© JPK

Partial Order Reduction
Lecture #9 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

November 23, 2006

Advanced model checking

Symbolic versus explicit model checking

e Symbolic model checking using BDDs

— (sets of) states and transitions are represented as Boolean functions
— model-checking operations work with BDD representations

— Is appropriate for synchronous systems (e.g., hardware)

— in practice mostly applied to CTL (but LTL possible)

e Explicit-state model checking

— the state space is explicitly represented by states
— optimization techniques are necessary to keep
1. the number of states as low as possible, and/or
2. the memory usage per state as low as possible
— is appropriate for asynchronous systems (e.g., concurrent software)
— in practice mostly applied to LTL (but CTL possible)

© JPK

Advanced model checking

State space explosion

¢ Interleaving semantics

— independent concurrent actions are interleaved
— an execution is defined by a totally ordered sequence of states

e Modeling concurrency by interleaving

— may enforce an order of actions that has no real “meaning”
— state space size = product of number of states of components (= explosion)

e Partial-order (or true concurrency) semantics

— an execution is defined by a partially ordered sequence of states
— models: posets, pomsets, event structures, Petri net unfoldings

e Partial-order reduction

— group executions for which the order of “independent” actions is irrelevant
— consider only one representative execution for equivalent executions

© JPK 2

Advanced model checking

An example concurrent program

© JPK

Advanced model checking

Dependencies

e AsSsume

— x and y are local variables
— g Is a shared variable

e Dependent

— g:=gx*2+10and g := g + 2 as they both operate on a shared variable

X .
_y:

1 and g := g + 2 as they are both executed by the same process

1 and g := g * 2410 as they are both executed by the same process

e Independent

T .
X .
Yy :

landy :=1
land g := g x 2410
land g := g + 2

© JPK

Advanced model checking

Dependencies

© JPK

Advanced model checking

Idea of partial-order reduction

e Partition executions into equivalence classes

e Group executions for which the order of “independent” actions is
Irrelevant

e Consider only one representative execution for each equivalence
class

in fact: model checking using representative executions

© JPK 6

Advanced model checking

Pruning the state space

© JPK

Advanced model checking

Preserving properties

© JPK

Advanced model checking

Stutter equivalence

e s — s’ in transition system TS is a stutter step if L(s) = L(s’)

— stutter steps do not affect the state labels of successor states

e Paths 7; and m, are stutter equivalent, denoted 7m; = o, If:

trace () and trace(m,) belong to ATATAT ... for A; C AP

if trace(7r1) and trace(7s) only differ in the number of stutter steps per “segment”

© JPK 9

Advanced model checking

Stutter trace equivalence

Transition systems TS; over AP, i=1, 2, are stutter-trace equivalent:
TS =TS, ifandonlyif TS E TS, and TS; C TS,
where C is defined by:

TS{C TS, |ff V| € P&thS(TSl) (37‘(‘2 © PathS(TSQ). T = To)

clearly: Traces(TS;) = Traces(TSz) implies TS; = TSs, but not always the reverse

© JPK 10

Advanced model checking

Stutter trace and LTL,, equivalence

For transition systems TS, TS, (over AP) without terminal states:
(@) TS =TS, implies TS, =TI\ TS,

(b) if TS; E TS, then for any LTL, ~ formula : TSy = ¢ implies TS; = ¢

© JPK

11

Advanced model checking

Outline of partial-order reduction

e During state space generation obtain TS

— areduced version of transition system TS such that TSTS
= this preserves all stutter sensitive LT properties, such as LTL\
— at state s select a (small) subset of enabled actions in s
— different approaches on how to select such set: consider Peled’s ample sets

e Static partial-order reduction

— obtain a high-level description of TS (without generating TS)
= POR is preprocessing phase of model checking

e Dynamic (or: on-the-fly) partial-order reduction

— construct TS during LTL\ ~ model checking
— if accept cycle is found, there is no need to generate entire TS

