
Stutter Bisimulation Quotienting
Lecture #8 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 20, 2006

c© JPK

Advanced model checking

Motivation

• Quotienting wrt. ≈div allows to abstract from stutter steps

– in particular TS ≈div TS/≈div

– typically we have |TS|<< |TS/≈div |

• TS1 ≈div TS2 if and only if (TS1 |= Φ iff TS2 |= Φ)

– for any CTL∗
\© (or CTL\©) formula Φ

⇒ To check TS |= Φ, if suffices to check whether TS/≈div |= Φ

– quotienting with respect to ≈div is a useful preprocessing step of model checking
– quotienting can be used to determine whether TS1 ≈div TS2

c© JPK 1

Advanced model checking

Approach

[Groote and Vaandrager, 1990]

1. A quotienting algorithm to determine TS/≈:

• remove stutter cycles from TS
• a refine operator to efficiently split (blocks of) partitions
• exploit partition-refinement (as for bisimulation ∼)

2. A quotienting algorithm to determine TS/≈div :

• transform TS into a (divergence-sensitive) transition system TS
• T is divergent-sensitive, i.e., ≈TS and ≈div

TS
coincide

• determine TS/≈ using the quotienting algorithm for ≈
• “distill” TS/≈div from TS/≈

c© JPK 2

Advanced model checking

Stutter bisimulation

Let TS = (S, Act, →, I, AP, L) be a transition system and R ⊆ S × S

R is a stutter-bisimulation for TS if for all (s1, s2) ∈ R:

1. L(s1) = L(s2)

2. if s′1 ∈ Post(s1) with (s1, s
′
1) �∈ R, then there exists a finite path

fragment s2 u1 . . . un s′2 with n � 0 and (s2, ui) ∈ R and (s′1, s
′
2) ∈ R

3. if s′2 ∈ Post(s2) with (s2, s
′
2) �∈ R, then there exists a finite path

fragment s1 v1 . . . vn s′1 with n � 0 and (s1, vi) ∈ R and (s′1, s
′
2) ∈ R

s1, s2 are stutter-bisimulation equivalent, denoted s1 ≈TS s2, if there exists a stutter bisimulation R
for TS with (s1, s2) ∈ R

c© JPK 3

Advanced model checking

Example

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

R inducing the following partitioning of the state space is a stutter bisimulation:

{{〈n1, n2〉, 〈n1, w2〉, 〈w1, n2〉, 〈w1, w2〉}, {〈c1, n2〉, 〈c1, w2〉}, {〈c2, n1〉, 〈w1, c2〉}}

In fact, this is the coarsest stutter bisimulation, i.e., R equals ≈TS

c© JPK 4

Advanced model checking

Quotient transition system

TS/≈ = (S′, { τ },→′, I ′, AP, L′), the quotient of TS under ≈

where

• S′ = S/≈= { [s]≈ | s ∈ S }

• →′ is defined by:
s α−−→ s′ and s �≈ s′

[s]≈
τ−→′ [s′]≈

• I ′ = { [s]≈ | s ∈ I }
• L′([s]≈) = L(s)

note that (a) no self-loops occur in TS/≈ and (b) TS ≈ TS/≈

c© JPK 5

Advanced model checking

Example

s3

∅

s2

{ a }
s0

{ a }
s1

{ a }
transition system TS

[s3]≈
∅

[s0]≈
{ a }

transition system TS/≈

[s3]div
∅

[s2]div
{ a }

[s0]div
{ a }

transition system TS/≈div

c© JPK 6

Advanced model checking

Partition-refinement

from now on, we assume that TS is finite

• Iteratively compute a partition of S

• Initially: Π0 equals ΠAP = { (s, t) ∈ S × S | L(s) = L(t) } as before

• Repeat until no change: Πi+1 := Refine≈(Πi)

– loop invariant: Πi is coarser than S/≈ and finer than {S }

• Return Πi

– termination: RΠ0
� RΠ1

� RΠ2
� . . . � RΠi

= ≈TS

– time complexity: maximally |S | iterations needed

c© JPK 7

Advanced model checking

Theorem

S/≈ is the coarsest partition Π of S such that:

