
Nondeterminism, refinement and
probability

Annabelle McIver,
Macquarie University,

Sydney

Quick summary

• A short history of probabilistic programming;

• How to build the semantics you want in three easy
stages: general model building techniques;

• An application;

• The “refinement paradox”, and how probability can help
shed light.

Computations
Probability
Nondeterminism
(Refinement;
abstraction)

Program algebra;
Behavioural model;
Program logic;
Proof techniques;
Compositionality;
Tools.

But what does this all mean?
How do these things interact?

What applications are they good for?

What we want.

Powerdomains

(Originally) a general technique by which a semantic model
can be augmented to include nondeterminism in such a way
that the underlying computational structure of the original
model is maintained.

Functions,
S S

Relations,
S PS

Powerdomains

When we want to distinguish nontermination from other
behaviour, we introduce a special “bottom state”

How do we order the programs so that is worse than
everything, and reducing the range of behaviours corresponds
to “more refined”.

≤?

Powerdomains: the Smyth order

≤?

Automating refinement checking in probabilistic
system design

C. Gonzalia and A. McIver

Dept. Computer Science, Macquarie University, NSW 2109 Australia;
carlos, anabel@ics.mq.edu.au

Abstract. Refinement plays a crucial role in “top-down” styles of verifi-
cation, such as the refinement calculus, but for probabilistic systems proof
of refinement is a particularly challenging task due to the combination
of probability and nondeterminism which typically arises in partially-
specified systems.
Whilst the theory of probabilistic refinement is well-known [?] there are
few tools to help with establishing refinements between programs.
In this paper we describe a tool which provides partial support during
refinement proofs. The tool essentially builds small models of programs
using an algebraic rewriting system to extract the overall probabilis-
tic behaviour. We use that behaviour to recast refinement-checking as
a linear satisfiability problem, which can then be exported to a linear
arithmetic solver.
One of the major benefits of this approach is the ability to generate coun-
terexamples, alerting the prover to a problem in a proposed refinement.
We demonstrate the technique on a small case study based on Schneider
et al.’s Tank Monitoring [?].
Keywords: Probabilistic systems, probabilistic verification, algebraic
rewriting system for probability, refinement, linear satisfiability.

1 Introduction

A ≤S B iff (∀b ∈ B(∃a ∈ A · a ≤ b))

Automating refinement checking in probabilistic
system design

C. Gonzalia and A. McIver

Dept. Computer Science, Macquarie University, NSW 2109 Australia;
carlos, anabel@ics.mq.edu.au

Abstract. Refinement plays a crucial role in “top-down” styles of verifi-
cation, such as the refinement calculus, but for probabilistic systems proof
of refinement is a particularly challenging task due to the combination
of probability and nondeterminism which typically arises in partially-
specified systems.
Whilst the theory of probabilistic refinement is well-known [?] there are
few tools to help with establishing refinements between programs.
In this paper we describe a tool which provides partial support during
refinement proofs. The tool essentially builds small models of programs
using an algebraic rewriting system to extract the overall probabilis-
tic behaviour. We use that behaviour to recast refinement-checking as
a linear satisfiability problem, which can then be exported to a linear
arithmetic solver.
One of the major benefits of this approach is the ability to generate coun-
terexamples, alerting the prover to a problem in a proposed refinement.
We demonstrate the technique on a small case study based on Schneider
et al.’s Tank Monitoring [?].
Keywords: Probabilistic systems, probabilistic verification, algebraic
rewriting system for probability, refinement, linear satisfiability.

1 Introduction

A ≤S B iff (∀b ∈ B(∃a ∈ A · a ≤ b))

A ≤ B iff (⊥∈ A) ∨ (B ⊆ A)

Automating refinement checking in probabilistic
system design

C. Gonzalia and A. McIver

Dept. Computer Science, Macquarie University, NSW 2109 Australia;
carlos, anabel@ics.mq.edu.au

Abstract. Refinement plays a crucial role in “top-down” styles of verifi-
cation, such as the refinement calculus, but for probabilistic systems proof
of refinement is a particularly challenging task due to the combination
of probability and nondeterminism which typically arises in partially-
specified systems.
Whilst the theory of probabilistic refinement is well-known [?] there are
few tools to help with establishing refinements between programs.
In this paper we describe a tool which provides partial support during
refinement proofs. The tool essentially builds small models of programs
using an algebraic rewriting system to extract the overall probabilis-
tic behaviour. We use that behaviour to recast refinement-checking as
a linear satisfiability problem, which can then be exported to a linear
arithmetic solver.
One of the major benefits of this approach is the ability to generate coun-
terexamples, alerting the prover to a problem in a proposed refinement.
We demonstrate the technique on a small case study based on Schneider
et al.’s Tank Monitoring [?].
Keywords: Probabilistic systems, probabilistic verification, algebraic
rewriting system for probability, refinement, linear satisfiability.

1 Introduction

A ≤S B iff (∀b ∈ B(∃a ∈ A · a ≤ b))

A ≤S B iff (⊥∈ A) ∨ (B ⊆ A)

A ↑ =̂ {s ∈ S⊥ | (∃a ∈ A · a ≤ s}

In the flat domain, this becomes

Powerdomains: the Smyth order

Automating refinement checking in probabilistic
system design

C. Gonzalia and A. McIver

Dept. Computer Science, Macquarie University, NSW 2109 Australia;
carlos, anabel@ics.mq.edu.au

Abstract. Refinement plays a crucial role in “top-down” styles of verifi-
cation, such as the refinement calculus, but for probabilistic systems proof
of refinement is a particularly challenging task due to the combination
of probability and nondeterminism which typically arises in partially-
specified systems.
Whilst the theory of probabilistic refinement is well-known [?] there are
few tools to help with establishing refinements between programs.
In this paper we describe a tool which provides partial support during
refinement proofs. The tool essentially builds small models of programs
using an algebraic rewriting system to extract the overall probabilis-
tic behaviour. We use that behaviour to recast refinement-checking as
a linear satisfiability problem, which can then be exported to a linear
arithmetic solver.
One of the major benefits of this approach is the ability to generate coun-
terexamples, alerting the prover to a problem in a proposed refinement.
We demonstrate the technique on a small case study based on Schneider
et al.’s Tank Monitoring [?].
Keywords: Probabilistic systems, probabilistic verification, algebraic
rewriting system for probability, refinement, linear satisfiability.

1 Introduction

A ≤S B iff (∀b ∈ B(∃a ∈ A · a ≤ b))

A ≤S B iff (⊥∈ A) ∨ (B ⊆ A)

A ↑ =̂ {s ∈ S⊥ | (∃a ∈ A · a ≤ s}

becomes an order (rather than a pre-order) on up-closed
sets.

Automating refinement checking in probabilistic
system design

C. Gonzalia and A. McIver

Dept. Computer Science, Macquarie University, NSW 2109 Australia;
carlos, anabel@ics.mq.edu.au

Abstract. Refinement plays a crucial role in “top-down” styles of verifi-
cation, such as the refinement calculus, but for probabilistic systems proof
of refinement is a particularly challenging task due to the combination
of probability and nondeterminism which typically arises in partially-
specified systems.
Whilst the theory of probabilistic refinement is well-known [?] there are
few tools to help with establishing refinements between programs.
In this paper we describe a tool which provides partial support during
refinement proofs. The tool essentially builds small models of programs
using an algebraic rewriting system to extract the overall probabilis-
tic behaviour. We use that behaviour to recast refinement-checking as
a linear satisfiability problem, which can then be exported to a linear
arithmetic solver.
One of the major benefits of this approach is the ability to generate coun-
terexamples, alerting the prover to a problem in a proposed refinement.
We demonstrate the technique on a small case study based on Schneider
et al.’s Tank Monitoring [?].
Keywords: Probabilistic systems, probabilistic verification, algebraic
rewriting system for probability, refinement, linear satisfiability.

