
Partial Order Reduction
Lecture #9 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 23, 2006

c© JPK

Advanced model checking

Symbolic versus explicit model checking

• Symbolic model checking using BDDs

– (sets of) states and transitions are represented as Boolean functions
– model-checking operations work with BDD representations
– is appropriate for synchronous systems (e.g., hardware)
– in practice mostly applied to CTL (but LTL possible)

• Explicit-state model checking

– the state space is explicitly represented by states
– optimization techniques are necessary to keep

1. the number of states as low as possible, and/or
2. the memory usage per state as low as possible

– is appropriate for asynchronous systems (e.g., concurrent software)
– in practice mostly applied to LTL (but CTL possible)

c© JPK 1

Advanced model checking

State space explosion

• Interleaving semantics

– independent concurrent actions are interleaved
– an execution is defined by a totally ordered sequence of states

• Modeling concurrency by interleaving

– may enforce an order of actions that has no real “meaning”
– state space size = product of number of states of components (= explosion)

• Partial-order (or true concurrency) semantics

– an execution is defined by a partially ordered sequence of states
– models: posets, pomsets, event structures, Petri net unfoldings

• Partial-order reduction

– group executions for which the order of “independent” actions is irrelevant
– consider only one representative execution for equivalent executions

c© JPK 2

Advanced model checking

An example concurrent program

c© JPK 3

Advanced model checking

Dependencies

• Assume

– x and y are local variables
– g is a shared variable

• Dependent

– g := g ∗ 2+10 and g := g + 2 as they both operate on a shared variable
– x := 1 and g := g + 2 as they are both executed by the same process
– y := 1 and g := g ∗ 2+10 as they are both executed by the same process

• Independent

– x := 1 and y := 1

– x := 1 and g := g ∗ 2+10

– y := 1 and g := g + 2

c© JPK 4

Advanced model checking

Dependencies

c© JPK 5

Advanced model checking

Idea of partial-order reduction

• Partition executions into equivalence classes

• Group executions for which the order of “independent” actions is
irrelevant

• Consider only one representative execution for each equivalence
class

in fact: model checking using representative executions

c© JPK 6

Advanced model checking

Pruning the state space

c© JPK 7

Advanced model checking

Preserving properties

c© JPK 8

Advanced model checking

Stutter equivalence

• s → s′ in transition system TS is a stutter step if L(s) = L(s′)

– stutter steps do not affect the state labels of successor states

• Paths π1 and π2 are stutter equivalent , denoted π1
∼= π2, if:

trace(π1) and trace(π2) belong to A+
0 A+

1 A+
2 . . . for Ai ⊆ AP

if trace(π1) and trace(π2) only differ in the number of stutter steps per “segment”

c© JPK 9

Advanced model checking

Stutter trace equivalence

Transition systems TSi over AP, i=1, 2, are stutter-trace equivalent :

TS1
∼= TS2 if and only if TS1 � TS2 and TS2 � TS1

where � is defined by:

TS1�TS2 iff ∀π1 ∈ Paths(TS1) (∃π2 ∈ Paths(TS2). π1
∼=π2)

clearly: Traces(TS1) = Traces(TS2) implies TS1
∼= TS2, but not always the reverse

c© JPK 10

Advanced model checking

Stutter trace and LTL\© equivalence

For transition systems TS1, TS2 (over AP) without terminal states:

(a) TS1
∼= TS2 implies TS1 ≡LTL\© TS2

(b) if TS1 � TS2 then for any LTL\© formula ϕ: TS2 |= ϕ implies TS1 |= ϕ

c© JPK 11

Advanced model checking

Outline of partial-order reduction

• During state space generation obtain T̂S

– a reduced version of transition system TS such that cTS ∼= TS
⇒ this preserves all stutter sensitive LT properties, such as LTL\©

– at state s select a (small) subset of enabled actions in s

– different approaches on how to select such set: consider Peled’s ample sets

• Static partial-order reduction

– obtain a high-level description of cTS (without generating TS)
⇒ POR is preprocessing phase of model checking

• Dynamic (or: on-the-fly) partial-order reduction

– construct TS during LTL\© model checking

– if accept cycle is found, there is no need to generate entire cTS

c© JPK 12

Advanced model checking

Some preliminaries

• Assume from now on: TS is action-deterministic

– for any s and action α it holds s α−→u and s α−→ t implies u = t

– . . . this should not be confused with AP-determinism
– action-determinism is not a severe restriction: actions can always be renamed

