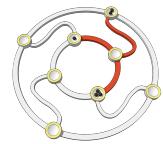


Nondeterminism, refinement and probability



Annabelle McIver,
Macquarie University,
Sydney

Quick summary

- A short history of probabilistic programming;
- How to build the semantics you want in three easy stages: general model building techniques;
- An application;
- The “refinement paradox”, and how probability can help shed light.

What we want.

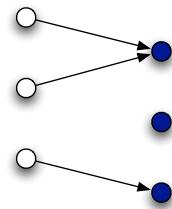
Computations
Probability
Nondeterminism
(Refinement;
abstraction)

Program algebra;
Behavioural model;
Program logic;
Proof techniques;
Compositionality;
Tools.

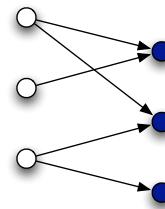
But what does this all mean?
How do these things interact?
What applications are they good for?

Powerdomains

(Originally) a general technique by which a semantic model can be augmented to include nondeterminism in such a way that the underlying computational structure of the original model is maintained.



Functions,
 $S \rightarrow S$

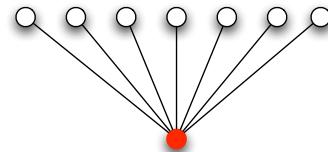
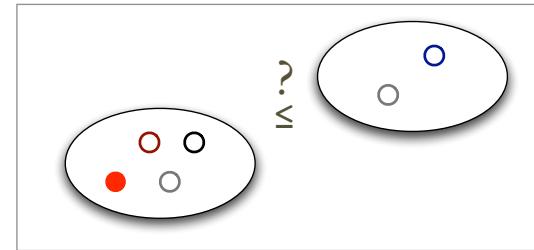


Relations,
 $S \rightarrow PS$

Powerdomains

When we want to distinguish nontermination from other behaviour, we introduce a special “bottom state” \bullet

How do we order the programs so that \bullet is worse than everything, and reducing the range of behaviours corresponds to “more refined”.

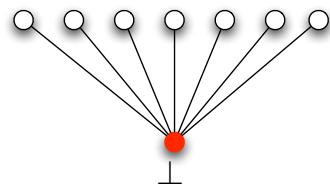
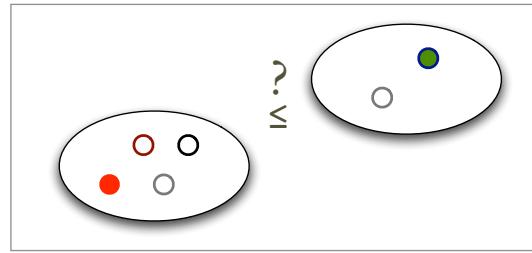


Powerdomains: the Smyth order

$$A \leq_S B \quad \text{iff} \quad (\forall b \in B (\exists a \in A \cdot a \leq b))$$

In the flat domain, this becomes

$$A \leq_S B \quad \text{iff} \quad (\perp \in A) \vee (B \subseteq A)$$

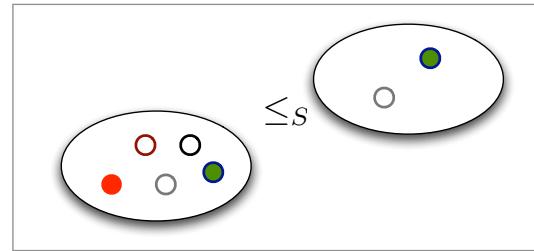


Powerdomains: the Smyth order

$$A \uparrow \quad \hat{=} \quad \{s \in S_{\perp} \mid (\exists a \in A \cdot a \leq s)\}$$

\leq_S becomes an order (rather than a pre-order) on up-closed sets.

On up-closed sets,
refinement is simply
reverse subset
inclusion.

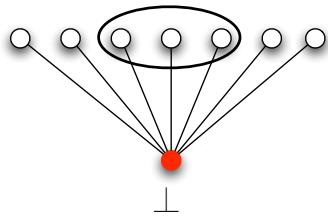


Probabilistic powerdomains

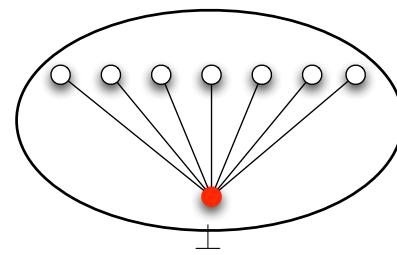
Given a structure (D, \leq) , we can construct a powerdomain $(\text{Eval.} D, \leq)$ where objects are evaluations over D , and the order is defined to make “appropriate distinctions”.

