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Exercises to the lecture “Advanced Model Checking”, winter term 2006

– Assignment 8 –

The solutions are collected on Dec. 15th at the beginning of the exercise class.

Justify your answers!

Exercise 1 (4 points)

Consider the transition system TS shown in the following figure. Show that (A1)-(A4) does not allow for

any state reduction, although there is a smaller subsystem T̂ S that is stutter-trace equivalent to TS.
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Exercise 2 (4 points)

Consider the transition system TSPet for the Peterson mutual exclusion algorithm.

(For more details of the algorithm, cf. page 59-63 of the lecture notes.)

s1〈n1 n2 2〉 s2〈n1 n2 1〉

s3〈w1 n2 2〉 s4〈n1 w2 1〉

s5〈w1 w2 1〉 s6〈w1 w2 2〉

s7〈c1 w2 1〉 s8〈w1 c2 2〉

s10〈n1 c2 1〉s9〈c1 n2 2〉 α1

α2

β1

α2

α1

β2

α2
α1

γ1γ2

γ2

γ1

β1

β2

α1

α2



Questions:

(a) Which actions are independent?

(b) Apply the partial order reduction approach to TSPet with“small”ample sets according to Algorithm
30 (page 520) for checking the invariant “always ¬(crit1 ∧ crit2)”, where AP = {crit1, crit2}. Note
that ci in the figure is an abbreviation for criti.

Exercise 3 (3 points)

Let TS = (S,Act,→, I, AP,L) be an action-deterministic transition system and let Ist be the set of all
pairs (α, β) ∈ Act × Act of independent actions α and β where α or β (or both) is a stutter action. Let
stutter permutation equivalence ∼=perm be the finest equivalence on Act∗ such that

γ̄αβδ̄ ∼=perm γ̄βαδ̄

if γ̄, δ̄ ∈ Act∗ and (α, β) ∈ Ist.

The extension of ∼=perm to an equivalence for infinite action sequences is defined as follows. If α̃ = α1α2α3...

and β̃ = β1β2β3... are actions sequences in Actω, then α̃ ⊑perm β̃ if for all finite prefixes α1...αn of α̃

there exists a finite prefix β1...βm of β̃ with m ≥ n and a finite word γ̄ ∈ Act∗ such that

α1...αnγ̄ ∼=perm β1...βm

We then define the binary relation ∼=ω
perm on Actω by

α̃ ∼=ω
perm β̃ iff α̃ ⊑perm β̃ and β̃ ⊑perm α̃

Questions:

(a) Show that ∼=ω
perm is an equivalence.

Exercise 4 (5 points)

Consider the following definition:

Definition 1 Let TSi = (Si, Acti,→i, Ii, AP,Li) be transition systems over AP . A normed simulation
for (TS1, TS2) is a triple (R, ν1, ν2) consisting of a binary relation R ∈ S1 × S2 such that:

∀s1 ∈ I1.∃s2 ∈ I2.(s1, s2) ∈ R

and functions ν1, ν2 : S1 × S2 → N such that for all (s1, s2) ∈ R:

(I) L1(s1) = L2(s2)

(II) For all s′
1
∈ Post(s1), at least one of the following three conditions holds:

1) ∃s′
2
∈ Post(s2).(s

′

1
, s′

2
) ∈ R

2) (s′
1
, s2) ∈ R and ν1(s

′

1
, s2) < ν1(s1, s2)

3) ∃s′
2
∈ Post(s2).(s1, s

′

2
) ∈ R and ν2(s1, s

′

2
) < ν2(s1, s2)

A normed bisimulation for (TS1, TS2) is a normed simulation (R, ν1, ν2) for (TS1, TS2) such that
(R−1, ν−

1
, ν−

2
) is a normed simulation for (TS2, TS1). Here ν−

i denotes the function S2 × S1 → N that
results from νi by swapping the arguments, i.e. ν−

i (u, v) = νi(v, u) for all u ∈ S2 and v ∈ S1.

TS1 and TS2 are normed bisimilar, denoted TS1 ≈n TS2, if there exists a normed bisimulation for
(TS1, TS2).



Questions:

For two transition systems TS (left) and T̂ S (right) show that:
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(a) The ample sets ample(.) which reduce TS to T̂ S satisfy conditions (A1)-(A5).

(b) Provide a normed bisimulation for (TS, T̂S).