1 Introduction

A ≤S B iff (∀b ∈ B(∃a ∈ A · a ≤ b))

A ≤S B iff (⊥∈ A) ∨ (B ⊆ A)

A ↑ =̂ {s ∈ S⊥ | (∃a ∈ A · a ≤ s}

On up-closed sets,
refinement is simply
reverse subset
inclusion.

Automating refinement checking in probabilistic
system design

C. Gonzalia and A. McIver

Dept. Computer Science, Macquarie University, NSW 2109 Australia;
carlos, anabel@ics.mq.edu.au

Abstract. Refinement plays a crucial role in “top-down” styles of verifi-
cation, such as the refinement calculus, but for probabilistic systems proof
of refinement is a particularly challenging task due to the combination
of probability and nondeterminism which typically arises in partially-
specified systems.
Whilst the theory of probabilistic refinement is well-known [?] there are
few tools to help with establishing refinements between programs.
In this paper we describe a tool which provides partial support during
refinement proofs. The tool essentially builds small models of programs
using an algebraic rewriting system to extract the overall probabilis-
tic behaviour. We use that behaviour to recast refinement-checking as
a linear satisfiability problem, which can then be exported to a linear
arithmetic solver.
One of the major benefits of this approach is the ability to generate coun-
terexamples, alerting the prover to a problem in a proposed refinement.
We demonstrate the technique on a small case study based on Schneider
et al.’s Tank Monitoring [?].
Keywords: Probabilistic systems, probabilistic verification, algebraic
rewriting system for probability, refinement, linear satisfiability.

1 Introduction

A ≤S B iff (∀b ∈ B(∃a ∈ A · a ≤ b))

A ≤S B iff (⊥∈ A) ∨ (B ⊆ A)

A ↑ =̂ {s ∈ S⊥ | (∃a ∈ A · a ≤ s}

Probabilistic powerdomains

Given a structure (D, ≤), we can construct a powerdomain
(Eval.D, ≤) where objects are evaluations over D, and the
order is defined to make “appropriate distinctions”.

• Evaluations are real-valued functions which are defined over
the open sets of a (fixed) topology; under certain conditions
they can be extended to probability distributions.

• Computational domains can be reformulated in terms of
the Scott Topology: a set is Scott open if it is “up-closed”
and “inaccessible” (any limit of a chain inside the set can only
happen if the chain intersects the set).

Probabilistic powerdomains: Evaluations

⏊ ⏊

Automating refinement checking in probabilistic
system design

C. Gonzalia and A. McIver

Dept. Computer Science, Macquarie University, NSW 2109 Australia;
carlos, anabel@ics.mq.edu.au

Abstract. Refinement plays a crucial role in “top-down” styles of verifi-
cation, such as the refinement calculus, but for probabilistic systems proof
of refinement is a particularly challenging task due to the combination
of probability and nondeterminism which typically arises in partially-
specified systems.
Whilst the theory of probabilistic refinement is well-known [?] there are
few tools to help with establishing refinements between programs.
In this paper we describe a tool which provides partial support during
refinement proofs. The tool essentially builds small models of programs
using an algebraic rewriting system to extract the overall probabilis-
tic behaviour. We use that behaviour to recast refinement-checking as
a linear satisfiability problem, which can then be exported to a linear
arithmetic solver.
One of the major benefits of this approach is the ability to generate coun-
terexamples, alerting the prover to a problem in a proposed refinement.
We demonstrate the technique on a small case study based on Schneider
et al.’s Tank Monitoring [?].
Keywords: Probabilistic systems, probabilistic verification, algebraic
rewriting system for probability, refinement, linear satisfiability.

1 Introduction

A ≤S B iff (∀b ∈ B(∃a ∈ A · a ≤ b))

A ≤S B iff (⊥∈ A) ∨ (B ⊆ A)

A ↑ =̂ {s ∈ S⊥ | (∃a ∈ A · a ≤ s}

Eval.S⊥ =̂ OS⊥ → [0, 1]

d ≤ d′ iff (∀O ∈ OS⊥ · d.0 ≤ d′.O)

Monotone; additive

Automating refinement checking in probabilistic
system design

C. Gonzalia and A. McIver

Dept. Computer Science, Macquarie University, NSW 2109 Australia;
carlos, anabel@ics.mq.edu.au

Abstract. Refinement plays a crucial role in “top-down” styles of verifi-
cation, such as the refinement calculus, but for probabilistic systems proof
of refinement is a particularly challenging task due to the combination
of probability and nondeterminism which typically arises in partially-
specified systems.
Whilst the theory of probabilistic refinement is well-known [?] there are
few tools to help with establishing refinements between programs.
In this paper we describe a tool which provides partial support during
refinement proofs. The tool essentially builds small models of programs
using an algebraic rewriting system to extract the overall probabilis-
tic behaviour. We use that behaviour to recast refinement-checking as
a linear satisfiability problem, which can then be exported to a linear
arithmetic solver.
One of the major benefits of this approach is the ability to generate coun-
terexamples, alerting the prover to a problem in a proposed refinement.
We demonstrate the technique on a small case study based on Schneider
et al.’s Tank Monitoring [?].
Keywords: Probabilistic systems, probabilistic verification, algebraic
rewriting system for probability, refinement, linear satisfiability.

1 Introduction

A ≤S B iff (∀b ∈ B(∃a ∈ A · a ≤ b))

A ≤S B iff (⊥∈ A) ∨ (B ⊆ A)

A ↑ =̂ {s ∈ S⊥ | (∃a ∈ A · a ≤ s}

Eval.S⊥ =̂ OS⊥ → [0, 1]

d ≤ d′ iff (∀O ∈ OS⊥ · d.O ≤ d′.O)

Automating refinement checking in probabilistic
system design

C. Gonzalia and A. McIver

Dept. Computer Science, Macquarie University, NSW 2109 Australia;
carlos, anabel@ics.mq.edu.au

Abstract. Refinement plays a crucial role in “top-down” styles of verifi-
cation, such as the refinement calculus, but for probabilistic systems proof
of refinement is a particularly challenging task due to the combination
of probability and nondeterminism which typically arises in partially-
specified systems.
Whilst the theory of probabilistic refinement is well-known [?] there are
few tools to help with establishing refinements between programs.
In this paper we describe a tool which provides partial support during
refinement proofs. The tool essentially builds small models of programs
using an algebraic rewriting system to extract the overall probabilis-
tic behaviour. We use that behaviour to recast refinement-checking as
a linear satisfiability problem, which can then be exported to a linear
arithmetic solver.
One of the major benefits of this approach is the ability to generate coun-
terexamples, alerting the prover to a problem in a proposed refinement.
We demonstrate the technique on a small case study based on Schneider
et al.’s Tank Monitoring [?].
Keywords: Probabilistic systems, probabilistic verification, algebraic
rewriting system for probability, refinement, linear satisfiability.

1 Introduction

A ≤S B iff (∀b ∈ B(∃a ∈ A · a ≤ b))

A ≤S B iff (⊥∈ A) ∨ (B ⊆ A)

A ↑ =̂ {s ∈ S⊥ | (∃a ∈ A · a ≤ s}

Eval.S⊥ =̂ OS⊥ → [0, 1]

d ≤ d′ iff (∀O ∈ OS⊥ · d.O ≤ d′.O)

d ≤ d′ iff (∀s ∈ S · d.{s} ≤ d′.{s})

Probability can
increase up the

refinement order!

Probabilistic powerdomains: Semantics

Given a structure (D, ≤), we can construct a powerdomain
(Eval.D, ≤) where objects are evaluations over D, and the
order is defined to make “appropriate distinctions”.

