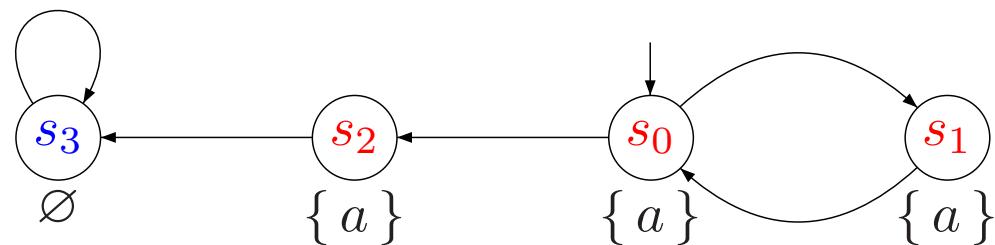
$TS/\approx = (S', \{\tau\}, \rightarrow', I', AP, L')$, the *quotient* of TS under \approx

where

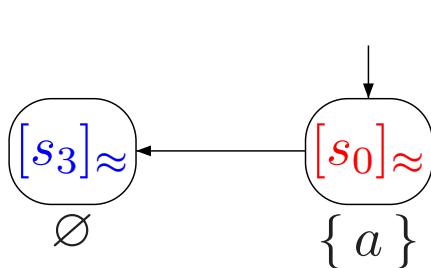
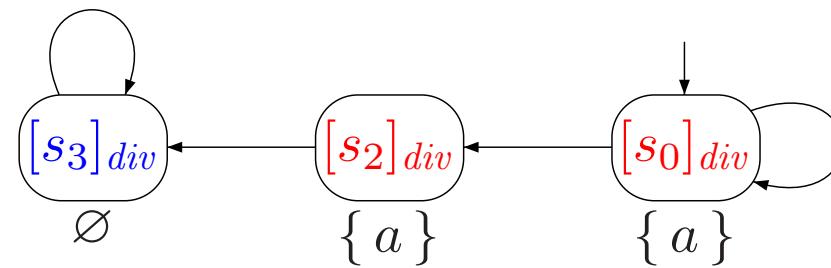
- $S' = S/\approx = \{ [s]_\approx \mid s \in S \}$
- \rightarrow' is defined by:
$$\frac{s \xrightarrow{\alpha} s' \text{ and } s \not\approx s'}{[s]_\approx \xrightarrow{\tau'} [s']_\approx}$$
- $I' = \{ [s]_\approx \mid s \in I \}$
- $L'([s]_\approx) = L(s)$

note that (a) no self-loops occur in TS/\approx and (b) $TS \approx TS/\approx$

Example



transition system TS



Partition-refinement

from now on, we assume that TS is finite

- Iteratively compute a partition of S
- Initially: Π_0 equals $\Pi_{AP} = \{ (s, t) \in S \times S \mid L(s) = L(t) \}$ as before
- Repeat until no change: $\Pi_{i+1} := \text{Refine}_{\approx}(\Pi_i)$
 - loop invariant: Π_i is coarser than S/\approx and finer than $\{ S \}$
- Return Π_i
 - termination: $\mathcal{R}_{\Pi_0} \supsetneq \mathcal{R}_{\Pi_1} \supsetneq \mathcal{R}_{\Pi_2} \supsetneq \dots \supsetneq \mathcal{R}_{\Pi_i} = \approx_{TS}$
 - time complexity: maximally $|S|$ iterations needed

Theorem

S/\approx is the *coarsest* partition Π of S such that:

- (i) Π is finer than the initial partition Π_{AP} , and
- (ii) $B \cap \text{Pre}(C) = \emptyset$ or $B \subseteq \text{Pre}_\Pi^*(C)$ for all $B, C \in \Pi$

$s \in \text{Pre}_\Pi^*(C)$ whenever $\underbrace{s = s_1 s_2 \dots s_{n-1}}_{\in B} \underbrace{s_n}_{\in C} \in \text{Paths}(s)$

state s can reach C via a path that is completely in B

The refinement operator

- Let: $\text{Refine}_{\approx}(\Pi, C) = \bigcup_{B \in \Pi} \text{Refine}_{\approx}(B, C)$ for C a block in Π
 - where $\text{Refine}_{\approx}(B, C) = \{B \cap \text{Pre}_{\Pi}^*(C), B \setminus \text{Pre}_{\Pi}^*(C)\} \setminus \{\emptyset\}$

- Basic properties:

- for Π finer than Π_{AP} and coarser than S/\approx :

$\text{Refine}_{\approx}(\Pi, C)$ is finer than Π and $\text{Refine}_{\approx}(\Pi, C)$ is coarser than S/\approx

- Π is strictly coarser than S/\approx if and only if there exists a *splitter* for Π

what is an appropriate splitter for \approx ?

