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Exercises to the lecture “Advanced Model Checking”, winter term 2006

— Assignment 8 —

The solutions are collected on Dec. 15th at the beginning of the exercise class.
Justify your answers!

Exercise 1 (4 points)

Consider the transition system 7'S shown in the following figure. Show that (A1)-(A4) does not allow for
any state reduction, although there is a smaller subsystem TS that is stutter-trace equivalent to T'S.

Exercise 2 (4 points)

Consider the transition system T'Spe: for the Peterson mutual exclusion algorithm.

(For more details of the algorithm, cf. page 59-63 of the lecture notes.)
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Questions:

(a) Which actions are independent?

(b) Apply the partial order reduction approach to T'Sp; with “small” ample sets according to Algorithm
30 (page 520) for checking the invariant “always —(crit; A crity)”, where AP = {crity, crita}. Note
that ¢; in the figure is an abbreviation for crit;.

Exercise 3 (3 points)

Let TS = (S, Act,—,I, AP, L) be an action-deterministic transition system and let Zy; be the set of all
pairs («, ) € Act x Act of independent actions a and 3 where a or 3 (or both) is a stutter action. Let
stutter permutation equivalence = e,y be the finest equivalence on Act* such that

ﬁaﬁg gperm ’76045
if 4,0 € Act* and (a, 3) € Zg.

The extension of =,¢,, to an equivalence for infinite action sequences is defined as follows. If @ = ajagas...
and 8 = [1203... are actions sequences in Act”, then & Cperp, [ if for all finite prefixes aj...a; of &
there exists a finite prefix 3;...8,, of § with m > n and a finite word 4 € Act* such that

Qj...0p7Y gperm ﬁl 5777,

We then define the binary relation =% on Act“ by
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«Q gperm iff « Eperm ﬁ and ﬁ Eperm (6%
Questions:

(a) Show that = is an equivalence.

Exercise 4 (5 points)
Consider the following definition:

Definition 1 Let T'S; = (S;, Act;, —, I;, AP, L;) be transition systems over AP. A normed simulation
for (T'S1,TSs) is a triple (R,v1,v2) consisting of a binary relation R € S1 X Sy such that:

Vs1 € I;.dsy € IQ.(Sl,Sg) ER

and functions vy,vy : S1 X So — N such that for all (s1,s2) € R:

(1) L1(s1) = La(s2)
(II) For all s} € Post(s1), at least one of the following three conditions holds:
1) 3s,, € Post(s2).(sh,85) € R
2) (s},s2) € R and v1(s}, s2) < v1(s1, $2)
3) sy, € Post(s2).(s1,55) € R and va(s1,s5) < va(s1, s2)
A mnormed bisimulation for (T'S1,TS2) is a normed simulation (R,vi,v2) for (T'S1,TS3) such that

(R™Y vy ,vy) is a normed simulation for (T'S2,TSy). Here v; denotes the function Sy x Sy — N that
results from v; by swapping the arguments, i.e. v; (u,v) = v;j(v,u) for allu € Sy and v € Sy.

TS, and TSy are normed bisimilar, denoted T'S1 =™ TSs, if there exists a normed bisimulation for

(T'S1,TS5).



Questions:

For two transition systems T'S (left) and TS (right) show that:
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(a) The ample sets ample(.) which reduce T'S to TS satisfy conditions (A1)-(A5).

(b) Provide a normed bisimulation for (7'S, TS ).



