

Exercises to the lecture “Advanced Model Checking”, winter term 2006**– Assignment 9 –**

The solutions are collected on Jan. 12th at the beginning of the exercise class.
Justify your answers!

Exercise 1**(4 points)**

For the given function:

$$F(x_0, \dots, x_{n-1}, a_0, \dots, a_{k-1}) = x_{|a|}$$

where $n = 2^k$, $\forall i \in 0 \dots n-1 : x_i = 0 \vee x_i = 1$, $\forall j \in 0 \dots k-1 : a_j = 0 \vee a_j = 1$ and $|a| = \sum_{j=0}^{k-1} a_j 2^j$, provide two ROBDDs, considering the following two variable orderings:

$$a_0, \dots, a_{k-1}, x_0, \dots, x_{n-1}$$

and

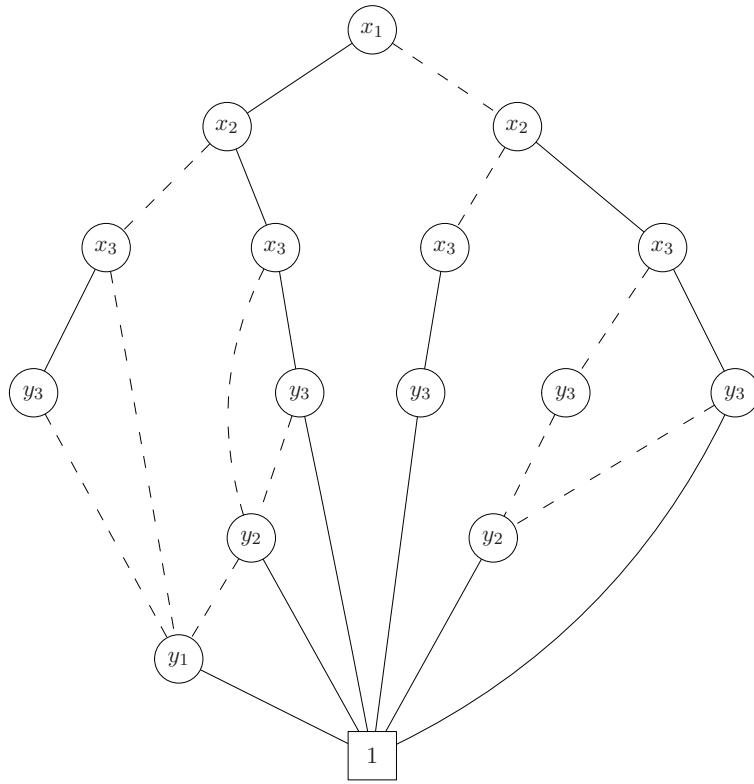
$$a_0, x_0, \dots, a_{k-1}, x_{k-1}, x_k, \dots, x_{n-1}$$

with $k = 3$.

Exercise 2**(4 points)**

Given an ROBDD as follows, determine the boolean function $f(x_1, x_2, x_3, y_1, y_2, y_3)$ it represents.

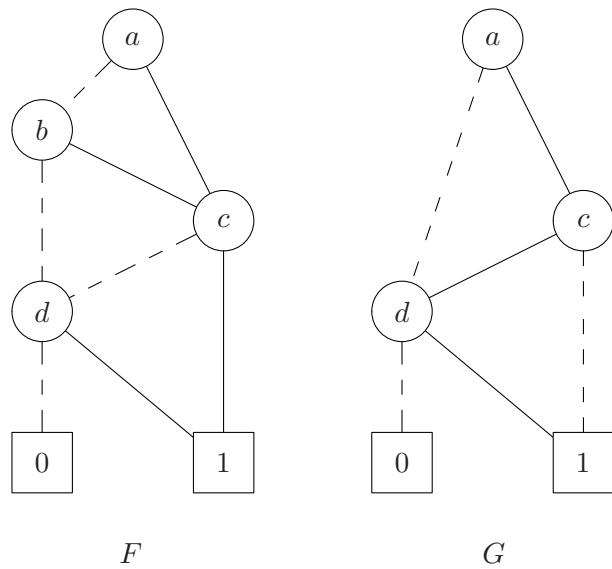
(Hint: first to find a better variable ordering)



Exercise 3

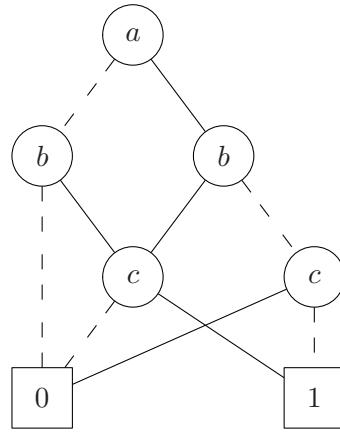
(4 points)

- Compute $APPLY(\vee, F, G)$ for the following ROBDDs:



Provide intermediate steps of the $APPLY$ algorithm.