• Act(s) is the set of enabled actions in state s

– Act(s) = {α ∈ Act | ∃s′ ∈ S. s α−→ s′ }

• α(s) denotes the unique α-successor of s, i.e., s α−−→α(s)

c© JPK 13

Advanced model checking

Independence of actions

αβ

s

t u

v

α β

• the execution of α cannot disable β, and vice versa, and

• if α, β ∈ Act(s) then α β and β α executed in s yield the same state

c© JPK 14

Advanced model checking

Independence of actions

Let TS = (S, Act,→, I, AP, L) be action-deterministic and α 	= β ∈ Act

• α and β are independent if for any s ∈ S with α, β ∈ Act(s):

β ∈ Act(α(s)) and α ∈ Act(β(s)) and α(β(s)) = β(α(s))

• α and β are dependent if α and β are not independent

• For A ⊆ Act and β ∈ Act \ A:

– β is independent of A if for any α ∈ A, β is independent of α

– β depends on A in TS if β ∈ Act \ A and α are dependent for some α ∈ A

c© JPK 15

Advanced model checking

Example

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel
rel

c© JPK 16

Advanced model checking

Permuting independent actions

Let TS be an action-deterministic transition system, s a state in TS and:

s = s0
β1−−→ s1

β2−−→ s2
β3−−→ . . .

βn−−→ sn

be an execution fragment in TS from s with action sequence β1 . . . βn.

Then, for α ∈ Act(s) independent of {β1, . . . , βn }: α ∈ Act(si) and

s = s0
α−−→α(s0)

β1−−→α(s1)
β2−−→ . . .

βn−1−−−−→α(sn−1)
βn−−→α(sn)

is an execution fragment in TS from s with action sequence α β1 . . . βn

c© JPK 17

Advanced model checking

Permuting independent actions

s = s0
β1 s1

β2 s2
β3

. . .
βn−1 sn−1

βn sn

can be extended to

s = s0
β1 s1

β2 s2
β3

. . .
βn−1 sn−1

βn sn

tn = t

α

t0 β1
t1 β2

t2 β3
. . . βn−1

tn−1 βn

αααα

t0

α

c© JPK 18

Advanced model checking

Proof

c© JPK 19

Advanced model checking

Adding an independent action

Let TS be an action-deterministic transition system, s a state in TS and:

s = s0
β1−−→ s1

β2−−→ s2
β3−−→ . . .

be an infinite execution fragment in TS from s with action seq.
β1 β2 β3

Then, for α ∈ Act(s) independent of {β1, β2, . . . }: α ∈ Act(si) for all i
and:

s = s0
α−−→α(s0)

β1−−→α(s1)
β2−−→α(s2)

β3−−→ . . .

is an infinite execution fragment in TS with action seq. α β1 β2 . . .

c© JPK 20

Advanced model checking

Stutter actions

• If no further assumptions are made, the traces of:

ρ = s0
β1−−→ s1

β2−−→ . . .
βn−−−→ sn

α−−→ t and

ρ′ = s0
α−−→ t0

β1−−→ . . .
βn−1−−−−→ tn−1

βn−−→ t

will be distinct!

• If α does not affect the state-labelling (= “invisible”), then ρ∼= ρ′

• α ∈ Act is a stutter action if for each s α−−→ s′ in TS: L(s) = L(s′)

– α is a stutter action in TS iff L(s) = L(α(s)) for all s in TS with α ∈ Act(s)
– α is a stutter action whenever all transitions s α−→ s′ are stutter steps

c© JPK 21

Advanced model checking

Example

s0 { a }

s1{ a } s2 ∅

s3

∅

α

α
β

β

γ

c© JPK 22

Advanced model checking

Permuting independent stutter actions

Let TS be action-deterministic, s a state in TS and:

• � is a finite execution in s with action sequence β1 . . . βn α

• �′ is a finite execution in s with action sequence α β1 . . . βn

Then:

if α is a stutter action independent of {β1, . . . , βn } then �∼= �′

c© JPK 23

Advanced model checking

Proof

c© JPK 24

Advanced model checking

Adding an independent stutter action

Let TS be action-deterministic, s a state in TS and:

• ρ is an infinite execution in s with action sequence β1 β2 . . .

• ρ′ is an infinite execution in s with action sequence α β1 β2 . . .

Then:

if α is a stutter action independent of {β1, β2, . . . } then ρ∼= ρ′

c© JPK 25

