

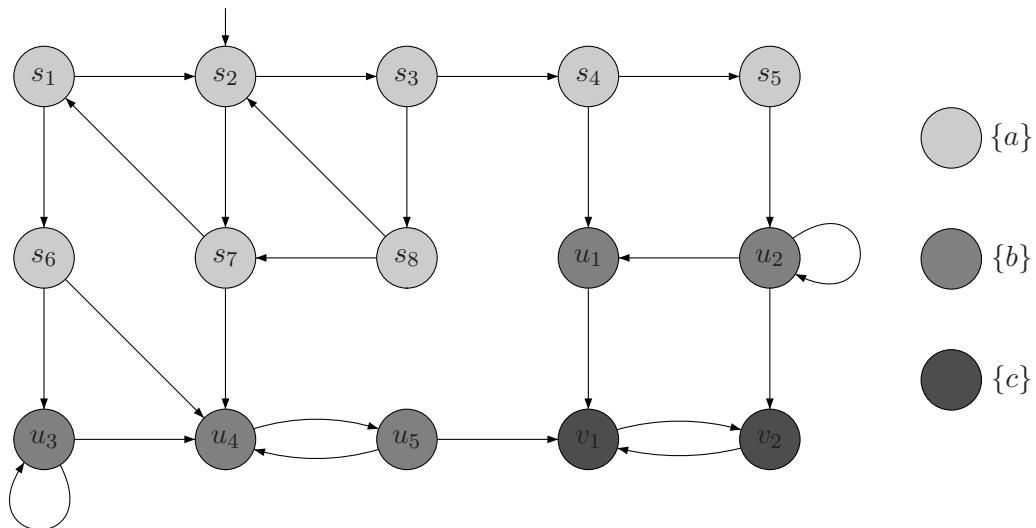
Exercises to the lecture “Advanced Model Checking”, winter term 2006

– Assignment 6 –

The solutions are collected on Dec. 1st at the beginning of the exercise class.
 Justify your answers!

Exercise 1

(6 points)

 Given transition systems TS :


- (a) Depict the divergence-sensitive expansion \bar{TS} .
- (b) Determine the divergence-stutter-bisimulation quotient $(\bar{TS})/\approx$. Apply the algorithm and give for each iteration the partition of the state space.
- (c) Depict TS/\approx^{div} .
- (d) Provide CTL $\setminus\circlearrowleft$ master formulae for the divergence-stutter-bisimulation equivalence class.

Exercise 2

(5(a) + 7(b) = 12 points)

Consider the following definition:

Definition 1 Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$ be transition systems over AP . A normed simulation for (TS_1, TS_2) is a triple $(\mathcal{R}, \nu_1, \nu_2)$ consisting of a binary relation $\mathcal{R} \in S_1 \times S_2$ such that:

$$\forall s_1 \in I_1 \exists s_2 \in I_2 . (s_1, s_2) \in \mathcal{R}$$

and functions $\nu_1, \nu_2 : S_1 \times S_2 \rightarrow \mathbb{N}$ such that for all $(s_1, s_2) \in \mathcal{R}$:

(I) $L_1(s_1) = L_2(s_2)$

(II) For all $s'_1 \in \text{Post}(s_1)$, at least one of the following three conditions holds:

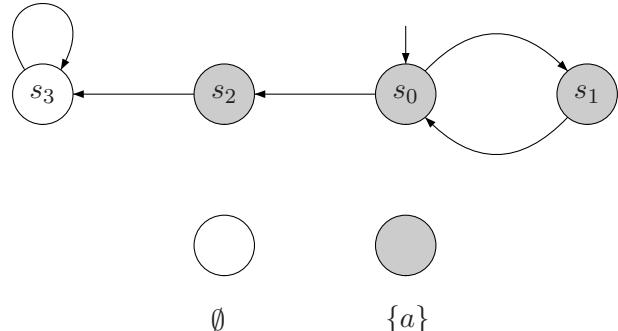
- 1) $\exists s'_2 \in \text{Post}(s_2). (s'_1, s'_2) \in \mathcal{R}$
- 2) $(s'_1, s_2) \in \mathcal{R}$ and $\nu_1(s'_1, s_2) < \nu_1(s_1, s_2)$
- 3) $\exists s'_2 \in \text{Post}(s_2). (s_1, s'_2) \in \mathcal{R}$ and $\nu_2(s_1, s'_2) < \nu_2(s_1, s_2)$

A normed bisimulation for (TS_1, TS_2) is a normed simulation $(\mathcal{R}, \nu_1, \nu_2)$ for (TS_1, TS_2) such that $(\mathcal{R}^{-1}, \nu_1^-, \nu_2^-)$ is a normed simulation for (TS_2, TS_1) . Here ν_i^- denotes the function $S_2 \times S_1 \rightarrow \mathbf{N}$ that results from ν_i by swapping the arguments, i.e. $\nu_i^-(u, v) = \nu_i(v, u)$ for all $u \in S_2$ and $v \in S_1$.

TS_1 and TS_2 are normed bisimilar, denoted $TS_1 \approx^n TS_2$, if there exists a normed bisimulation for (TS_1, TS_2) .

In this exercise you are asked to do the following:

(a) Given transition systems TS :



Check whether the coarsest equivalence \mathcal{R} which identifies s_0 and s_1 together with $\nu_1(s_0, s_1) = \nu_2(s_1, s_0) = 1$ and $\nu_2(s_1, s_2) = 1$, $\nu_1(s, s) = \nu_2(s, s) = 0$ for all $s \in \{s_0, s_1, s_2, s_3\}$ (and arbitrary values for ν_1 and ν_2 for the remaining cases) is a normed bisimulation.

(b) It is a fact that:

For any s_1, s_2 in transition system TS : $s_1 \approx^n s_2$ implies $s_1 \approx^{\text{div}} s_2$.

In order to prove that, one have to show that for a normed bisimulation $(\mathcal{R}, \nu_1, \nu_2)$, \mathcal{R}' - the symmetric, reflexive, and transitive closure of \mathcal{R} – the coarsest equivalence that contains \mathcal{R} – is a divergence-sensitive stutter bisimulation.

Here you are asked to prove that:

- The condition (2) from the definition of stutter bisimulation holds for \mathcal{R}' .