© JPK

Advanced model checking

Some preliminaries

e Assume from now on: TS is action-deterministic

— for any s and action « it holds s = u and s — t implies u = ¢
— ... this should not be confused with AP-determinism
— action-determinism is not a severe restriction: actions can always be renamed

e Act(s) is the set of enabled actions in state s

— Act(s) ={a €Act|3ds'e€ S.s s}

e «o(s) denotes the unique a-successor of s, i.e., s — a(s)

© JPK 13

Advanced model checking

Independence of actions

e the execution of o cannot disable 3, and vice versa, and

o if a, 3 € Act(s) then a3 and § a executed in s yield the same state

© JPK

14

Advanced model checking

Independence of actions

Let TS = (S, Act, —, I, AP, L) be action-deterministic and « # § € Act

e « and (are independent if for any s € S with o, 3 € Act(s):

B e Act(a(s)) and « € Act(f(s)) and «a(B(s)) = Blal(s))

e o and 3 are dependent if « and 5 are not independent

e For A C Actand 3 € Act \ A:

— @isindependent of A if forany o € A, 3 is independent of «
— B dependson AinTSif 8 € Act \ A and « are dependent for some o« € A

© JPK 15

Advanced model checking

Example

ni,ng, y:]-

.

(w1, w2, y:l

<’I’L1, C2, y:())

© JPK

16

Advanced model checking

Permuting independent actions

Let TS be an action-deterministic transition system, s a state in TS and:

5 = Sg 51/31 62/82 63/...ﬁ>sn

be an execution fragment in TS from s with action sequence j3; ... 3,.
Then, for o € Act(s) independent of { 51,..., 3, }: a € Act(s;) and
s = 50— asg) 2 afsy) 22 ... O a(sn_1) 22 a(sn)

IS an execution fragment in TS from s with action sequence a3, ... 3,

© JPK 17

Advanced model checking

Permuting independent actions

s—sp P P2 g Po o Pea P
o
to can be extended to
s—g —P1 g B2 o B3 | Poa, g B o
A A (0 A A
to - tq -ty - ———ty —— t, =t
B1 B2 B3 Bno1 Bn "

© JPK 18

Advanced model checking

Proof

© JPK

19

Advanced model checking

Adding an independent action

Let TS be an action-deterministic transition system, s a state in TS and:

B1 B2 B3

S = 89— 81 —=> S9 —— ...

be an infinite execution fragment in TS from s with action seq.

B10205. ...

Then, for a € Act(s) independent of { 51,02,...}: a € Act(s;) for all 4
and:
s = 59— a(se) 25 as) 22 as) 22 ...

IS an infinite execution fragment in TS with action seq. a3 5> . ..

© JPK 20

Advanced model checking

Stutter actions

e If no further assumptions are made, the traces of:

p:SOL s L2 P <5 ¢t and
,O/ZSOL to L...Mtn_lit

will be distinct!

e If o does not affect the state-labelling (= “invisible™), then p = o’

e « € Actis a stutter action if for each s = s"in TS: L(s) = L(s')

— «is a stutter action in TS iff L(s) = L(a(s)) for all s in TS with o € Act(s)
— « is a stutter action whenever all transitions s -2 s’ are stutter steps

© JPK 21

Advanced model checking

© JPK

22

Advanced model checking

Permuting independent stutter actions

Let TS be action-deterministic, s a state in TS and:
e o is a finite execution in s with action sequence 3 ... 3, «

e (' is a finite execution in s with action sequence a3, ... 3,

Then:

If o is a stutter action independent of { 51,..., 3, } then o= ¢’

© JPK

23

Advanced model checking

Proof

© JPK

24

Advanced model checking

Adding an independent stutter action

Let TS be action-deterministic, s a state in TS and:
e p IS an infinite execution in s with action sequence (3, 5. ..

e o' is an infinite execution in s with action sequence o 31 3> . ..

Then:

If o is a stutter action independent of { 31, 32, ... } then p= p’

© JPK

25