- Evaluations are real-valued functions which are defined over the open sets of a (fixed) topology; under certain conditions they can be extended to probability distributions.
- Computational domains can be reformulated in terms of the Scott Topology: a set is Scott open if it is “up-closed” and “inaccessible” (any limit of a chain inside the set can only happen if the chain intersects the set).

Probabilistic powerdomains: Evaluations



$$Eval. S_{\perp} \doteq \mathcal{O}S_{\perp} \rightarrow [0, 1]$$



Monotone; additive

$$d \leq d' \quad \text{iff} \quad (\forall O \in \mathcal{O}S_{\perp} \cdot d.O \leq d'.O)$$

$$d \leq d' \quad \text{iff} \quad (\forall s \in S \cdot d.\{s\} \leq d'.\{s\})$$

Probability can
increase up the
refinement order!

Probabilistic powerdomains: Semantics

Given a structure (D, \leq) , we can construct a powerdomain $(\text{Eval}.D, \leq)$ where objects are evaluations over D , and the order is defined to make “appropriate distinctions”.

$$\text{Programs} \quad S_{\perp} \rightarrow \text{Eval}.S_{\perp}$$

$$\text{Probabilistic choice} \quad (P_p \oplus Q).s \quad \hat{=} \quad p \times P.s + (1-p) \times Q.s$$

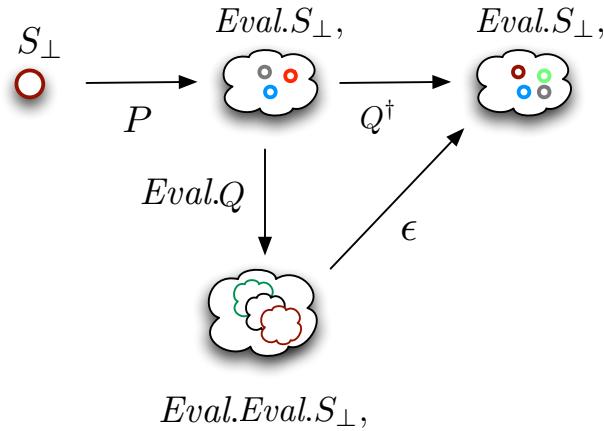
$$\text{Sequence} \quad P; Q \quad \hat{=} \quad P \circ Q^{\dagger}$$

$$\begin{aligned} Q^{\dagger} &: \text{Eval}.S_{\perp} \rightarrow \text{Eval}.S_{\perp} \\ Q^{\dagger}.d &\quad \hat{=} \quad \sum_{s:S} (d.s) \times Q.s \end{aligned}$$

Probabilistic powerdomains: Defining Q^\dagger

Sequence

$$P; Q \quad \hat{=} \quad P \circ Q^\dagger$$



Now we have all the ingredients for instant probabilistic semantics.

“It’s marvelous! You just add water.”

First try:

You will need a flat domain, the Smyth Powerdomain, and the probabilistic powerdomain.

- Start with simple deterministic computations with nontermination; $(S_\perp \rightarrow S_\perp, \sqsubseteq)$
- Next apply the Smyth construction to introduce nondeterminism... $(S_\perp \rightarrow \mathbb{P}S_\perp, \sqsubseteq_S)$
- Finally fold in probability, stirring gently ... $(Eval.(S_\perp \rightarrow \mathbb{P}S_\perp), \sqsubseteq_S)$

Voila! But what is it?

- Probabilistic arithmetic $(P \oplus Q) \oplus R = P \oplus (Q \oplus R)$
- Universal probabilistic distributivity $(P \oplus Q) \cap R = (P \cap R) \oplus (Q \cap R)$
.... which implies this

Probability versus nondeterminism

$(y := 0 \sqcap y := 1); (x := 0_{1/2} \oplus x := 1)$

What's the chance that the demon can guess the value of x?

Probability versus nondeterminism

$$(y := 0 \sqcap y := 1); (x := 0)_{1/2} \oplus x := 1) \quad \text{Prob distributes over nondet}$$
$$= \boxed{(y := 0 \sqcap y := 1); x := 0}_{1/2} \oplus \boxed{(y := 0 \sqcap y := 1); x := 1}$$

In this model, we can reproduce the demon's choice within each probabilistic branch....