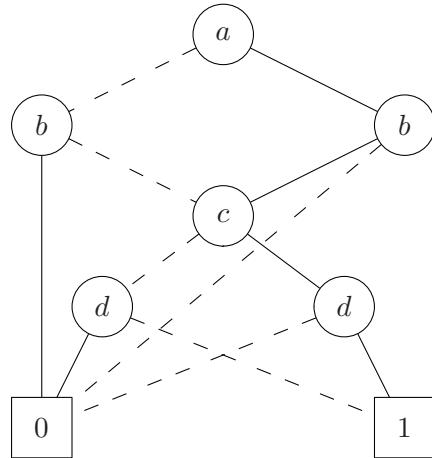
- Compute $RESTRICT(H, b, 1)$, given the ROBDD below:



H

Provide intermediate steps of the *RESTRICT* algorithm (the result should be an ROBDD).

- Compute $\exists a.(\exists d.f(a, b, c, d))$ in the form of ROBDD for the f function defined by the ROBDD below:

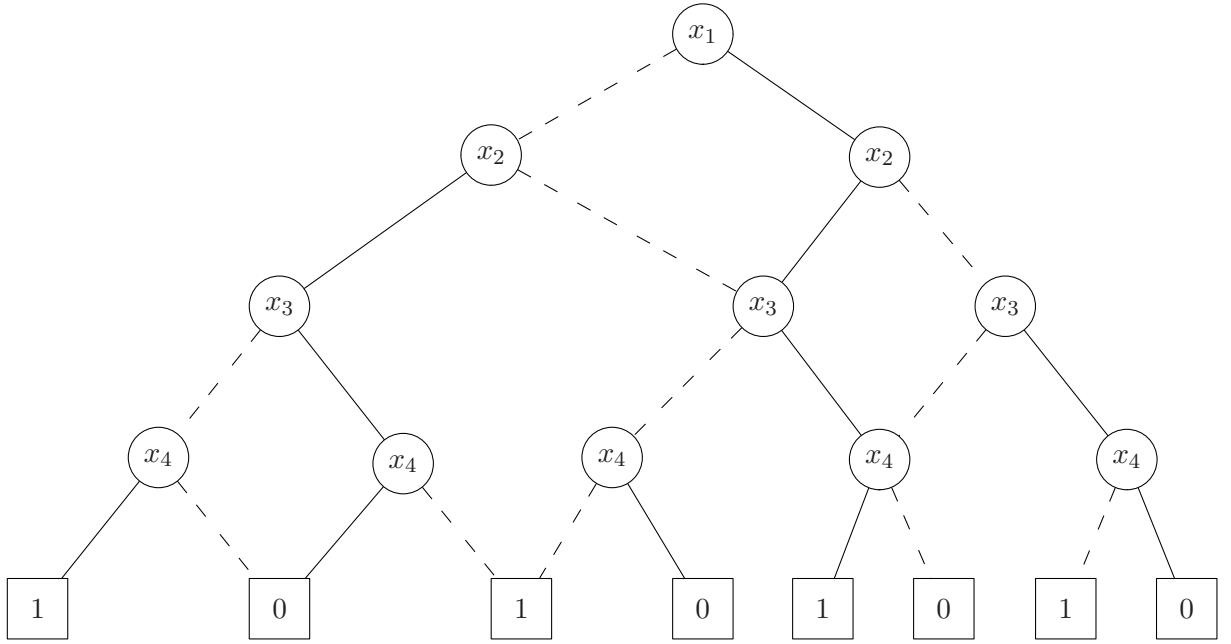


Provide intermediate steps.

Exercise 4

(3 points)

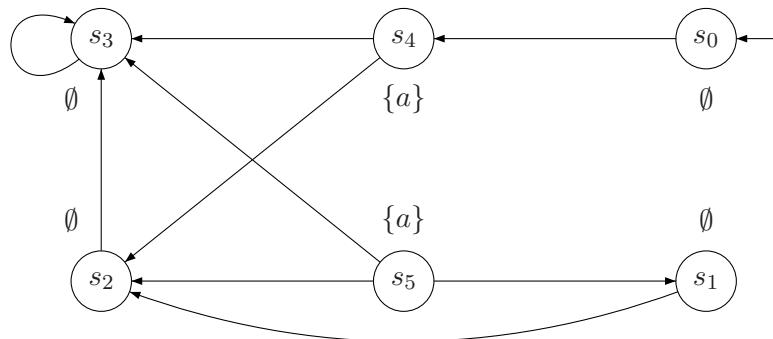
Reduce the following OBDD:



Exercise 5

(4 points)

Given a transition system TS as follows:



- (a) Encode TS by ROBDD;
- (b) Compute its strong bisimulation quotient TS / \sim ;
- (c) Encode TS / \sim by ROBDD using the same variable ordering. (Hint: The representative of an equivalence class is picked as the smallest index of all the states in that equivalence class.)

Merry Christmas and happy new year!!!