(i) Π is finer than the initial partition ΠAP, and

(ii) B ∩ Pre(C) = ∅ or B ⊆ Pre∗
Π(C) for all B,C ∈ Π

s ∈ Pre∗
Π(C) whenever s = s1 s2 . . . sn−1︸ ︷︷ ︸

∈B

sn︸︷︷︸
∈C

∈ Paths(s)

state s can reach C via a path that is completely in B

c© JPK 8

Advanced model checking

The refinement operator

• Let: Refine≈(Π, C) =
⋃

B∈Π Refine≈(B,C) for C a block in Π

– where Refine≈(B, C) =
n

B ∩ Pre∗
Π(C), B \ Pre∗

Π(C)
o

\ {∅ }

• Basic properties:

– for Π finer than ΠAP and coarser than S/≈:

Refine≈(Π, C) is finer than Π and Refine≈(Π, C) is coarser than S/≈

– Π is strictly coarser than S/≈ if and only if there exists a splitter for Π

what is an appropriate splitter for ≈?

c© JPK 9

Advanced model checking

Splitter for ≈

Let Π be a partition of S and let C, B ∈ Π.

1. C is a Π-splitter for B if and only if:

B �= C and B ∩ Pre(C) �= ∅ and B \ Pre∗
Π(C) �= ∅

2. Π is C-stable if there is no B ∈ Π such that C is a Π-splitter for B

3. Π is stable if Π is C-stable for all blocks C ∈ Π

c© JPK 10

Advanced model checking

Partition-refinement

Input: finite transition system TS with state space S

Output: stutter-bisimulation quotient space S/≈

Π := ΠAP; (* as before *)
while (∃B, C ∈ Π. C is a Π-splitter for B) do

choose such B, C ∈ Π;
Π := (Π \ {B }) ∪ {B ∩ Pre∗

Π(C)| {z }
B1

, B \ Pre∗
Π(C)| {z }

B2

} \ {∅ }; (* refine Π *)

od
return Π

c© JPK 11

Advanced model checking

Removal of stutter cycles: Why?

• s0 s1 . . . sn(= s0) is a stutter cycle when si si+1 is a stutter step for
0 � i < n

• For stutter cycle s0 s1 s2 . . . sn in transition system TS:

s0 ≈div
TS s1 ≈div

TS . . . ≈div
TS sn

• Corollary:

For finite transition system TS and state s in TS:

s is ≈div −divergent if and only if

a stutter cycle is reachable from s via a path in [s]div

c© JPK 12

Advanced model checking

Removal of stutter cycles: How?

1. Determine the SCCs in G(TS) that only contain stutter steps

• use depth-first search to find these strongly connected components (SCCs)

2. Collapse any stutter SCC into a single state

• C →′ C′ with C
= C ′ whenever s → s′ in TS with s ∈ C and s′ ∈ C′

⇒ Resulting TS′ has no stutter cycles

• s1 ≈TS s2 if and only if C1|{z}
s1∈C1

≈TS′ C2|{z}
s2∈C2

from now on, assume transition systems have no stutter cycles

c© JPK 13

Advanced model checking

Exit states
• C is a Π-splitter for B if and only if:

B �= C and B ∩ Pre(C) �= ∅ and B \ Pre∗
Π(C) �= ∅

• How to avoid the computation of Pre∗
Π(C) for C ∈ Π?

• No stutter cycles ⇒ block B ∈ Π has at least one exit state

– exit state = a state with only direct successors outside B

– exit(B) =
n

s ∈ B | Post(s) ∩ B = ∅

o

• For finite TS without stutter cycles, C is a Π-splitter for B iff:

B �= C and B ∩ Pre(C) �= ∅ and exit(B) \ Pre(C) �= ∅

c© JPK 14

Advanced model checking

Proof

c© JPK 15

Advanced model checking

Implementation details

c© JPK 16

Advanced model checking

Time complexity

For TS = (S, Act,→, I, AP, L) with M � |S|, the # edges in TS:

The partition-refinement algorithm to compute TS/≈
has a worst-case time complexity in O(|S| · (|AP| + M)