.... effectively making the demon able to see into the future.

Whoops!

Next try:

You will need a flat domain, the Smyth Powerdomain, the probabilistic powerdomain, and compactness and convexity.

- First add probability $(Eval.S_{\perp}, \leq)$
- Next add nondeterminism $(S_{\perp} \rightarrow \mathbb{P}Eval.S_{\perp}, \sqsubseteq_P)$
- We need some extra closure conditions:
 - (a) up-closed - for termination.
 - (b) Convex closed - $P_p \oplus P = P$
 - (c) Compact - so that iteration can be approximated by “finite” computations.

As before, refinement is reverse subset inclusion.

Relational-style semantics for a small sequential language

<i>identity</i>	$\llbracket \text{skip} \rrbracket.s$	$\hat{=} \{ \bar{s} \}$
<i>assignment</i>	$\llbracket x := a \rrbracket.s$	$\hat{=} \{ \overline{s[x \mapsto a]} \}$
<i>composition</i>	$\llbracket P; P' \rrbracket.s$	$\hat{=} \{ \sum_{s' \in S} d.s' \times f'.s' \mid d \in \llbracket P \rrbracket.s; f' \sqsubseteq \llbracket P' \rrbracket \}$ where $f' \in S \rightarrow \overline{S}_\perp$ and in general $f' \sqsubseteq r'$ means $f'.s \in r'.s$ for all s .
<i>choice</i>	$\llbracket \text{if } B \text{ then } P \text{ else } P' \rrbracket.s$	$\hat{=} \text{ if } B.s \text{ then } \llbracket P \rrbracket.s \text{ else } \llbracket P' \rrbracket.s$
<i>probability</i>	$\llbracket P_p \oplus P' \rrbracket.s$	$\hat{=} \{ d_p \oplus d' \mid d \in \llbracket P \rrbracket.s; d' \in \llbracket P' \rrbracket.s \}$
<i>nondeterminism</i>	$\llbracket P \sqcap P' \rrbracket.s$	$\hat{=} \lceil \llbracket P \rrbracket.s \cup \llbracket P' \rrbracket.s \rceil$, where in general $\lceil D \rceil$ is the up-, convex- and Cauchy closure of D .
<i>iteration</i>	$\text{do } G \rightarrow P \text{ od}$	$\hat{=} (\mu X \cdot \text{if } G \text{ then } \llbracket P \rrbracket; X \text{ else } \llbracket \text{skip} \rrbracket).$

Probabilistic models for the guarded command language.
 He Ji Feng et al.
 Special issue SCP containing selected papers
 from the FMTA '95 conference (May 1995, Warsaw)

Some nice laws....

$$P \sqcap P = P$$

$$(P \sqcap Q) \text{ } p \oplus (P \sqcap R) \sqsubseteq_P P \sqcap (Q \text{ } p \oplus R)$$

$$P \sqcap P \sqsubseteq_P P \text{ } p \oplus P = P$$

$$P \text{ } p \oplus (Q \sqcap R) = (P \text{ } p \oplus Q) \sqcap (P \text{ } p \oplus R)$$

$$P; (Q \text{ } p \oplus R) \sqsubseteq_P P; Q \text{ } p \oplus P; R$$

$$(Q \text{ } p \oplus R); P = (Q; P \text{ } p \oplus R; P)$$

This nondeterminism (demon) can see what happened after a coin flip, but not before.

Probability versus nondeterminism

$(y := 0 \sqcap y := 1); (x := 0_{1/2} \oplus x := 1)$

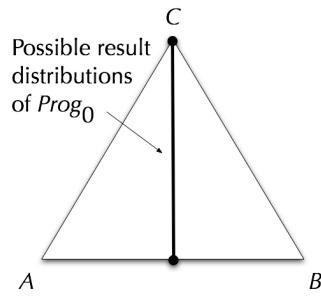
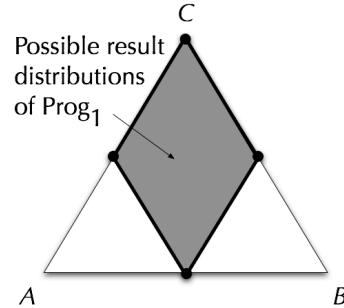
What's the chance that the demon can guess the value of x?