Automating refinement checking in probabilistic
system design

C. Gonzalia and A. McIver

Dept. Computer Science, Macquarie University, NSW 2109 Australia;
carlos, anabel@ics.mq.edu.au

Abstract. Refinement plays a crucial role in “top-down” styles of verifi-
cation, such as the refinement calculus, but for probabilistic systems proof
of refinement is a particularly challenging task due to the combination
of probability and nondeterminism which typically arises in partially-
specified systems.
Whilst the theory of probabilistic refinement is well-known [?] there are
few tools to help with establishing refinements between programs.
In this paper we describe a tool which provides partial support during
refinement proofs. The tool essentially builds small models of programs
using an algebraic rewriting system to extract the overall probabilis-
tic behaviour. We use that behaviour to recast refinement-checking as
a linear satisfiability problem, which can then be exported to a linear
arithmetic solver.
One of the major benefits of this approach is the ability to generate coun-
terexamples, alerting the prover to a problem in a proposed refinement.
We demonstrate the technique on a small case study based on Schneider
et al.’s Tank Monitoring [?].
Keywords: Probabilistic systems, probabilistic verification, algebraic
rewriting system for probability, refinement, linear satisfiability.

1 Introduction

A ≤S B iff (∀b ∈ B(∃a ∈ A · a ≤ b))

A ≤S B iff (⊥∈ A) ∨ (B ⊆ A)

A ↑ =̂ {s ∈ S⊥ | (∃a ∈ A · a ≤ s}

Eval.S⊥ =̂ OS⊥ → [0, 1]

d ≤ d′ iff (∀O ∈ OS⊥ · d.O ≤ d′.O)

d ≤ d′ iff (∀s ∈ S · d.{s} ≤ d′.{s})

S⊥ → Eval.S⊥

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

Programs
Probabilistic choice

Sequence

Probabilistic powerdomains: Defining(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

Sequence

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

1/3⊕

2/3⊕

ε

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

Now we have all the ingredients for instant probabilistic
semantics.

“It’s marvelous! You just add water.”

• Next apply the Smyth construction
to introduce nondeterminism...

First try:

You will need a flat domain, the Smyth Powerdomain, and
the probabilistic powerdomain.

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

• Start with simple deterministic
computations with nontermination;

• Finally fold in probability, stirring
gently ...

Voila! But what is it?

• Probabilistic arithmetic

• Universal probabilistic
 distributivity

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

.... which implies this

What’s the chance that the demon can guess the value of x?

Probability versus nondeterminism

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

In this model, we can reproduce the demon’s choice
within each probabilistic branch....

Probability versus nondeterminism

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

.... effectively making the demon able to see into the future.

Whoops!

Next try:

You will need a flat domain, the Smyth Powerdomain, the
probabilistic powerdomain, and compactness and convexity.

• First add probability

• Next add nondeterminism

• We need some extra closure conditions:
 (a) up-closed - for termination.
 (b) Convex closed -
 (c) Compact - so that iteration can be approximated by
 “finite” computations.

As before, refinement is reverse subset inclusion.

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

Relational-style semantics for a small sequential language
1/3⊕

2/3⊕

ε

identity [[skip]].s =̂ {s}
assignment [[x := a]].s =̂ {s[x "→ a]}

composition [[P ;P ′]].s =̂ {
∑

s′ : S d.s′ × f ′.s′ | d ∈ [[P]].s; f ′ & [[P ′]]}
where f ′ ∈ S → S⊥ and in general f ′ & r′ means f ′.s ∈ r′.s for all s.

choice [[if B then P else P ′]].s =̂ if B.s then [[P]].s else [[P ′]].s
probability [[P p⊕ P ′]].s =̂ {d p⊕ d′ | d ∈ [[P]].s; d′ ∈ [[P ′]].s}

nondeterminism [[P ' P ′]].s =̂ ([[P]].s ∪ [[P ′]].s * ,
where in general (D* is the up-, convex- and Cauchy closure of D.

iteration do G → P od =̂ (µX · if G then [[P]];X else [[skip]]) .

Probabilistic models for the guarded command language.
He Ji Feng et al.
Special issue SCP containing selected papers
from the FMTA '95 conference (May 1995, Warsaw)

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

Some nice laws....

This nondeterminism (demon) can see what happened after a
coin flip, but not before.

What’s the chance that the demon can guess the value of x?

Probability versus nondeterminism

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

What’s the chance that the demon can guess the value of x?
Answer is 1/2.

Probability versus nondeterminism
(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

Geometrical interpretation.

a record of the results: we can rely on a strong correlation between the number
of A’s and B’s. However with Prog1 we cannot rely on an A,B-correlation, as
instead it might correlate B,C while ignoring A altogether.5

Prog0 =̂ (s := A 0.5⊕ s := B) " s := C (1)
Prog1 =̂ (s := A " s := C) 0.5⊕ (s := B " s := C) (2)

Figures 2,3 depict the relation between Prog0 and Prog1 according to the
semantics at Def. 1, in particular that they seem to be different. But it is not
easy to see this experimentally via counter-example: what concrete property
can we use to observe the difference? Indeed even if we tabulate, for the two
programs, both the maximum and minimum probabilities of all 6 non-trivial
result-sets, we get in Fig. 4 the same results for both programs.

Allowed final value(s) of s A B C A, B B, C C, A

Maximim possible probability 1/2 1/2 1 1 1 1
Minimim possible probability 0 0 0 0 1/2 1/2

The table illustrates the maximum and minimum probabilities for Prog0 and Prog1

with respect to all non-trivial choices of allowed outcome: the programs are not distin-
guishable this way. But in a larger context, they are: the composite programs

Prog0; if s=C then (s := A 0.5⊕ s := B) fi
and Prog1; if s=C then (s := A 0.5⊕ s := B) fi

are distinguished by the test s = A.
This is a failure of compositionality for such (limited) tests [14, App. A.1].

Fig. 4. Maximum and minimum probabilities.

The fallback position, that perhaps Prog0 and Prog1 are “observably” equal
at this level of abstraction, is not tenable either — for we can define a context
in which such simple tabulations do reveal the difference. Define the program
Prog2 to be the conditional if s=C then (s := A 0.5⊕ s := B) fi , and compare
Prog0;Prog2 with Prog1;Prog2. The former establishes s=A with probability 1/2;
the latter however can produce s=A with a probability as low as 1/4.5 again

5 If the 0.5⊕ goes left, take the " right — and vice versa.

Geometrical interpretation.

a record of the results: we can rely on a strong correlation between the number
of A’s and B’s. However with Prog1 we cannot rely on an A,B-correlation, as
instead it might correlate B,C while ignoring A altogether.5

Prog0 =̂ (s := A 0.5⊕ s := B) " s := C (1)
Prog1 =̂ (s := A " s := C) 0.5⊕ (s := B " s := C) (2)

Figures 2,3 depict the relation between Prog0 and Prog1 according to the
semantics at Def. 1, in particular that they seem to be different. But it is not
easy to see this experimentally via counter-example: what concrete property
can we use to observe the difference? Indeed even if we tabulate, for the two
programs, both the maximum and minimum probabilities of all 6 non-trivial
result-sets, we get in Fig. 4 the same results for both programs.

Allowed final value(s) of s A B C A, B B, C C, A

Maximim possible probability 1/2 1/2 1 1 1 1
Minimim possible probability 0 0 0 0 1/2 1/2

The table illustrates the maximum and minimum probabilities for Prog0 and Prog1

with respect to all non-trivial choices of allowed outcome: the programs are not distin-
guishable this way. But in a larger context, they are: the composite programs

Prog0; if s=C then (s := A 0.5⊕ s := B) fi
and Prog1; if s=C then (s := A 0.5⊕ s := B) fi

are distinguished by the test s = A.
This is a failure of compositionality for such (limited) tests [14, App. A.1].

Fig. 4. Maximum and minimum probabilities.

The fallback position, that perhaps Prog0 and Prog1 are “observably” equal
at this level of abstraction, is not tenable either — for we can define a context
in which such simple tabulations do reveal the difference. Define the program
Prog2 to be the conditional if s=C then (s := A 0.5⊕ s := B) fi , and compare
Prog0;Prog2 with Prog1;Prog2. The former establishes s=A with probability 1/2;
the latter however can produce s=A with a probability as low as 1/4.5 again

5 If the 0.5⊕ goes left, take the " right — and vice versa.

Plotted on the same
diagram, we can see
immediately the
relationship
between the two
programs.

