Nondeterminism, refinement and

probability

Annabelle Mclver,
Macquarie University,
Sydney

Quick summary

* A short history of probabilistic programming;

* How to build the semantics you want in three easy
stages: general model building techniques;

* An application;

* The “refinement paradox”, and how probability can help
shed light.

What we want.

Computations Progr am algebra;
Probability Behavioural model;
ini o | Program logic;
Nondeterminism > :
(Refinement: Proof techniques;
abstraction) Compositionality;
Tools.

But what does this all mean?
How do these things interact?
What applications are they good for?

Powerdomains

(Originally) a general technique by which a semantic model
can be augmented to include nondeterminism in such a way

that the underlying computational structure of the original
model is maintained.

- e~
— o

Functions,

Relations,
S —> S

S —> PS

Powerdomains

When we want to distinguish nontermination from other
behaviour, we introduce a special “bottom state” @

How do we order the programs so that @ is worse than

everything, and reducing the range of behaviours corresponds
to “more refined”.

IN *~v

Powerdomains: the Smyth order

A<gB iff (YbeB(EFacA-a<b))

In the flat domain, this becomes

A<sB iff (Le A)V(BC A)

Powerdomains: the Smyth order

AT = {seS; | (JacA-a<s}

<s becomes an order (rather than a pre-order) on up-closed
sets.

On up-closed sets,
refinement is simply

reverse subset -
inclusion.

Probabilistic powerdomains

Given a structure (D, <), we can construct a powerdomain

(Eval.D, <) where objects are evaluations over D, and the
order is defined to make “appropriate distinctions”.

* Evaluations are real-valued functions which are defined over
the open sets of a (fixed) topology; under certain conditions
they can be extended to probability distributions.

* Computational domains can be reformulated in terms of
the Scott Topology: a set is Scott open if it is “up-closed”

and “inaccessible” (any limit of a chain inside the set can only
happen if the chain intersects the set).

Probabilistic powerdomains: Evaluations

1
Eval.S; =05, — [0,1] Monotone; additive
d<d iff (VOe€OS, -d0O<d.0) Probability can

increase up the

d<d iff (VseS-d{s}<d{s}) efinement order!

Probabilistic powerdomains: Semantics

Given a structure (D, <), we can construct a powerdomain

(Eval.D, <) where objects are evaluations over D, and the
order is defined to make “appropriate distinctions”.

Programs S1 — Bval.Sy
Probabilistic choice (P,®Q).s = pxPs+(1—p)xQ.s
Sequence P;Q = PoQf

Q' : Fval.S| — Fval.S |
Qld = Y. s(ds)xQ.s

Probabilistic powerdomains: Defining Q"

Sequence P;Q = PoQf
g Eval.S |, FEval. S .
i
S — (D —
P Q
Eval.Q
€

FEval.Eval.S

Now we have all the ingredients for instant probabilistic
semantics.

“It’s marvelous! You just add water.”

First try:

You will need a flat domain, the Smyth Powerdomain, and
the probabilistic powerdomain.

* Start with simple deterministic
. e (S1— S1,E)
computations with nontermination;

* Next apply the Smyth construction (S, — PS,,Cs)
to introduce nondeterminism... T

* Finally fold in probability, stirring

gently ... (Eval. (S — PS,),Cs)

Voila! But what is it?

e Probabilistic arithmetic (P,®Q),®R = P,o(Q (12010 ® R)

—pq

* Universal probabilistic

distributivity ... (Pp®Q) MR = (PN R),®QMN K

.... which implies this

Probability versus nondeterminism

(y:=0nNy:=1);(x:=0100x:=1)

What'’s the chance that the demon can guess the value of x?

Probability versus nondeterminism

(y:=0M y:=1);(x:= 0120 x:= 1) Prob distributes over nondet

((y =0 y:=1)2:= 0)1/269(@ =0Ny:=1)z:= 1)

In this model, we can reproduce the demon’s choice
within each probabilistic branch....

.. effectively making the demon able to see into the future.

Whoops!

Next try:

You will need a flat domain, the Smyth Powerdomain, the
probabilistic powerdomain, and compactness and convexity.

* First add probability (Bval.S.1, <)
* Next add nondeterminism (SL — PEval.S,,Cp)

* We need some extra closure conditions:
(a) up-closed - for termination.
(b) Convex closed - P ,® P =P
(c) Compact - so that iteration can be approximated by
“finite” computations.

As before, refinement is reverse subset inclusion.

Relational-style semantics for a small sequential language

identity
assignment

composition

choice
probability

nondeterminism

iteration

[skip].s = {5}
[x:= a].s = {slx—a]}
[P; P'].s = {> . gds xf.s|de[P]s;f C[P]}

where f' € S — S, and in general f’ C 7’ means f’.s € r'.s for all s.

[if B then P else P'].s
[P,® P'].s
[P P].s

where in general [D]
do G— P od

= if B.s then [P].s else [P'].s
= {d,@d |de[P].s;d e[P].s}

= [[P].sU[P].s],
is the up-, convex- and Cauchy closure of D.