Probability versus nondeterminism

$(y := 0 \sqcap y := 1); (x := 0_{1/2} \oplus x := 1)$ Nondet distributes over prc
= $\boxed{(y := 0); (x := 0_{1/2} \oplus x := 1)} \sqcap \boxed{(y := 1); (x := 0_{1/2} \oplus x := 1)}$

What's the chance that the demon can guess the value of x?
Answer is 1/2.

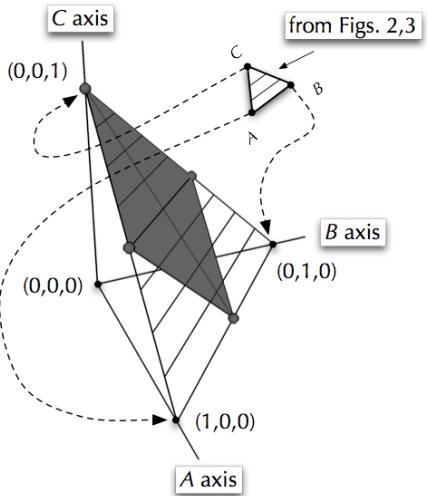
Geometrical interpretation.



$$Prog_0 \quad \hat{=} \quad (s := A \oplus s := B) \sqcap s := C$$

$$Prog_1 \quad \hat{=} \quad (s := A \sqcap s := C) \oplus (s := B \sqcap s := C)$$

Geometrical interpretation.



Plotted on the same diagram, we can see immediately the relationship between the two programs.

$$\begin{aligned} Prog_0 &\hat{=} (s := A \oplus s := B) \sqcap s := C \\ Prog_1 &\hat{=} (s := A \sqcap s := C) \oplus (s := B \sqcap s := C) \end{aligned}$$

Logic and properties: Generalising Hoare Logic

Properties are now quantitative; use random variables.

$$\mathbb{E}S \hat{=} S \rightarrow [0, 1]$$
$$e \leq e' = (\forall s : S \cdot e.s \leq e'.s)$$

$$\text{wp}.P.e.s \hat{=} (\sqcap d \in P.s \cdot \int_d e)$$

Greatest guaranteed expected value of e with respect to the results of P from initial state s.

$$d \in \text{EvalS}_{\perp}, e \in \mathbb{E}S, \int_d e \hat{=} \sum_{s:S} d.s \times e.s$$

Transformer semantics for a small sequential language

<i>identity</i>	$\text{wp.skip}.\text{expt}$	$\hat{=} \text{ expt}$
<i>assignment</i>	$\text{wp.}(x := E).\text{expt}$	$\hat{=} \text{ expt}[x := E]$
<i>composition</i>	$\text{wp.}(P; P').\text{expt}$	$\hat{=} \text{ wp.}P.(\text{wp.}P'.\text{expt})$
<i>choice</i>	$\text{wp.}(\text{if } B \text{ then } P \text{ else } P' \text{ fi}).\text{expt}$ $\hat{=} [B] \times \text{wp.}P.\text{expt} + [\neg B] \times \text{wp.}P'.\text{expt}$	
<i>probability</i>	$\text{wp.}(P_p \oplus P').\text{expt}$ $\hat{=} p \times \text{wp.}P.\text{expt} + (1-p) \times \text{wp.}P'.\text{expt}$	
<i>nondeterminism</i>	$\text{wp.}(P \sqcap P').\text{expt}$	$\hat{=} \text{ wp.}P.\text{expt} \mathbf{min} \text{ wp.}P'.\text{expt}$
<i>iteration</i>	$\text{wp.}(\text{do } B \rightarrow r \text{ od}).e \hat{=} (\mu X \bullet [B] \times \text{wp.}r.X + [\neg B] \times e)$	