Logic and properties: Generalising Hoare Logic

Properties are now
quantitative; use
random variables.

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

ES =̂ S → [0, 1]

e ≤ e′ = (∀s : S · e.s ≤ e′.s)

d ∈ EvalS⊥, e ∈ ES,

∫

d
e =̂

∑

s:S

d.s×e.s

wp.P.e.s =̂ (! d ∈ P.s ·
∫

d
e)

TS =̂ ES ← ES

TS ← PEvalS⊥

wp ◦ rp = id

rp ◦ wp = id

t.(e p⊕ e′) ≥ t.e p⊕ t.e′

t.(ke) = kt.e

t.(e− k) ≥ t.e− k

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

ES =̂ S → [0, 1]

e ≤ e′ = (∀s : S · e.s ≤ e′.s)

d ∈ EvalS⊥, e ∈ ES,

∫

d
e =̂

∑

s:S

d.s×e.s

wp.P.e.s =̂ (! d ∈ P.s ·
∫

d
e)

TS =̂ ES ← ES

TS ← PEvalS⊥

wp ◦ rp = id

rp ◦ wp = id

t.(e p⊕ e′) ≥ t.e p⊕ t.e′

t.(ke) = kt.e

t.(e− k) ≥ t.e− k

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

ES =̂ S → [0, 1]

e ≤ e′ = (∀s : S · e.s ≤ e′.s)

d ∈ EvalS⊥, e ∈ ES,

∫

d
e =̂

∑

s:S

d.s×e.s

wp.P.e.s =̂ (! d ∈ P.s ·
∫

d
e)

TS =̂ ES ← ES

TS ← PEvalS⊥

wp ◦ rp = id

rp ◦ wp = id

t.(e p⊕ e′) ≥ t.e p⊕ t.e′

t.(ke) = kt.e

t.(e− k) ≥ t.e− k

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

ES =̂ S → [0, 1]

e ≤ e′ = (∀s : S · e.s ≤ e′.s)

d ∈ EvalS⊥, e ∈ ES,

∫

d
e =̂

∑

s:S

d.s×e.s

wp.P.e.s =̂ (! d ∈ P.s ·
∫

d
e)

TS =̂ ES ← ES

TS ← PEvalS⊥

wp ◦ rp = id

rp ◦ wp = id

t.(e p⊕ e′) ≥ t.e p⊕ t.e′

t.(ke) = kt.e

t.(e− k) ≥ t.e− k

Greatest guaranteed expected value of e with respect to the
results of P from initial state s.

1/3⊕

2/3⊕

ε

identity [[skip]].s =̂ {s}
assignment [[x := a]].s =̂ {s[x "→ a]}

composition [[P ;P ′]].s =̂ {
∑

s′ : S d.s′ × f ′.s′ | d ∈ [[P]].s; f ′ & [[P ′]]}
where f ′ ∈ S → S⊥ and in general f ′ & r′ means f ′.s ∈ r′.s for all s.

choice [[if B then P else P ′]].s =̂ if B.s then [[P]].s else [[P ′]].s
probability [[P p⊕ P ′]].s =̂ {d p⊕ d′ | d ∈ [[P]].s; d′ ∈ [[P ′]].s}

nondeterminism [[P ' P ′]].s =̂ ([[P]].s ∪ [[P ′]].s * ,
where in general (D* is the up-, convex- and Cauchy closure of D.

iteration do G → P od =̂ (µX · if G then [[P]];X else [[skip]]) .

identity wp.skip.expt =̂ expt
assignment wp.(x := E).expt =̂ expt[x := E]
composition wp.(P ;P ′).expt =̂ wp.P.(wp.P ′.expt)
choice wp.(if B then P else P ′ fi).expt

=̂ [B]× wp.P.expt + [¬B]× wp.P ′.expt
probability wp.(P p⊕ P ′).expt

=̂ p× wp.P.expt + (1−p)× wp.P ′.expt
nondeterminism wp.(P ' P ′).expt =̂ wp.P.expt min wp.P ′.expt
iteration wp.(do B → r od).e =̂ (µX • [B]× wp.r.X + [¬B]× e) .

Transformer semantics for a small sequential language

Logic and properties:
the monotonic transformers

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

ES =̂ S → [0, 1]

e ≤ e′ = (∀s : S · e.s ≤ e′.s)

d ∈ EvalS⊥, e ∈ ES,

∫

d
e =̂

∑

s:S

d.s×e.s

wp.P.e.s =̂ (! d ∈ P.s ·
∫

d
e)

TS =̂ ES ← ES

TS ← PEvalS⊥

wp ◦ rp = id

rp ◦ wp = id

t.(e p⊕ e′) ≥ t.e p⊕ t.e′

t.(ke) = kt.e

t.(e− k) ≥ t.e− k

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

ES =̂ S → [0, 1]

e ≤ e′ = (∀s : S · e.s ≤ e′.s)

d ∈ EvalS⊥, e ∈ ES,

∫

d
e =̂

∑

s:S

d.s×e.s

wp.P.e.s =̂ (! d ∈ P.s ·
∫

d
e)

TS =̂ ES ← ES

TS ← PEvalS⊥

wp ◦ rp = id

rp ◦ wp = id

t.(e p⊕ e′) ≥ t.e p⊕ t.e′

t.(ke) = kt.e

t.(e− k) ≥ t.e− k

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

ES =̂ S → [0, 1]

e ≤ e′ = (∀s : S · e.s ≤ e′.s)

d ∈ EvalS⊥, e ∈ ES,

∫

d
e =̂

∑

s:S

d.s×e.s

wp.P.e.s =̂ (! d ∈ P.s ·
∫

d
e)

TS =̂ ES ← ES

TS ← PEvalS⊥

wp ◦ rp = id

rp ◦ wp = id

t.(e p⊕ e′) ≥ t.e p⊕ t.e′

t.(ke) = kt.e

t.(e− k) ≥ t.e− k

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

ES =̂ S → [0, 1]

e ≤ e′ = (∀s : S · e.s ≤ e′.s)

d ∈ EvalS⊥, e ∈ ES,

∫

d
e =̂

∑

s:S

d.s×e.s

wp.P.e.s =̂ (! d ∈ P.s ·
∫

d
e)

TS =̂ ES ← ES

t) t′ iff (∀e : ES · t.s ≤ t′.e)

TS ← PEvalS⊥

wp ◦ rp = id

rp ◦ wp = id






t.(e p⊕ e′) ≥ t.e p⊕ t.e′

t.(ke) = kt.e

t.(e− k) ≥ t.e− k

“Sublinear”, if

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

ES =̂ S → [0, 1]

e ≤ e′ = (∀s : S · e.s ≤ e′.s)

d ∈ EvalS⊥, e ∈ ES,

∫

d
e =̂

∑

s:S

d.s×e.s

wp.P.e.s =̂ (! d ∈ P.s ·
∫

d
e)

TS =̂ ES ← ES

t) t′ iff (∀e : ES · t.s ≤ t′.e)

TS ← PEvalS⊥

wp ◦ rp = id

rp ◦ wp = id






t.(e p⊕ e′) ≥ t.e p⊕ t.e′

t.(ke) = kt.e

t.(e− k) ≥ t.e− k

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

ES =̂ S → [0, 1]

e ≤ e′ = (∀s : S · e.s ≤ e′.s)

d ∈ EvalS⊥, e ∈ ES,

∫

d
e =̂

∑

s:S

d.s×e.s

wp.P.e.s =̂ (! d ∈ P.s ·
∫

d
e)

TS =̂ ES ← ES

t) t′ iff (∀e : ES · t.s ≤ t′.e)

TS ← PEvalS⊥

wp ◦ rp = id

rp ◦ wp = id






t.(e p⊕ e′) ≥ t.e p⊕ t.e′

t.(ke) = kt.e

t.(e− k) ≥ t.e− k

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

ES =̂ S → [0, 1]

e ≤ e′ = (∀s : S · e.s ≤ e′.s)

d ∈ EvalS⊥, e ∈ ES,

∫

d
e =̂

∑

s:S

d.s×e.s

wp.P.e.s =̂ (! d ∈ P.s ·
∫

d
e)

TS =̂ ES ← ES

t) t′ iff (∀e : ES · t.s ≤ t′.e)

TS ← PEvalS⊥

wp ◦ rp = id

rp ◦ wp = id






t.(e p⊕ e′) ≥ t.e p⊕ t.e′

t.(ke) = kt.e

t.(e− k) ≥ t.e− k

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

Geometrical interpretation:

Random variables are
“hyperplanes”.