)

c© JPK 17

Advanced model checking

Approach

1. A quotienting algorithm to determine TS/≈:

• remove stutter cycles from TS
• a refine operator to efficiently split (blocks of) partitions
• exploit partition-refinement (as for bisimulation ∼)

⇒ A quotienting algorithm to determine TS/≈div :

• transform TS into a (divergence-sensitive) transition system TS
• T is divergent-sensitive, i.e., ≈TS and ≈div

TS
coincide

• determine TS/≈ using the quotienting algorithm for ≈
• “distill” TS/≈div from TS/≈

c© JPK 18

Advanced model checking

Divergence-sensitive stutter bisimulation

Let TS be a transition system and R an equivalence relation on S

• R is divergence sensitive if for any (s1, s2) ∈ R:

s1 is R-divergent implies s2 is R-divergent

– R is divergence-sensitive if in any [s]R either all or none states are R-divergent

• s1, s2 in TS are divergent stutter-bisimilar , denoted s1 ≈div
TS s2, if:

– ∃ divergent-sensitive stutter bisimulation R on TS such that (s1, s2) ∈ R

c© JPK 19

Advanced model checking

Quotient transition system under ≈div

TS/≈div = (S′, { τ },→′, I ′, AP, L′), the quotient of TS under ≈div

where

• S′, I ′ and L′ are defined as usual (for eq. classes [s]div under ≈div)

• →′ is defined by:

s α−−→ s′ ∧ s �≈div s′

[s]div
τ−→ ′

div [s′]div

and
s is ≈div-divergent

[s]div
τ−→ ′

div [s]div

note that TS ≈div TS/≈div

c© JPK 20

Advanced model checking

Example

s3

∅

s2

{ a }
s0

{ a }
s1

{ a }
transition system TS

[s3]≈
∅

[s0]≈
{ a }

transition system TS/≈

[s3]div
∅

[s2]div
{ a }

[s0]div
{ a }

transition system TS/≈div

c© JPK 21

Advanced model checking

Divergence expansion

Divergence-sensitive expansion of finite TS = (S, Act,→ , I, AP, L) is:

TS =
(
S ∪ { sdiv }, Act ∪ { τ },→, I, AP ∪ { div }, L)

where

• sdiv �∈ S

• → extends the transition relation of TS by:

– sdiv
τ→ sdiv and

– s
τ→ sdiv for every state s ∈ S on a stutter cycle in TS

• L(s) = L(s) if s ∈ S and L(sdiv) = { div }

sdiv
≈ s for any s ∈ S and sdiv can only be reached from a ≈div-divergent state

c© JPK 22

Advanced model checking

Example

s3

∅

s2

{ a }
s0

{ a }
s1

{ a }

s3

∅

s2

{ a }
s0

{ a }
s1

{ a }

sdiv { div }

c© JPK 23

Advanced model checking

Correctness

For finite transition system TS:

1. TS is divergence-sensitive, and

2. for all s1, s2 ∈ S: s1 ≈div
TS s2 if and only if s1 ≈TS s2

c© JPK 24

Advanced model checking

Proof

c© JPK 25

Advanced model checking

Recipe for computing TS/≈div

1. Construct the divergence-sensitive expansion TS

• determine the SCCs in Gstutter(TS), and insert transitions sdiv → sdiv and
• s → sdiv for any state s in a non-trivial SCC of Gstutter

2. Apply partition-refinement to TS to obtain S/≈div
TS = S/ ≈TS

3. Generate TS/≈
• any C ∈ S/≈div that contains an initial state of TS is an initial state
• the labeling of C ∈ S/≈div equals the labeling of any s ∈ C

• any transition s → s′ with s
≈div
TS s′ yields a transition between Cs and Cs′

4. “Distill” TS≈div from TS/≈:

• replace transition s → sdiv in TS by the self-loop [s]div → [s]div

• delete state sdiv

c© JPK 26

Advanced model checking

Example

c© JPK 27

Advanced model checking

Time complexity

For TS = (S, Act,→, I, AP, L) with M � |S|, the # edges in TS:

The quotient transition system TS/≈div can be determined

with a worst-case time complexity in O(|S|+M + |S| · (|AP|+M)
)

c© JPK 28