Logic and properties:
the monotonic transformers

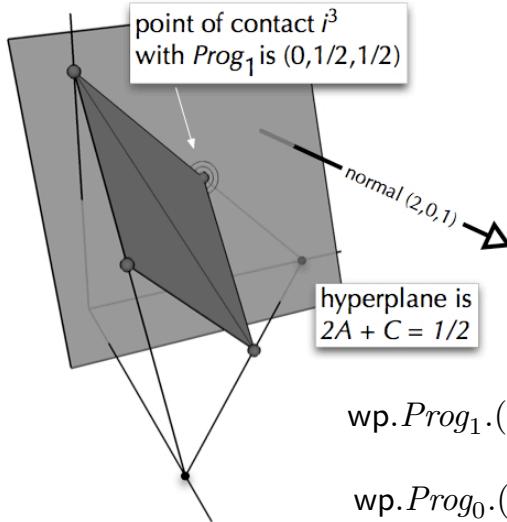
$$\mathbb{T}S \hat{=} \mathbb{E}S \leftarrow \mathbb{E}S$$

$$[S_{\perp} \rightarrow \mathbb{P}Eval.S_{\perp}] \xrightleftharpoons[\mathit{rp}]{\mathit{wp}} \mathbb{T}S$$

$$\mathit{wp} \circ \mathit{rp} = id$$

$$\mathit{rp} \circ \mathit{wp} = id, \text{ if } \begin{cases} t.(e_p \oplus e') \geq t.e_p \oplus t.e' \\ t.(ke) = kt.e \\ t.(e - \mathbf{k}) \geq t.e - \mathbf{k} \end{cases} \text{ “Sublinear”}$$

Geometrical interpretation:



Random variables are
“hyperplanes”.

Why so complicated: can't we just have a whole logic based on probabilities, rather than random variables?

It's a question of compositionality:

$$\begin{aligned} \text{Prog}_0 &\hat{=} (s := A \cdot 0.5 \oplus s := B) \sqcap s := C \\ \text{Prog}_1 &\hat{=} (s := A \sqcap s := C) \cdot 0.5 \oplus (s := B \sqcap s := C) \end{aligned}$$

Allowed final value(s) of s	A	B	C	A, B	B, C	C, A
Maximim possible probability	1/2	1/2	1	1	1	1
Minimim possible probability	0	0	0	0	1/2	1/2

A quantitative logic based on probabilities *is not* *compositional*.

Consider the following “context”:

$Prog_0; \text{ if } s=C \text{ then } (s := A_{0.5} \oplus s := B) \text{ fi } \quad 1/2$
 $Prog_1; \text{ if } s=C \text{ then } (s := A_{0.5} \oplus s := B) \text{ fi } \quad 1/4$

What's the probability that the state is A finally?

As we have seen, the two programs can be distinguished in the transformer semantics (by a random variable encoded as an expectation).

$$\text{wp}.\text{Prog}_0.(2[s = A] + [s = C]) = 1$$

$$\text{wp}.\text{Prog}_1.(2[s = A] + [s = C]) = 1/2$$

The transformer semantics, based on full random variables, *is* compositional.

A nice proof rule, proved using the transformer semantics:

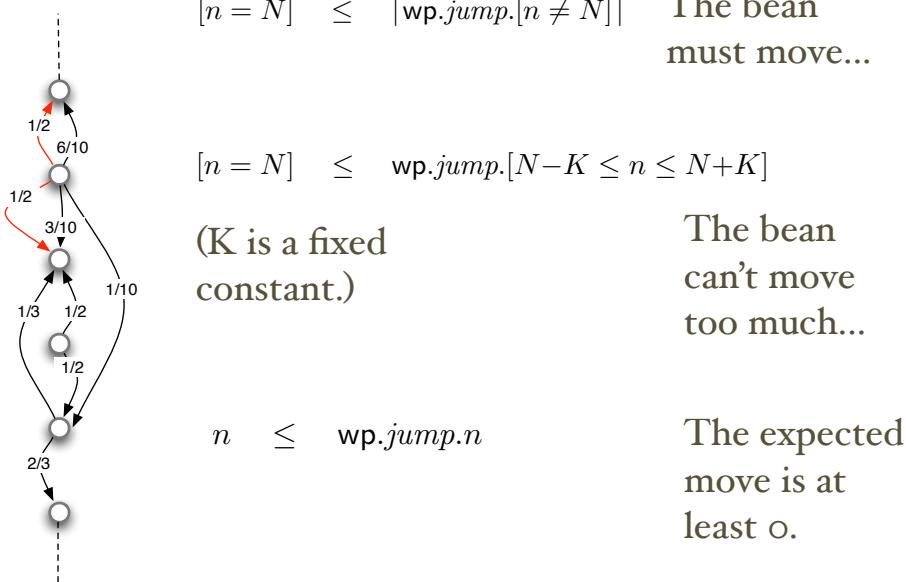
A loop: $\text{do } G \rightarrow \text{body } \text{od}$