1/3⊕

2/3⊕

ε

identity [[skip]].s =̂ {s}
assignment [[x := a]].s =̂ {s[x "→ a]}

composition [[P ;P ′]].s =̂ {
∑

s′ : S d.s′ × f ′.s′ | d ∈ [[P]].s; f ′ & [[P ′]]}
where f ′ ∈ S → S⊥ and in general f ′ & r′ means f ′.s ∈ r′.s for all s.

choice [[if B then P else P ′]].s =̂ if B.s then [[P]].s else [[P ′]].s
probability [[P p⊕ P ′]].s =̂ {d p⊕ d′ | d ∈ [[P]].s; d′ ∈ [[P ′]].s}

nondeterminism [[P ' P ′]].s =̂ ([[P]].s ∪ [[P ′]].s * ,
where in general (D* is the up-, convex- and Cauchy closure of D.

iteration do G → P od =̂ (µX · if G then [[P]];X else [[skip]]) .

identity wp.skip.expt =̂ expt
assignment wp.(x := E).expt =̂ expt[x := E]
composition wp.(P ;P ′).expt =̂ wp.P.(wp.P ′.expt)
choice wp.(if B then P else P ′ fi).expt

=̂ [B]× wp.P.expt + [¬B]× wp.P ′.expt
probability wp.(P p⊕ P ′).expt

=̂ p× wp.P.expt + (1−p)× wp.P ′.expt
nondeterminism wp.(P ' P ′).expt =̂ wp.P.expt min wp.P ′.expt
iteration wp.(do B → r od).e =̂ (µX • [B]× wp.r.X + [¬B]× e) .

wp.Prog1.(2[s = A] + [s = C]) = 1/2

wp.Prog0.(2[s = A] + [s = C]) = 1

1/3⊕

2/3⊕

ε

identity [[skip]].s =̂ {s}
assignment [[x := a]].s =̂ {s[x "→ a]}

composition [[P ;P ′]].s =̂ {
∑

s′ : S d.s′ × f ′.s′ | d ∈ [[P]].s; f ′ & [[P ′]]}
where f ′ ∈ S → S⊥ and in general f ′ & r′ means f ′.s ∈ r′.s for all s.

choice [[if B then P else P ′]].s =̂ if B.s then [[P]].s else [[P ′]].s
probability [[P p⊕ P ′]].s =̂ {d p⊕ d′ | d ∈ [[P]].s; d′ ∈ [[P ′]].s}

nondeterminism [[P ' P ′]].s =̂ ([[P]].s ∪ [[P ′]].s * ,
where in general (D* is the up-, convex- and Cauchy closure of D.

iteration do G → P od =̂ (µX · if G then [[P]];X else [[skip]]) .

identity wp.skip.expt =̂ expt
assignment wp.(x := E).expt =̂ expt[x := E]
composition wp.(P ;P ′).expt =̂ wp.P.(wp.P ′.expt)
choice wp.(if B then P else P ′ fi).expt

=̂ [B]× wp.P.expt + [¬B]× wp.P ′.expt
probability wp.(P p⊕ P ′).expt

=̂ p× wp.P.expt + (1−p)× wp.P ′.expt
nondeterminism wp.(P ' P ′).expt =̂ wp.P.expt min wp.P ′.expt
iteration wp.(do B → r od).e =̂ (µX • [B]× wp.r.X + [¬B]× e) .

wp.Prog1.(2[s = A] + [s = C]) = 1/2

wp.Prog0.(2[s = A] + [s = C]) = 1

It’s a question of compositionality:

Why so complicated: can’t we just have a whole logic
based on probabilities, rather than random variables?

a record of the results: we can rely on a strong correlation between the number
of A’s and B’s. However with Prog1 we cannot rely on an A,B-correlation, as
instead it might correlate B,C while ignoring A altogether.5

Prog0 =̂ (s := A 0.5⊕ s := B) " s := C (1)
Prog1 =̂ (s := A " s := C) 0.5⊕ (s := B " s := C) (2)

Figures 2,3 depict the relation between Prog0 and Prog1 according to the
semantics at Def. 1, in particular that they seem to be different. But it is not
easy to see this experimentally via counter-example: what concrete property
can we use to observe the difference? Indeed even if we tabulate, for the two
programs, both the maximum and minimum probabilities of all 6 non-trivial
result-sets, we get in Fig. 4 the same results for both programs.

Allowed final value(s) of s A B C A, B B, C C, A

Maximim possible probability 1/2 1/2 1 1 1 1
Minimim possible probability 0 0 0 0 1/2 1/2

The table illustrates the maximum and minimum probabilities for Prog0 and Prog1

with respect to all non-trivial choices of allowed outcome: the programs are not distin-
guishable this way. But in a larger context, they are: the composite programs

Prog0; if s=C then (s := A 0.5⊕ s := B) fi
and Prog1; if s=C then (s := A 0.5⊕ s := B) fi

are distinguished by the test s = A.
This is a failure of compositionality for such (limited) tests [14, App. A.1].

Fig. 4. Maximum and minimum probabilities.

The fallback position, that perhaps Prog0 and Prog1 are “observably” equal
at this level of abstraction, is not tenable either — for we can define a context
in which such simple tabulations do reveal the difference. Define the program
Prog2 to be the conditional if s=C then (s := A 0.5⊕ s := B) fi , and compare
Prog0;Prog2 with Prog1;Prog2. The former establishes s=A with probability 1/2;
the latter however can produce s=A with a probability as low as 1/4.5 again

5 If the 0.5⊕ goes left, take the " right — and vice versa.

a record of the results: we can rely on a strong correlation between the number
of A’s and B’s. However with Prog1 we cannot rely on an A,B-correlation, as
instead it might correlate B,C while ignoring A altogether.5

Prog0 =̂ (s := A 0.5⊕ s := B) " s := C (1)
Prog1 =̂ (s := A " s := C) 0.5⊕ (s := B " s := C) (2)

Figures 2,3 depict the relation between Prog0 and Prog1 according to the
semantics at Def. 1, in particular that they seem to be different. But it is not
easy to see this experimentally via counter-example: what concrete property
can we use to observe the difference? Indeed even if we tabulate, for the two
programs, both the maximum and minimum probabilities of all 6 non-trivial
result-sets, we get in Fig. 4 the same results for both programs.

Allowed final value(s) of s A B C A, B B, C C, A

Maximim possible probability 1/2 1/2 1 1 1 1
Minimim possible probability 0 0 0 0 1/2 1/2

The table illustrates the maximum and minimum probabilities for Prog0 and Prog1

with respect to all non-trivial choices of allowed outcome: the programs are not distin-
guishable this way. But in a larger context, they are: the composite programs

Prog0; if s=C then (s := A 0.5⊕ s := B) fi
and Prog1; if s=C then (s := A 0.5⊕ s := B) fi

are distinguished by the test s = A.
This is a failure of compositionality for such (limited) tests [14, App. A.1].

Fig. 4. Maximum and minimum probabilities.

