

Partial Order Reduction

Lecture #9 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 23, 2006

Symbolic versus explicit model checking

- **Symbolic model checking using BDDs**
 - (sets of) states and transitions are represented as Boolean functions
 - model-checking operations work with BDD representations
 - is appropriate for synchronous systems (e.g., hardware)
 - in practice mostly applied to CTL (but LTL possible)
- **Explicit-state model checking**
 - the state space is explicitly represented by states
 - optimization techniques are necessary to keep
 1. the number of states as low as possible, and/or
 2. the memory usage per state as low as possible
 - is appropriate for asynchronous systems (e.g., concurrent software)
 - in practice mostly applied to LTL (but CTL possible)

State space explosion

- **Interleaving semantics**
 - independent concurrent actions are interleaved
 - an execution is defined by a totally ordered sequence of states
- **Modeling concurrency by interleaving**
 - may enforce an order of actions that has no real “meaning”
 - state space size = product of number of states of components (= explosion)
- **Partial-order (or true concurrency) semantics**
 - an execution is defined by a partially ordered sequence of states
 - models: posets, pomsets, event structures, Petri net unfoldings
- **Partial-order reduction**
 - group executions for which the order of “independent” actions is irrelevant
 - consider only one representative execution for equivalent executions

An example concurrent program

Dependencies

- Assume
 - x and y are local variables
 - g is a shared variable
- Dependent
 - $g := g * 2 + 10$ and $g := g + 2$ as they both operate on a shared variable
 - $x := 1$ and $g := g + 2$ as they are both executed by the same process
 - $y := 1$ and $g := g * 2 + 10$ as they are both executed by the same process
- Independent
 - $x := 1$ and $y := 1$
 - $x := 1$ and $g := g * 2 + 10$
 - $y := 1$ and $g := g + 2$

Dependencies

Idea of partial-order reduction

- Partition executions into equivalence classes
- Group executions for which the order of “independent” actions is irrelevant
- Consider only one representative execution for each equivalence class

in fact: model checking using representative executions

Pruning the state space

Preserving properties

Stutter equivalence

- $s \rightarrow s'$ in transition system TS is a *stutter step* if $L(s) = L(s')$
 - stutter steps do not affect the state labels of successor states
- Paths π_1 and π_2 are *stutter equivalent*, denoted $\pi_1 \cong \pi_2$, if:

$\text{trace}(\pi_1)$ and $\text{trace}(\pi_2)$ belong to $A_0^+ A_1^+ A_2^+ \dots$ for $A_i \subseteq AP$

if $\text{trace}(\pi_1)$ and $\text{trace}(\pi_2)$ only differ in the number of stutter steps per “segment”

Stutter trace equivalence

Transition systems TS_i over AP , $i=1, 2$, are *stutter-trace equivalent*:

$$TS_1 \cong TS_2 \quad \text{if and only if} \quad TS_1 \sqsubseteq TS_2 \text{ and } TS_2 \sqsubseteq TS_1$$

where \sqsubseteq is defined by:

$$TS_1 \sqsubseteq TS_2 \quad \text{iff} \quad \forall \pi_1 \in \text{Paths}(TS_1) \ (\exists \pi_2 \in \text{Paths}(TS_2). \ \pi_1 \cong \pi_2)$$

clearly: $\text{Traces}(TS_1) = \text{Traces}(TS_2)$ implies $TS_1 \cong TS_2$, but not always the reverse

Stutter trace and $LTL_{\setminus \bigcirc}$ equivalence

For transition systems TS_1 , TS_2 (over AP) without terminal states:

- (a) $TS_1 \cong TS_2$ implies $TS_1 \equiv_{LTL \setminus \bigcirc} TS_2$
- (b) if $TS_1 \sqsubseteq TS_2$ then for any $LTL_{\setminus \bigcirc}$ formula φ : $TS_2 \models \varphi$ implies $TS_1 \models \varphi$

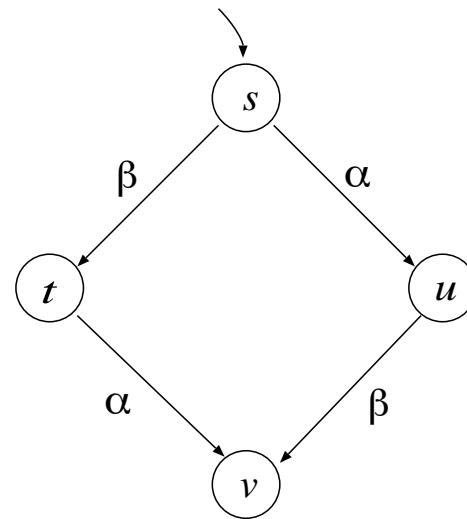
Outline of partial-order reduction

- During state space generation obtain \widehat{TS}
 - a *reduced version* of transition system TS such that $\widehat{TS} \cong TS$
⇒ this preserves all stutter sensitive LT properties, such as LTL_{\Diamond}
 - at state s select a (small) subset of enabled actions in s
 - different approaches on how to select such set: consider Peled's *ample sets*
- *Static* partial-order reduction
 - obtain a high-level description of \widehat{TS} (without generating TS)
⇒ POR is preprocessing phase of model checking
- *Dynamic (or: on-the-fly)* partial-order reduction
 - construct TS during LTL_{\Diamond} model checking
 - if accept cycle is found, there is no need to generate entire \widehat{TS}