Splitter for \approx

Let Π be a partition of S and let $C, B \in \Pi$.

1. C is a **Π -splitter** for B if and only if:

$$B \neq C \quad \text{and} \quad B \cap \text{Pre}(C) \neq \emptyset \quad \text{and} \quad B \setminus \text{Pre}_\Pi^*(C) \neq \emptyset$$

2. Π is **C -stable** if there is no $B \in \Pi$ such that C is a Π -splitter for B
3. Π is **stable** if Π is C -stable for all blocks $C \in \Pi$

Partition-refinement

Input: finite transition system TS with state space S

Output: stutter-bisimulation quotient space S/\approx

```
 $\Pi := \Pi_{AP};$  (* as before *)
while ( $\exists B, C \in \Pi$ .  $C$  is a  $\Pi$ -splitter for  $B$ ) do
  choose such  $B, C \in \Pi$ ;
   $\Pi := (\Pi \setminus \{B\}) \cup \{ \underbrace{B \cap \text{Pre}_\Pi^*(C)}_{B_1}, \underbrace{B \setminus \text{Pre}_\Pi^*(C)}_{B_2} \} \setminus \{ \emptyset \}$ ; (* refine  $\Pi$  *)
od
return  $\Pi$ 
```

Removal of stutter cycles: Why?

- $s_0 s_1 \dots s_n (= s_0)$ is a *stutter cycle* when $s_i s_{i+1}$ is a stutter step for $0 \leq i < n$
- For stutter cycle $s_0 s_1 s_2 \dots s_n$ in transition system TS :

$$s_0 \approx_{TS}^{div} s_1 \approx_{TS}^{div} \dots \approx_{TS}^{div} s_n$$

- Corollary:

For finite transition system TS and state s in TS :

s is \approx^{div} –divergent if and only if
a stutter cycle is reachable from s via a path in $[s]_{div}$

Removal of stutter cycles: How?

1. Determine the SCCs in $G(TS)$ that only contain stutter steps
 - use depth-first search to find these strongly connected components (SCCs)
2. Collapse any stutter SCC into a single state
 - $C \rightarrow' C'$ with $C \neq C'$ whenever $s \rightarrow s'$ in TS with $s \in C$ and $s' \in C'$

\Rightarrow Resulting TS' has no stutter cycles

- $s_1 \approx_{TS} s_2$ if and only if $\underbrace{C_1}_{s_1 \in C_1} \approx_{TS'} \underbrace{C_2}_{s_2 \in C_2}$

from now on, assume transition systems have **no** stutter cycles

Exit states

- C is a **Π -splitter** for B if and only if:

$$B \neq C \quad \text{and} \quad B \cap \text{Pre}(C) \neq \emptyset \quad \text{and} \quad B \setminus \text{Pre}_\Pi^*(C) \neq \emptyset$$

- How to avoid the computation of $\text{Pre}_\Pi^*(C)$ for $C \in \Pi$?
- No stutter cycles \Rightarrow block $B \in \Pi$ has at least one **exit state**
 - exit state = a state with only direct successors outside B
 - $\text{exit}(B) = \{s \in B \mid \text{Post}(s) \cap B = \emptyset\}$
- For finite TS without stutter cycles, C is a **Π -splitter** for B iff:

$$B \neq C \quad \text{and} \quad B \cap \text{Pre}(C) \neq \emptyset \quad \text{and} \quad \text{exit}(B) \setminus \text{Pre}(C) \neq \emptyset$$

Proof

Implementation details

Time complexity

For $TS = (S, Act, \rightarrow, I, AP, L)$ with $M \geq |S|$, the # edges in TS :

The partition-refinement algorithm to compute TS/\approx
has a worst-case time complexity in $\mathcal{O}(|S| \cdot (|AP| + M))$

Approach

1. A quotienting algorithm to determine TS/\approx :

- remove *stutter cycles* from TS
- a refine operator to *efficiently split* (blocks of) partitions
- exploit partition-refinement (as for bisimulation \sim)

⇒ A quotienting algorithm to determine TS/\approx^{div} :

- *transform* TS into a (divergence-sensitive) transition system \overline{TS}
- \overline{T} is divergent-sensitive, i.e., $\approx_{\overline{TS}}$ and $\approx_{\overline{TS}}^{\text{div}}$ coincide
- determine \overline{TS}/\approx using the quotienting algorithm for \approx
- “distill” TS/\approx^{div} from \overline{TS}/\approx