The fallback position, that perhaps Prog0 and Prog1 are “observably” equal
at this level of abstraction, is not tenable either — for we can define a context
in which such simple tabulations do reveal the difference. Define the program
Prog2 to be the conditional if s=C then (s := A 0.5⊕ s := B) fi , and compare
Prog0;Prog2 with Prog1;Prog2. The former establishes s=A with probability 1/2;
the latter however can produce s=A with a probability as low as 1/4.5 again

5 If the 0.5⊕ goes left, take the " right — and vice versa.

A quantitative logic based on probabilities is not
compositional.

Consider the following “context”:

What’s the probability that the state is A finally?

a record of the results: we can rely on a strong correlation between the number
of A’s and B’s. However with Prog1 we cannot rely on an A,B-correlation, as
instead it might correlate B,C while ignoring A altogether.5

Prog0 =̂ (s := A 0.5⊕ s := B) " s := C (1)
Prog1 =̂ (s := A " s := C) 0.5⊕ (s := B " s := C) (2)

Figures 2,3 depict the relation between Prog0 and Prog1 according to the
semantics at Def. 1, in particular that they seem to be different. But it is not
easy to see this experimentally via counter-example: what concrete property
can we use to observe the difference? Indeed even if we tabulate, for the two
programs, both the maximum and minimum probabilities of all 6 non-trivial
result-sets, we get in Fig. 4 the same results for both programs.

Allowed final value(s) of s A B C A, B B, C C, A

Maximim possible probability 1/2 1/2 1 1 1 1
Minimim possible probability 0 0 0 0 1/2 1/2

The table illustrates the maximum and minimum probabilities for Prog0 and Prog1

with respect to all non-trivial choices of allowed outcome: the programs are not distin-
guishable this way. But in a larger context, they are: the composite programs

Prog0; if s=C then (s := A 0.5⊕ s := B) fi
and Prog1; if s=C then (s := A 0.5⊕ s := B) fi

are distinguished by the test s = A.
This is a failure of compositionality for such (limited) tests [14, App. A.1].

Fig. 4. Maximum and minimum probabilities.

The fallback position, that perhaps Prog0 and Prog1 are “observably” equal
at this level of abstraction, is not tenable either — for we can define a context
in which such simple tabulations do reveal the difference. Define the program
Prog2 to be the conditional if s=C then (s := A 0.5⊕ s := B) fi , and compare
Prog0;Prog2 with Prog1;Prog2. The former establishes s=A with probability 1/2;
the latter however can produce s=A with a probability as low as 1/4.5 again

5 If the 0.5⊕ goes left, take the " right — and vice versa.

1/2
1/4

As we have seen, the two programs can be distinguished in
the transformer semantics (by a random variable encoded as
an expectation).

The transformer semantics, based on full random variables,
is compositional.

1/3⊕

2/3⊕

ε

identity [[skip]].s =̂ {s}
assignment [[x := a]].s =̂ {s[x "→ a]}

composition [[P ;P ′]].s =̂ {
∑

s′ : S d.s′ × f ′.s′ | d ∈ [[P]].s; f ′ & [[P ′]]}
where f ′ ∈ S → S⊥ and in general f ′ & r′ means f ′.s ∈ r′.s for all s.

choice [[if B then P else P ′]].s =̂ if B.s then [[P]].s else [[P ′]].s
probability [[P p⊕ P ′]].s =̂ {d p⊕ d′ | d ∈ [[P]].s; d′ ∈ [[P ′]].s}

nondeterminism [[P ' P ′]].s =̂ ([[P]].s ∪ [[P ′]].s * ,
where in general (D* is the up-, convex- and Cauchy closure of D.

iteration do G → P od =̂ (µX · if G then [[P]];X else [[skip]]) .

identity wp.skip.expt =̂ expt
assignment wp.(x := E).expt =̂ expt[x := E]
composition wp.(P ;P ′).expt =̂ wp.P.(wp.P ′.expt)
choice wp.(if B then P else P ′ fi).expt

=̂ [B]× wp.P.expt + [¬B]× wp.P ′.expt
probability wp.(P p⊕ P ′).expt

=̂ p× wp.P.expt + (1−p)× wp.P ′.expt
nondeterminism wp.(P ' P ′).expt =̂ wp.P.expt min wp.P ′.expt
iteration wp.(do B → r od).e =̂ (µX • [B]× wp.r.X + [¬B]× e) .

wp.Prog1.(2[s = A] + [s = C]) = 1/2

wp.Prog0.(2[s = A] + [s = C]) = 1

1/3⊕

2/3⊕

ε

identity [[skip]].s =̂ {s}
assignment [[x := a]].s =̂ {s[x "→ a]}

composition [[P ;P ′]].s =̂ {
∑

s′ : S d.s′ × f ′.s′ | d ∈ [[P]].s; f ′ & [[P ′]]}
where f ′ ∈ S → S⊥ and in general f ′ & r′ means f ′.s ∈ r′.s for all s.

choice [[if B then P else P ′]].s =̂ if B.s then [[P]].s else [[P ′]].s
probability [[P p⊕ P ′]].s =̂ {d p⊕ d′ | d ∈ [[P]].s; d′ ∈ [[P ′]].s}

nondeterminism [[P ' P ′]].s =̂ ([[P]].s ∪ [[P ′]].s * ,
where in general (D* is the up-, convex- and Cauchy closure of D.

iteration do G → P od =̂ (µX · if G then [[P]];X else [[skip]]) .

identity wp.skip.expt =̂ expt
assignment wp.(x := E).expt =̂ expt[x := E]
composition wp.(P ;P ′).expt =̂ wp.P.(wp.P ′.expt)
choice wp.(if B then P else P ′ fi).expt

=̂ [B]× wp.P.expt + [¬B]× wp.P ′.expt
probability wp.(P p⊕ P ′).expt

=̂ p× wp.P.expt + (1−p)× wp.P ′.expt
nondeterminism wp.(P ' P ′).expt =̂ wp.P.expt min wp.P ′.expt
iteration wp.(do B → r od).e =̂ (µX • [B]× wp.r.X + [¬B]× e) .

wp.Prog1.(2[s = A] + [s = C]) = 1/2

wp.Prog0.(2[s = A] + [s = C]) = 1

A nice proof rule, proved using the
transformer semantics:
wp.((s := 0 ! s := 2) 1./2⊕ (s := 1 ! s := 2)).([s = 1] + [s = 2]/2) = 1/4

Consider a program loop defined

do G → body od

with predicate G its guard. We say that expectation I is an invariant of loop just
when

[G]×I ≤ wp.body.I

T =̂ wp.(do G → body od).1

I ≤ T ⇒ I ≤ wp.(do G → body od).I

wp.((s := 0 ! s := 2) 1./2⊕ (s := 1 ! s := 2)).([s = 1] + [s = 2]/2) = 1/4

Consider a program loop defined

do G → body od

with predicate G its guard. We say that expectation I is an invariant of loop just
when

[G]×I ≤ wp.body.I

T =̂ wp.(do G → body od).1

I ≤ T ⇒ I ≤ wp.(do G → body od).I

A loop:

An invariant:

wp.((s := 0 ! s := 2) 1./2⊕ (s := 1 ! s := 2)).([s = 1] + [s = 2]/2) = 1/4

Consider a program loop defined

do G → body od

with predicate G its guard. We say that expectation I is an invariant of loop just
when

[G]×I ≤ wp.body.I

T =̂ wp.(do G → body od).1

I ≤ T ⇒ I ≤ wp.(do G → body od).I

wp.((s := 0 ! s := 2) 1./2⊕ (s := 1 ! s := 2)).([s = 1] + [s = 2]/2) = 1/4

Consider a program loop defined

do G → body od

with predicate G its guard. We say that expectation I is an invariant of loop just
when

[G]×I ≤ wp.body.I

T =̂ wp.(do G → body od).1

I ≤ T ⇒ I ≤ wp.(do G → body od).I

Termination condition:

A rule:

The “jumping bean” : specification.