Some preliminaries

- Assume from now on: TS is *action-deterministic*
 - for any s and action α it holds $s \xrightarrow{\alpha} u$ and $s \xrightarrow{\alpha} t$ implies $u = t$
 - . . . this should not be confused with AP -determinism
 - action-determinism is not a severe restriction: actions can always be renamed
- $Act(s)$ is the set of *enabled* actions in state s
 - $Act(s) = \{ \alpha \in Act \mid \exists s' \in S. s \xrightarrow{\alpha} s' \}$
- $\alpha(s)$ denotes the unique *α -successor* of s , i.e., $s \xrightarrow{\alpha} \alpha(s)$

Independence of actions



- the execution of α cannot disable β , and vice versa, and
- if $\alpha, \beta \in Act(s)$ then $\alpha\beta$ and $\beta\alpha$ executed in s yield the same state

Independence of actions

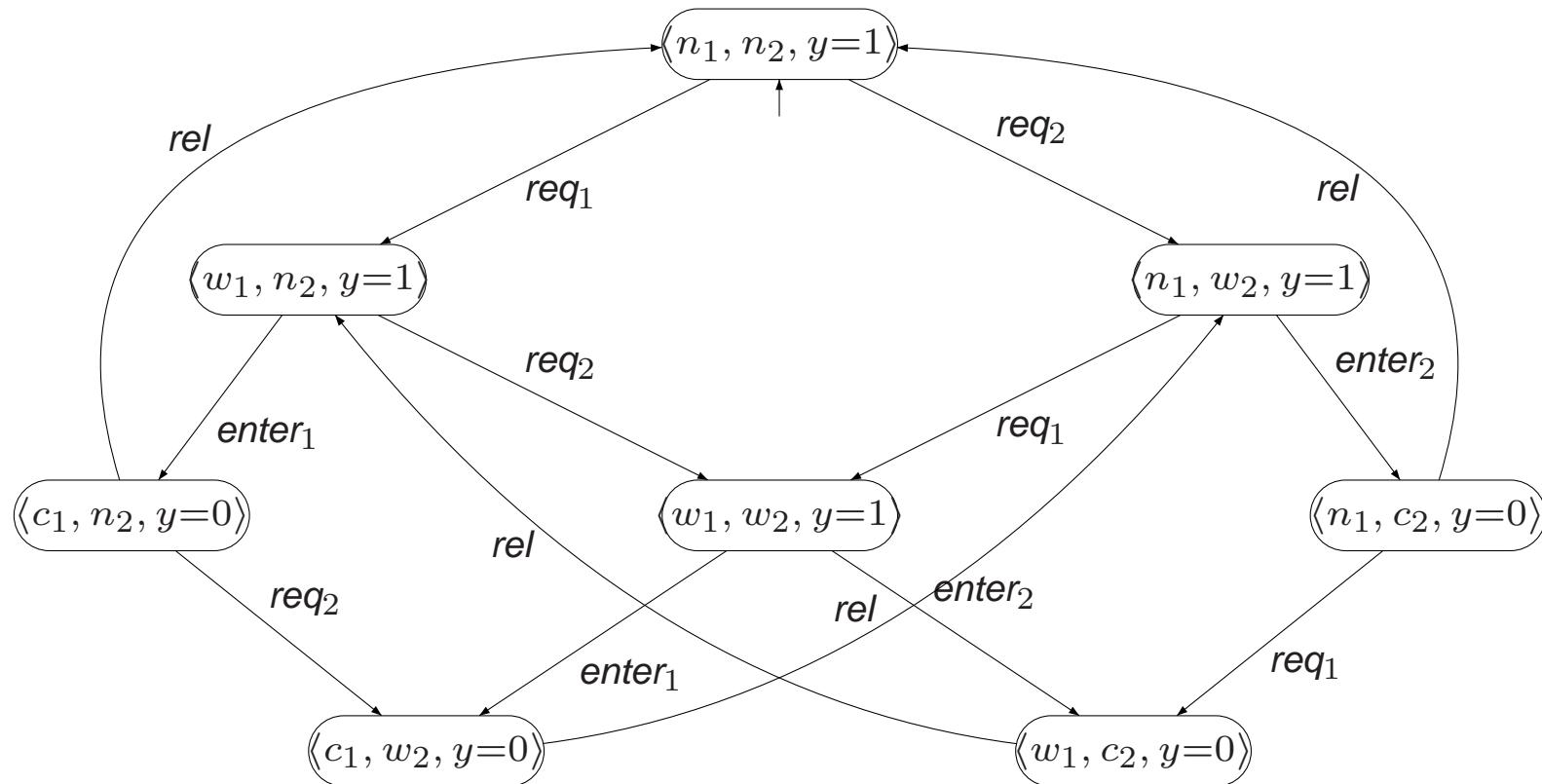
Let $TS = (S, Act, \rightarrow, I, AP, L)$ be action-deterministic and $\alpha \neq \beta \in Act$