An invariant: $[G] \times I \leq \text{wp.} \text{body.} I$

Termination condition: $T \hat{=} \text{wp.}(\text{do } G \rightarrow \text{body } \text{od}).1$

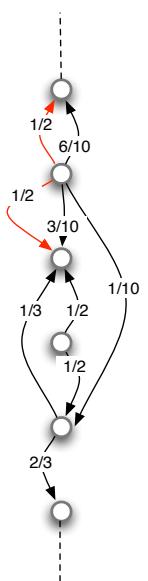
A rule: $I \leq T \Rightarrow I \leq \text{wp.}(\text{do } G \rightarrow \text{body } \text{od}).I$

The “jumping bean” : specification.



The “jumping bean”.

$$\text{Bean} \quad \hat{=} \quad \text{wp.}(\text{do } (n \leq N) \rightarrow \text{jump} \text{ od})$$



$$1 = \text{wp.} \text{Bean.} [n > N]$$

The bean continues to jump, until it exceeds N .

The conditions on its behaviour guarantee that it will eventually exceed any bound.

Exercise: use the properties of the transformers to prove this. (Should be about 10 lines of proof.)

Automated invariant generation.

Usually the user/prover must supply the loop invariants to enable programs to be verified.

For certain classes of invariants/programs we can automate the process:

- Linear invariants and linear programs;
- Wp - under these conditions preserves linearity;
- Reduce searching for invariants to the solution of linear equations.

```
x := p; b := true;  
while b do  
  b := false  $_{1/2} \oplus$  true;  
  if b then  
    x := 2x;  
    if (x  $\geq$  1) then x := x-1 else skip fi  
  elseif (x  $\geq$  1/2) then x := 1  
  else x := 0  
  fi  
od
```

x is a variable of type \mathbb{R} and *b* of type \mathbb{B} . This program is supposed to set *x* to 1 with probability exactly *p*.

Fig. 4. Generating a biased coin from a fair one.

Probability versus nondeterminism:

$$\begin{aligned} & (x := 0 \sqcap x := 1); (y := 0 \text{ } 1/2 \oplus y := 1) \\ = & (x := 0 \sqcap x := 1); (y := 0) \\ & \text{ } 1/2 \oplus \\ & (x := 0 \sqcap x := 1); y := 1 \end{aligned}$$

The demon can predict the future.

$$\begin{aligned} & (y := 0 \text{ } 1/2 \oplus y := 1); (x := 0 \sqcap x := 1) \\ = & y := 0; (x := 0 \sqcap x := 1) \\ & \text{ } 1/2 \oplus \\ & y := 1; (x := 0 \sqcap x := 1) \end{aligned}$$

The demon can access the past.

Probability versus nondeterminism:

Smyth powerdomain, for nondeterminism; then the probabilistic powerdomain on top of that.

The demon can predict the future.

Probabilistic powerdomain to make $\text{Eval}S_\perp$, then the Smyth powerdomain to make $S_\perp \rightarrow \mathbb{P}\text{Eval}.S_\perp$ with a special definition of “;”

The demon can access the past.

Suppose we wanted to prevent the demon from accessing the past, i.e.

$$\begin{aligned} & (y := 0_{1/2} \oplus y := 1); (x := 0 \sqcap x := 1) \\ = & \quad (y := 0_{1/2} \oplus y := 1); x := 0 \\ & \quad \quad \sqcap \\ & \quad (y := 0_{1/2} \oplus y := 1); x := 1 \end{aligned}$$

How would we build a semantic domain justifying this algebraic property?

Suppose we wanted to prevent the demon from accessing the past, i.e.

Use the probabilistic powerdomain to build $\text{Eval}.S_{\perp} \rightarrow \text{Eval}.S_{\perp}$, and then the Smyth powerdomain to build $\text{Eval}.S_{\perp} \rightarrow \mathbb{P}\text{Eval}.S_{\perp}$

Key thing is to define the sequence operator so that it doesn't "split up" the probabilistic results.

The “refinement paradox”

Properties of the logic/algebra in the context where “hidden state” is an issue are hard to get right, even when there are no probabilities.

It turns out to be a really hard problem to find a formalisation which behaves properly for refinement

h “High security” variables (are “private”)

l “Low security” variables (are “public”)

“Obviously” we want to make sure that going up the refinement order preserves our security properties.