2/3

1/3 1/2

1/2

1/2

1/2

6/10

3/10

1/10

wp.((s := 0 ! s := 2) 1./2⊕ (s := 1 ! s := 2)).([s = 1] + [s = 2]/2) = 1/4

Consider a program loop defined

do G → body od

with predicate G its guard. We say that expectation I is an invariant of loop just
when

[G]×I ≤ wp.body.I

T =̂ wp.(do G → body od).1

I ≤ T ⇒ I ≤ wp.(do G → body od).I

[n = N] ≤ 'wp.jump.[n (= N])

[n = N] ≤ wp.jump.[N−K ≤ n ≤ N+K]

n ≤ wp.jump.n

The bean
must move...

wp.((s := 0 ! s := 2) 1./2⊕ (s := 1 ! s := 2)).([s = 1] + [s = 2]/2) = 1/4

Consider a program loop defined

do G → body od

with predicate G its guard. We say that expectation I is an invariant of loop just
when

[G]×I ≤ wp.body.I

T =̂ wp.(do G → body od).1

I ≤ T ⇒ I ≤ wp.(do G → body od).I

[n = N] ≤ 'wp.jump.[n (= N])

[n = N] ≤ wp.jump.[N−K ≤ n ≤ N+K]

n ≤ wp.jump.n
The bean
can’t move
too much...

(K is a fixed
constant.)

wp.((s := 0 ! s := 2) 1./2⊕ (s := 1 ! s := 2)).([s = 1] + [s = 2]/2) = 1/4

Consider a program loop defined

do G → body od

with predicate G its guard. We say that expectation I is an invariant of loop just
when

[G]×I ≤ wp.body.I

T =̂ wp.(do G → body od).1

I ≤ T ⇒ I ≤ wp.(do G → body od).I

[n = N] ≤ 'wp.jump.[n (= N])

[n = N] ≤ wp.jump.[N−K ≤ n ≤ N+K]

n ≤ wp.jump.n The expected
move is at
least 0.

The “jumping bean”.

2/3

1/3 1/2

1/2

1/2

1/2

6/10

3/10

1/10

wp.((s := 0 ! s := 2) 1./2⊕ (s := 1 ! s := 2)).([s = 1] + [s = 2]/2) = 1/4

Consider a program loop defined

do G → body od

with predicate G its guard. We say that expectation I is an invariant of loop just
when

[G]×I ≤ wp.body.I

T =̂ wp.(do G → body od).1

I ≤ T ⇒ I ≤ wp.(do G → body od).I

[n = N] ≤ 'wp.jump.[n (= N])

[n = N] ≤ wp.jump.[N−K ≤ n ≤ N+K]

n ≤ wp.jump.n

Bean =̂ wp.(do (n ≤ N) → jump od)

1 = wp.Bean.[n > N]

wp.((s := 0 ! s := 2) 1./2⊕ (s := 1 ! s := 2)).([s = 1] + [s = 2]/2) = 1/4

Consider a program loop defined

do G → body od

with predicate G its guard. We say that expectation I is an invariant of loop just
when

[G]×I ≤ wp.body.I

T =̂ wp.(do G → body od).1

I ≤ T ⇒ I ≤ wp.(do G → body od).I

[n = N] ≤ 'wp.jump.[n (= N])

[n = N] ≤ wp.jump.[N−K ≤ n ≤ N+K]

n ≤ wp.jump.n

Bean =̂ wp.(do (n ≤ N) → jump od)

1 = wp.Bean.[n > N]

The bean continues
to jump, until it
exceeds N.

The conditions on
its behaviour
guarantee that it will
eventually exceed
any bound.

Exercise: use the properties of the
transformers to prove this. (Should be
about 10 lines of proof.)

Automated invariant generation.

Usually the user/prover must supply the loop
invariants to enable programs to be verified.

For certain classes of invariants/programs we can
automate the process:

• Linear invariants and linear programs;
• Wp- under these conditions preserves linearity;
• Reduce searching for invariants to the solution of
linear equations.

Probability versus nondeterminism:

wp.((s := 0 ! s := 2) 1./2⊕ (s := 1 ! s := 2)).([s = 1] + [s = 2]/2) = 1/4

Consider a program loop defined

do G → body od

with predicate G its guard. We say that expectation I is an invariant of loop just
when

[G]×I ≤ wp.body.I

T =̂ wp.(do G → body od).1

I ≤ T ⇒ I ≤ wp.(do G → body od).I

[n = N] ≤ 'wp.jump.[n (= N])

[n = N] ≤ wp.jump.[N−K ≤ n ≤ N+K]

n ≤ wp.jump.n

Bean =̂ wp.(do (n ≤ N) → jump od)

1 = wp.Bean.[n > N]

(x := 0 ! x := 1); (y := 0 1/2⊕ y := 1)

= (x := 0 ! x := 1); (y := 0)
1/2⊕
(x := 0 ! x := 1); y := 1)

(y := 0 1/2⊕ y := 1); (x := 0 ! x := 1)

= (y := 0 1/2⊕ y := 1);x := 0
!

(y := 0 1/2⊕ y := 1);x := 1

(y := 0 1/2⊕ y := 1); (x := 0 ! x := 1)

= y := 0; (x := 0 ! x := 1)
1/2⊕
y := 1; (x := 0 ! x := 1)

The demon can
predict the future.

wp.((s := 0 ! s := 2) 1./2⊕ (s := 1 ! s := 2)).([s = 1] + [s = 2]/2) = 1/4

Consider a program loop defined

do G → body od

with predicate G its guard. We say that expectation I is an invariant of loop just
when

[G]×I ≤ wp.body.I

T =̂ wp.(do G → body od).1

I ≤ T ⇒ I ≤ wp.(do G → body od).I

[n = N] ≤ 'wp.jump.[n (= N])

[n = N] ≤ wp.jump.[N−K ≤ n ≤ N+K]

n ≤ wp.jump.n

Bean =̂ wp.(do (n ≤ N) → jump od)

1 = wp.Bean.[n > N]

(x := 0 ! x := 1); (y := 0 1/2⊕ y := 1)

= (x := 0 ! x := 1); (y := 0)
1/2⊕
(x := 0 ! x := 1); y := 1)

(y := 0 1/2⊕ y := 1); (x := 0 ! x := 1)

= (y := 0 1/2⊕ y := 1);x := 0
!

(y := 0 1/2⊕ y := 1);x := 1

(y := 0 1/2⊕ y := 1); (x := 0 ! x := 1)

= y := 0; (x := 0 ! x := 1)
1/2⊕
y := 1; (x := 0 ! x := 1)

The demon can
access the past.

Probability versus nondeterminism:

Smyth powerdomain, for
nondeterminism; then the
probabilistic powerdomain on top
of that.

The demon can
access the past.

The demon can
predict the future.

Probabilistic powerdomain to make
 then the Smyth
powerdomain to make,
with a special definition of “;”

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Prob distributes over nondet

= (y := 0 ! y := 1);x := 0 1/2⊕ (y := 0 ! y := 1);x := 1

(y := 0 ! y := 1); (x := 0 1/2⊕ x := 1) Nondet distributes over prob

= (y := 0); (x := 0 1/2⊕ x := 1) ! (y := 1); (x := 0 1/2⊕ x := 1)

ES =̂ S → [0, 1]

e ≤ e′ = (∀s : S · e.s ≤ e′.s)

d ∈ EvalS⊥, e ∈ ES,

∫

d
e =̂

∑

s:S

d.s×e.s

wp.P.e.s =̂ (! d ∈ P.s ·
∫

d
e)

TS =̂ ES ← ES

t) t′ iff (∀e : ES · t.s ≤ t′.e)

TS ← PEvalS⊥

wp ◦ rp = id

rp ◦ wp = id






t.(e p⊕ e′) ≥ t.e p⊕ t.e′

t.(ke) = kt.e

t.(e− k) ≥ t.e− k

Prog =̂ if (s = 2) then (s := 3 1/2⊕ s := 4) else s := 3

;Prog

wp.(s := 0s⊕ := 1) ! s := 2).([s = 1] + [s = 2]/2) = 1/2

(P p⊕Q).s =̂ p×P.s + (1−p)×Q.s

P ;Q =̂ P ◦Q†

Q† : Eval.S⊥ → Eval.S⊥
Q†.d =̂

∑
s:S(d.s)×Q.s

(S⊥ → S⊥,&)