- α and β are *independent* if for any $s \in S$ with $\alpha, \beta \in Act(s)$:

$$\beta \in Act(\alpha(s)) \quad \text{and} \quad \alpha \in Act(\beta(s)) \quad \text{and} \quad \alpha(\beta(s)) = \beta(\alpha(s))$$

- α and β are *dependent* if α and β are not independent
- For $A \subseteq Act$ and $\beta \in Act \setminus A$:
 - β is independent of A if for any $\alpha \in A$, β is independent of α
 - β depends on A in TS if $\beta \in Act \setminus A$ and α are dependent for some $\alpha \in A$

Example



Permuting independent actions

Let TS be an action-deterministic transition system, s a state in TS and:

$$s = s_0 \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} s_2 \xrightarrow{\beta_3} \dots \xrightarrow{\beta_n} s_n$$

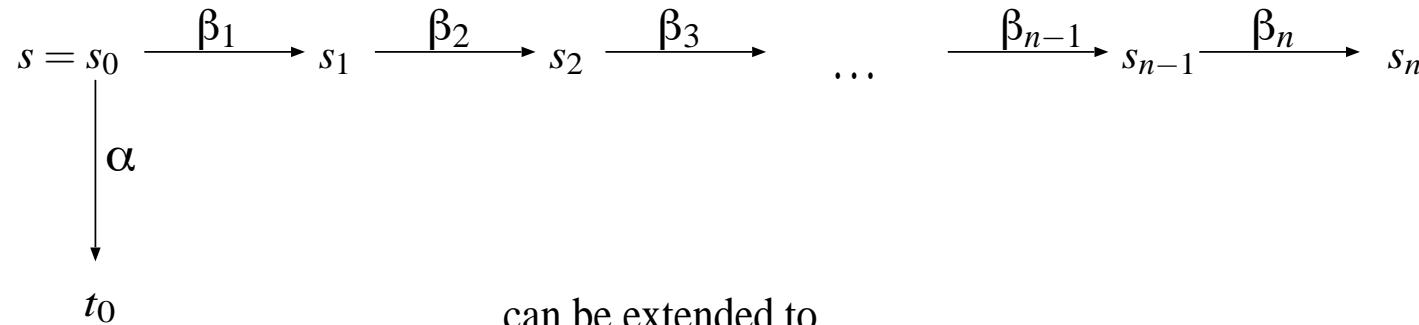
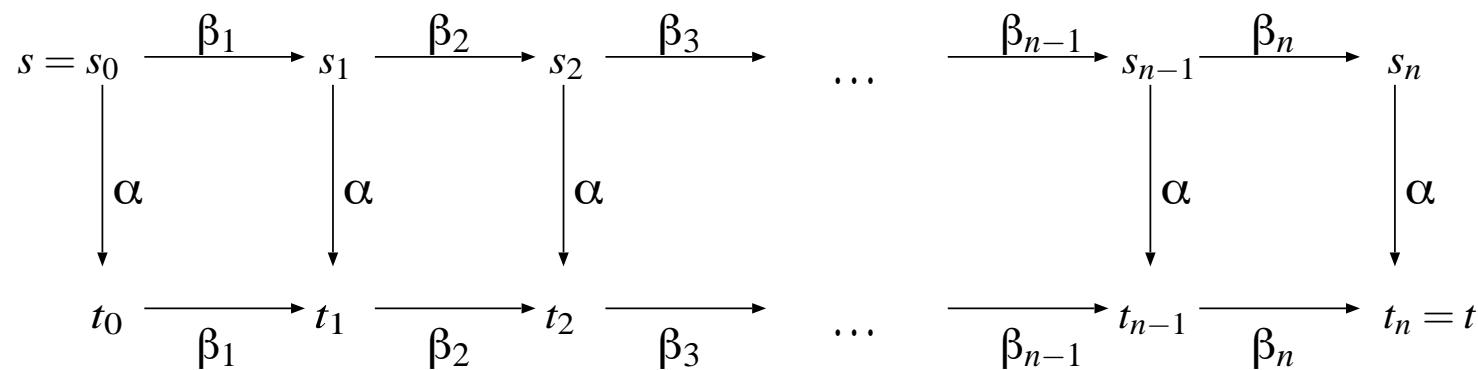
be an execution fragment in TS from s with action sequence $\beta_1 \dots \beta_n$.