Divergence-sensitive stutter bisimulation

Let TS be a transition system and \mathcal{R} an equivalence relation on S

- \mathcal{R} is *divergence sensitive* if for any $(s_1, s_2) \in \mathcal{R}$:
 - s_1 is \mathcal{R} -divergent implies s_2 is \mathcal{R} -divergent
 - \mathcal{R} is divergence-sensitive if in any $[s]_{\mathcal{R}}$ either all or none states are \mathcal{R} -divergent
- s_1, s_2 in TS are *divergent stutter-bisimilar*, denoted $s_1 \approx_{TS}^{div} s_2$, if:
 - \exists divergent-sensitive stutter bisimulation \mathcal{R} on TS such that $(s_1, s_2) \in \mathcal{R}$

Quotient transition system under \approx^{div}

$TS/\approx^{\text{div}} = (S', \{\tau\}, \rightarrow', I', AP, L')$, the *quotient* of TS under \approx^{div}

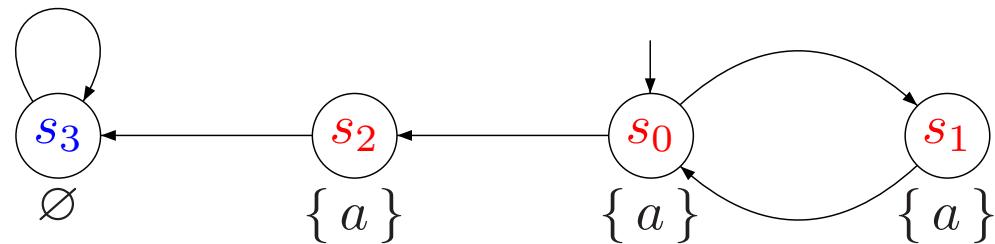
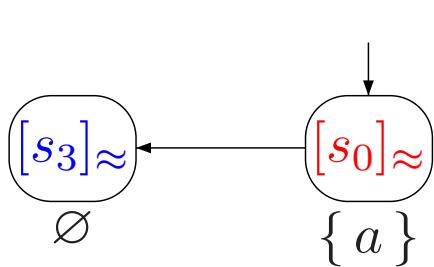
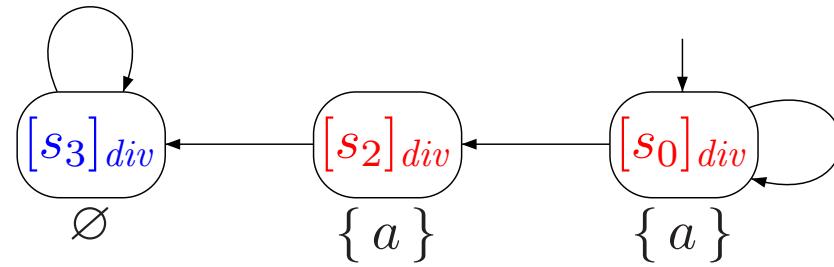
where

- S' , I' and L' are defined as usual (for eq. classes $[s]_{\text{div}}$ under \approx^{div})
- \rightarrow' is defined by:

$$\frac{s \xrightarrow{\alpha} s' \wedge s \not\approx^{\text{div}} s'}{[s]_{\text{div}} \xrightarrow[\text{div}]{\tau} [s']_{\text{div}}} \quad \text{and} \quad \frac{s \text{ is } \approx^{\text{div}}\text{-divergent}}{[s]_{\text{div}} \xrightarrow[\text{div}]{\tau} [s]_{\text{div}}}$$

