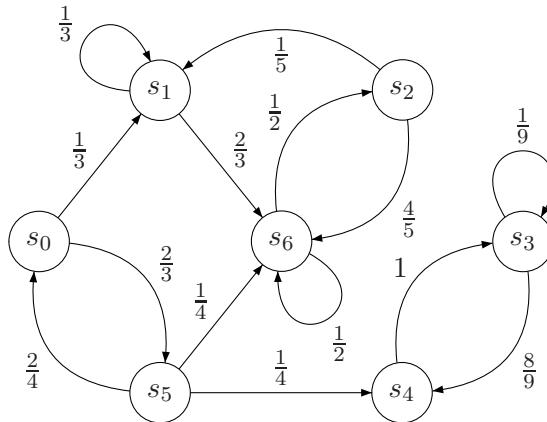


**Exercises to the lecture “Advanced Model Checking”, winter term 2006**


**– Assignment 12 –**

The solutions are collected on Feb. 2nd at the beginning of the exercise class.  
Justify your answers!

**Exercise 1**

(8 points)

Given a DTMC below:

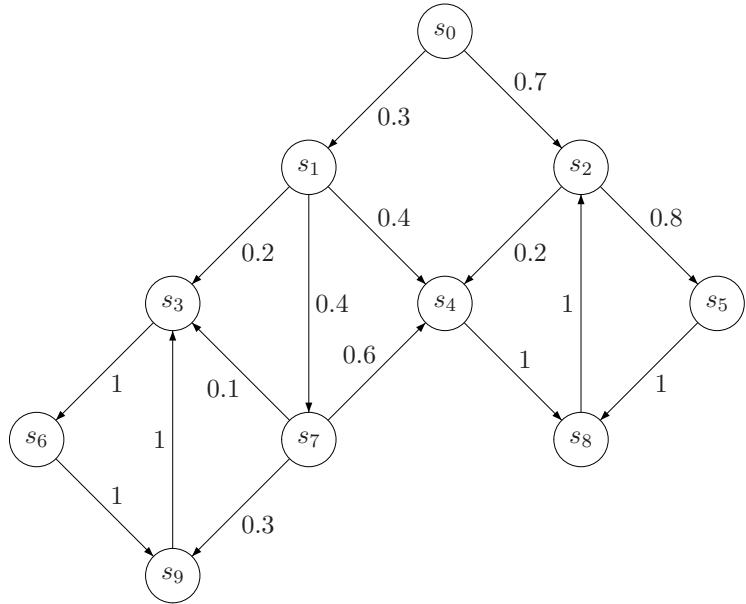


Everywhere below  $C = \{s_0, s_1, s_4, s_6\}$ ,  $B = \{s_2, s_3\}$

a) Compute the probability measure of the union of the following cylinder sets:

$$Cyl(s_0s_1), Cyl(s_0s_5s_6), Cyl(s_0s_5s_4s_3), Cyl(s_0s_1s_6)$$

considering  $i_{init}(s_0) = 1.0$


b) Compute  $Pr_{s_0}(\Diamond B)$  using the least fixed point characterization.  
c) Compute  $Pr_{s_0}(C U^{\leq 5} B)$  using the equations for the least fixed point characterization.  
d) Compute  $Pr_{s_0}(C U^{\leq 5} B)$  using the transient probabilities.

Note that  $\Theta_n^M = i_{init} \cdot P^n$  (the current lecture slides have a flaw).

**Exercise 2**

(8 points)

Given a DTMC as follows.



For state sets  $B_1 = \{s_1, s_7\}$ ,  $B_2 = \{s_6, s_7, s_8\}$ ,  $B_3 = \{s_1, s_3, s_7, s_9\}$  and  $B_4 = \{s_2, s_3, s_4, s_5, s_6, s_7, s_8, s_9\}$  determine whether:

- (a)  $\Pr(s_0, \Diamond B_1) = 1?$
- (b)  $\Pr(s_7, \Diamond B_2) = 1?$
- (c)  $\Pr(s_0, \Box \Diamond B_i) = 1, i \in 1 \dots 3?$
- (d)  $\Pr(s_0, \Diamond \Box B_2) = 1?$
- (e)  $\Pr(s_0, \Diamond \Box B_4) = 1?$