Then, for $\alpha \in \text{Act}(s)$ independent of $\{\beta_1, \dots, \beta_n\}$: $\alpha \in \text{Act}(s_i)$ and

$$s = s_0 \xrightarrow{\alpha} \alpha(s_0) \xrightarrow{\beta_1} \alpha(s_1) \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \alpha(s_{n-1}) \xrightarrow{\beta_n} \alpha(s_n)$$

is an execution fragment in TS from s with action sequence $\alpha \beta_1 \dots \beta_n$

Permuting independent actions



Proof

Adding an independent action

Let TS be an action-deterministic transition system, s a state in TS and:

$$s = s_0 \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} s_2 \xrightarrow{\beta_3} \dots$$

be an infinite execution fragment in TS from s with action seq.
 $\beta_1 \beta_2 \beta_3 \dots$

Then, for $\alpha \in \text{Act}(s)$ independent of $\{\beta_1, \beta_2, \dots\}$: $\alpha \in \text{Act}(s_i)$ for all i and:

$$s = s_0 \xrightarrow{\alpha} \alpha(s_0) \xrightarrow{\beta_1} \alpha(s_1) \xrightarrow{\beta_2} \alpha(s_2) \xrightarrow{\beta_3} \dots$$

is an infinite execution fragment in TS with action seq. $\alpha \beta_1 \beta_2 \dots$

Stutter actions

- If no further assumptions are made, the traces of:

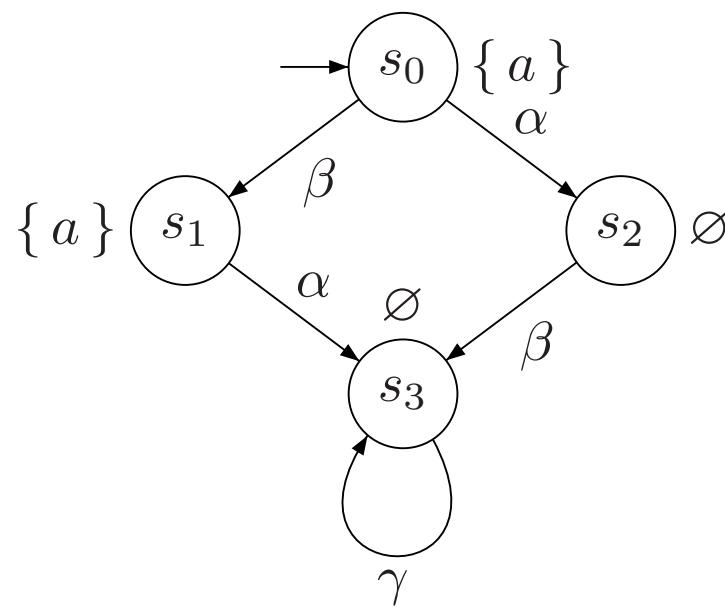
$$\rho = s_0 \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t \text{ and}$$

$$\rho' = s_0 \xrightarrow{\alpha} t_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_{n-1}} t_{n-1} \xrightarrow{\beta_n} t$$

will be distinct!

- If α does not affect the state-labelling (= “invisible”), then $\rho \cong \rho'$
- $\alpha \in \text{Act}$ is a *stutter action* if for each $s \xrightarrow{\alpha} s'$ in TS : $L(s) = L(s')$
 - α is a stutter action in TS iff $L(s) = L(\alpha(s))$ for all s in TS with $\alpha \in \text{Act}(s)$
 - α is a stutter action whenever all transitions $s \xrightarrow{\alpha} s'$ are stutter steps

Example



Permuting independent **stutter** actions

Let TS be action-deterministic, s a state in TS and:

- ϱ is a finite execution in s with action sequence $\beta_1 \dots \beta_n \alpha$
- ϱ' is a finite execution in s with action sequence $\alpha \beta_1 \dots \beta_n$

Then:

if α is a stutter action independent of $\{\beta_1, \dots, \beta_n\}$ then $\varrho \cong \varrho'$

Proof

Adding an independent **stutter** action

Let TS be action-deterministic, s a state in TS and:

- ρ is an **infinite** execution in s with action sequence $\beta_1 \beta_2 \dots$
- ρ' is an **infinite** execution in s with action sequence $\alpha \beta_1 \beta_2 \dots$

Then:

if α is a stutter action independent of $\{\beta_1, \beta_2, \dots\}$ then $\rho \cong \rho'$