note that $TS \approx^{\text{div}} TS/\approx^{\text{div}}$

Example



Divergence expansion

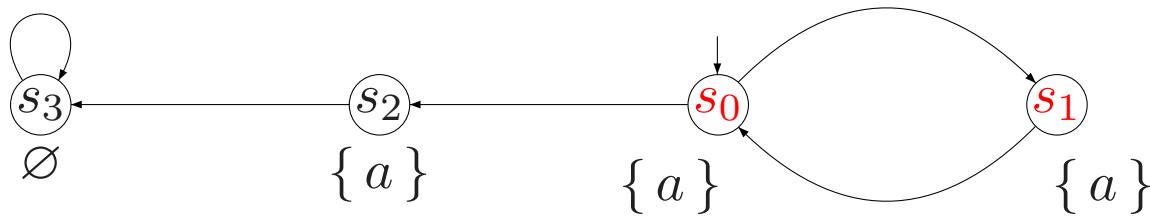
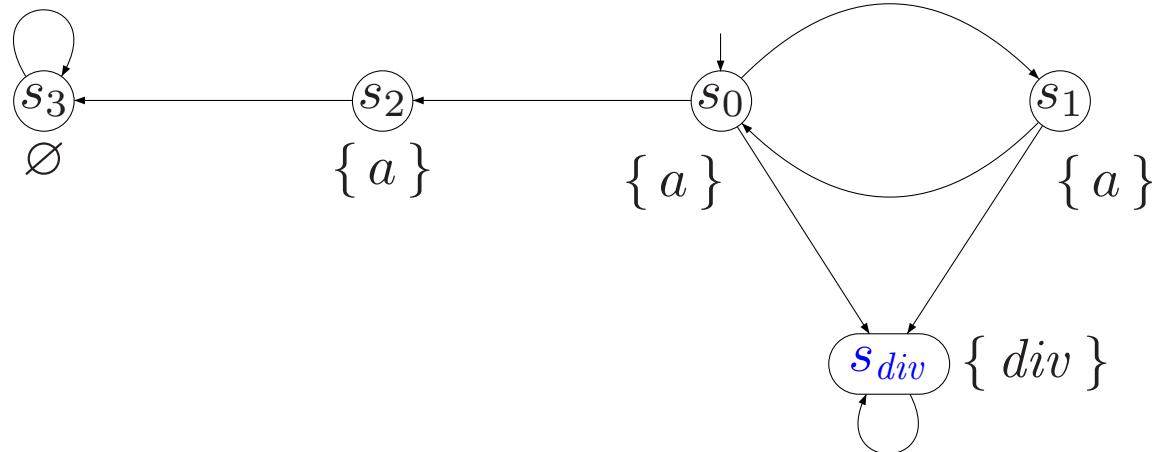
Divergence-sensitive expansion of finite $TS = (S, Act, \rightarrow, I, AP, L)$ is:

$$\overline{TS} = (S \cup \{ s_{div} \}, Act \cup \{ \tau \}, \rightarrow, I, AP \cup \{ div \}, \overline{L}) \quad \text{where}$$

- $s_{div} \notin S$
- \rightarrow extends the transition relation of TS by:
 - $s_{div} \xrightarrow{\tau} s_{div}$ and
 - $s \xrightarrow{\tau} s_{div}$ for every state $s \in S$ on a stutter cycle in TS
- $\overline{L}(s) = L(s)$ if $s \in S$ and $\overline{L}(s_{div}) = \{ div \}$

$s_{div} \not\approx s$ for any $s \in S$ and s_{div} can only be reached from a \approx^{div} -divergent state

Example



Correctness

For finite transition system TS :

1. \overline{TS} is divergence-sensitive, and
2. for all $s_1, s_2 \in S$: $s_1 \approx_{TS}^{div} s_2$ if and only if $s_1 \approx_{\overline{TS}} s_2$

Proof

Recipe for computing TS/\approx^{div}

1. Construct the divergence-sensitive expansion \overline{TS}

- determine the SCCs in $G_{\text{stutter}}(TS)$, and insert transitions $s_{\text{div}} \rightarrow s_{\text{div}}$ and
- $s \rightarrow s_{\text{div}}$ for any state s in a non-trivial SCC of G_{stutter}

2. Apply partition-refinement to \overline{TS} to obtain $S/\approx_{TS}^{\text{div}} = S/\approx_{\overline{TS}}$

3. Generate \overline{TS}/\approx

- any $C \in S/\approx^{\text{div}}$ that contains an initial state of TS is an initial state
- the labeling of $C \in S/\approx^{\text{div}}$ equals the labeling of any $s \in C$
- any transition $s \rightarrow s'$ with $s \not\approx_{TS}^{\text{div}} s'$ yields a transition between C_s and $C_{s'}$

4. “Distill” $TS \approx^{\text{div}}$ from \overline{TS}/\approx :

- replace transition $s \rightarrow s_{\text{div}}$ in \overline{TS} by the self-loop $[s]_{\text{div}} \rightarrow [s]_{\text{div}}$
- delete state s_{div}

Example

Time complexity

For $TS = (S, Act, \rightarrow, I, AP, L)$ with $M \geq |S|$, the # edges in TS :

The quotient transition system TS/\approx^{div} can be determined with a worst-case time complexity in $\mathcal{O}(|S|+M + |S| \cdot (|AP|+M))$