(S⊥ → PS⊥,&S)

(Eval.(S⊥ → PS⊥),&S)

(P p⊕Q) ' R = (P ' R) p⊕ (Q ' R)

(P p⊕Q) q⊕R = P pq⊕ (Q (1−p)q
1−pq

⊕R)

P ' P
= (a 1/2⊕ b) ' (a 1/2⊕ b) P =̂ a 1/2⊕ b

= (a ' (a 1/2⊕ b)) 1/2⊕ (b ' (a 1/2⊕ b)) Distribution

= (a ' a) 1/4⊕ ((b ' b) 1/3⊕ (a ' b) Distribution, arithmetic

= a 1/4⊕ (b 1/3⊕ (a ' b) a " a = a

(= P P =̂ a 1/2⊕ b

(Eval.S⊥,≤)

(S⊥ → PEval.S⊥,&P)

P p⊕ P = P

P ' P = P (P ' Q) p⊕ (P ' R) &P P ' (Q p⊕R)

P ' P &P P p⊕ P = P P p⊕ (Q ' R) = (P p⊕Q) ' (P p⊕R)

P ; (Q p⊕R) &P P ;Q p⊕ P ;R

(Q p⊕R);P = (Q;P p⊕R;P)

(x := 0 1/2⊕ x := 1); (y := 0 ' y := 1)

(y := 0 ' y := 1); (x := 0 1/2⊕ x := 1)

Suppose we wanted to prevent the demon
from accessing the past, i.e.

wp.((s := 0 ! s := 2) 1./2⊕ (s := 1 ! s := 2)).([s = 1] + [s = 2]/2) = 1/4

Consider a program loop defined

do G → body od

with predicate G its guard. We say that expectation I is an invariant of loop just
when

[G]×I ≤ wp.body.I

T =̂ wp.(do G → body od).1

I ≤ T ⇒ I ≤ wp.(do G → body od).I

[n = N] ≤ 'wp.jump.[n (= N])

[n = N] ≤ wp.jump.[N−K ≤ n ≤ N+K]

n ≤ wp.jump.n

Bean =̂ wp.(do (n ≤ N) → jump od)

1 = wp.Bean.[n > N]

(x := 0 ! x := 1); (y := 0 1/2⊕ y := 1)

= (x := 0 ! x := 1); (y := 0)
1/2⊕
(x := 0 ! x := 1); y := 1)

(y := 0 1/2⊕ y := 1); (x := 0 ! x := 1)

= (y := 0 1/2⊕ y := 1);x := 0
!

(y := 0 1/2⊕ y := 1);x := 1

(y := 0 1/2⊕ y := 1); (x := 0 ! x := 1)

= y := 0; (x := 0 ! x := 1)
1/2⊕
y := 1; (x := 0 ! x := 1)

How would we build a semantic domain justifying
this algebraic property?

Suppose we wanted to prevent the demon
from accessing the past, i.e.

Key thing is to define the sequence operator so that
it doesn’t “split up” the probabilistic results.

Use the probabilistic powerdomain
to build ,
and then the Smyth powerdomain
 to build

(y := 0 1/2⊕ y := 1); (x := 0 " x := 1)

= y := 0; (x := 0 " x := 1)
1/2⊕
y := 1; (x := 0 " x := 1)

Eval.S⊥ → Eval.S⊥

Eval.S⊥ → PEval.S⊥

(y := 0 1/2⊕ y := 1); (x := 0 " x := 1)

= y := 0; (x := 0 " x := 1)
1/2⊕
y := 1; (x := 0 " x := 1)

Eval.S⊥ → Eval.S⊥

Eval.S⊥ → PEval.S⊥

Properties of the logic/algebra in the context where “hidden
state” is an issue are hard to get right, even when there
are no probabilities.

It turns out to be a really hard problem to find a
formalisation which behaves properly for refinement

The “refinement paradox”

1/3⊕

2/3⊕

ε

identity [[skip]].s =̂ {s}
assignment [[x := a]].s =̂ {s[x "→ a]}

composition [[P ;P ′]].s =̂ {
∑

s′ : S d.s′ × f ′.s′ | d ∈ [[P]].s; f ′ & [[P ′]]}
where f ′ ∈ S → S⊥ and in general f ′ & r′ means f ′.s ∈ r′.s for all s.

choice [[if B then P else P ′]].s =̂ if B.s then [[P]].s else [[P ′]].s
probability [[P p⊕ P ′]].s =̂ {d p⊕ d′ | d ∈ [[P]].s; d′ ∈ [[P ′]].s}

nondeterminism [[P ' P ′]].s =̂ ([[P]].s ∪ [[P ′]].s * ,
where in general (D* is the up-, convex- and Cauchy closure of D.

iteration do G → P od =̂ (µX · if G then [[P]];X else [[skip]]) .

identity wp.skip.expt =̂ expt
assignment wp.(x := E).expt =̂ expt[x := E]
composition wp.(P ;P ′).expt =̂ wp.P.(wp.P ′.expt)
choice wp.(if B then P else P ′ fi).expt

=̂ [B]× wp.P.expt + [¬B]× wp.P ′.expt
probability wp.(P p⊕ P ′).expt

=̂ p× wp.P.expt + (1−p)× wp.P ′.expt
nondeterminism wp.(P ' P ′).expt =̂ wp.P.expt min wp.P ′.expt
iteration wp.(do B → r od).e =̂ (µX • [B]× wp.r.X + [¬B]× e) .

wp.Prog1.(2[s = A] + [s = C]) = 1/2

wp.Prog0.(2[s = A] + [s = C]) = 1

h

l

h :∈ {0, . . . ,H}

h :∈ {0, . . . ,H} & h := 0

1/3⊕

2/3⊕

ε

identity [[skip]].s =̂ {s}
assignment [[x := a]].s =̂ {s[x "→ a]}

composition [[P ;P ′]].s =̂ {
∑

s′ : S d.s′ × f ′.s′ | d ∈ [[P]].s; f ′ & [[P ′]]}
where f ′ ∈ S → S⊥ and in general f ′ & r′ means f ′.s ∈ r′.s for all s.

choice [[if B then P else P ′]].s =̂ if B.s then [[P]].s else [[P ′]].s
probability [[P p⊕ P ′]].s =̂ {d p⊕ d′ | d ∈ [[P]].s; d′ ∈ [[P ′]].s}

nondeterminism [[P ' P ′]].s =̂ ([[P]].s ∪ [[P ′]].s * ,
where in general (D* is the up-, convex- and Cauchy closure of D.

iteration do G → P od =̂ (µX · if G then [[P]];X else [[skip]]) .

identity wp.skip.expt =̂ expt
assignment wp.(x := E).expt =̂ expt[x := E]
composition wp.(P ;P ′).expt =̂ wp.P.(wp.P ′.expt)
choice wp.(if B then P else P ′ fi).expt

=̂ [B]× wp.P.expt + [¬B]× wp.P ′.expt
probability wp.(P p⊕ P ′).expt

=̂ p× wp.P.expt + (1−p)× wp.P ′.expt
nondeterminism wp.(P ' P ′).expt =̂ wp.P.expt min wp.P ′.expt
iteration wp.(do B → r od).e =̂ (µX • [B]× wp.r.X + [¬B]× e) .

wp.Prog1.(2[s = A] + [s = C]) = 1/2

wp.Prog0.(2[s = A] + [s = C]) = 1

h

l

h :∈ {0, . . . ,H}

h :∈ {0, . . . ,H} & h := 0

“High security” variables (are “private”)

“Low security” variables (are “public”)

“Obviously” we want to make sure that going up the
refinement order preserves our security properties.