(uX -if G then [P]; X else [skip]) .

>

Probabilistic models for the guarded command language.
He Ji Feng et al.

Special issue SCP containing selected papers

from the FMTA '95 conference (May 1995, Warsaw)

Some nice laws....

PN P=P (PN Q)P N RLCpPM(Q,®2R)
PN PCpP,@P=P P, (@Q N R)=(P,®Q) N (P,®R)
P;(Qy® R) Cp P;Q @ P; R

(QP@R)§P:(Q§PP@R§P)

This nondeterminism (demon) can see what happened after a
coin flip, but not before.

Probability versus nondeterminism

(y:=0nNy:=1);(x:=0100x:=1)

What'’s the chance that the demon can guess the value of x?

Probability versus nondeterminism

y=0MNy:=1);(x:=0100x:=1 Nondet distributes over prc
/

((y = 0);(z:= 041007 := ID m ((y = 1);(z:= 0100 2 := 1D

What'’s the chance that the demon can guess the value of x?
Answer is 1/2.

Geometrical interpretation.

Possible result
distributions
of Prog,

Possible result
distributions
of Prog,

Progy, = (s:= Aos®s:=DB) N s:=C
Prog; = (s:= AMs:=C) 95P (s:= BMNs:=C)

Geometrical interpretation.

% from Figs. 2,3

Plotted on the same
diagram, we can see
immediately the

relationship
between the two
programes.
A axis |
Progy, = (s:= Aos®s:=B) N s:=C

Progy, = (s:= ANs:=C) 54 (s:= BMs:= C)

Logic and properties: Generalising Hoare Logic

Properties are now ES = S5—10,1]
quantitative; use e<e = (Vs:S-es<els)
random variables.

wp.Pes = (T dEP.s-/e)
d

Greatest guaranteed expected value of e with respect to the
results of P from initial state s.

d e FvalS,, e € ES, /e£2d.sxe.s
d s:S

Transformer semantics for a small sequential language

identity wp.skip. expt
assignment wp.(z := E).expt
composition wp.(P; P').expt
choice wp.(if B then P else P’ fi).eaxpt
= [B] x wp.P.expt+ [-B] x wp.P’.expt
probability wp.(P ,® P').eapt

= p x wp.P.expt + (1—p) x wp.P’.expt
nondeterminism wp.(P M P').expt

iteration wp.(do B — r od).e = (uX ¢« [B] x wp.r.X + [-B] x e) .

> 11

11>

expt
exptlx := E]
wp.P.(wp.P’.ezpt)

wp.P.expt min wp.P’.expt

Logic and properties:

TS = ES—ES
the monotonic transformers
wp
:SJ_ — PEU&Z.SJ_ TS
rp
wporp = id
t.(e,®e)>te,Bte
rpowp = id,if t.(ke) = kt.e “Sublinear”

t.(e—k)>te—k

Geometrical interpretation:

point of contact >
with Prog1 is (0,1/2,1/2)

o, .
M, Random variables are

~A “hyperplanes”.

hyperplane is
2A+C=1/2

wp.Prog,.(2[s = Al +[s=C]) = 1/2

wp.Prog,.(2[s = Al + [s = C])

Why so complicated: can’t we just have a whole logic
based on probabilities, rather than random variables?

It’s a question of compositionality:

Progy, = (s:= Aos®s:=B) N s:=C

Progy, = (s:= ANMs:=C) 05D (s:= BMs:= ()
|Allowed final value(s) of s | A | B | C |[AB|BC|CA|
Maximim possible probability 1/2 | 1/2 1 1 1 1

Minimim possible probability 0 0 0 0 1/2 | 1/2

A quantitative logic based on probabilities 7s not.
compositional.

»

Consider the following “context”:

|
&
~—
="
=
~
N

Progy; if s=C then (s:= A 5@ s:=
Prog,; if s=C then (s:= Aos®s:= B)fi 1/4

What’s the probability that the state is A finally?

As we have seen, the two programs can be distinguished in
the transformer semantics (by a random variable encoded as
an expectation).

wp.Prog,.2[s =Al+[s=C]) = 1

wp.Prog,.(2[s=Al+[s=C]) = 1/2

The transformer semantics, based on full random variables,
7s compositional.

A nice proof rule, proved using the
transformer semantics:

A loop: do G — body od
An invariant: [G]xI < wp.body.l
Termination condition: T = wp.(do G — body od).1

A rule: I<T = 1I<wp.(do G — body od).I

The “jumping bean” : specification.

12

\6/10

1/2
&3/10 \
A4
/ >\ 1/10

13 12

1/2

_____O‘/“"

The bean

must move...

[n=N] < [wp.jump.[n# NI

[n=N] < wpjump] N—K <n< N+K]|
(K is a fixed The bean
constant.) can’t move
too much...
n < wp.jump.n The expected
move is at

least o.

The “jumping bean”.

‘ Bean = wp.(do (n < N)— jump od)
: The bean continues
. ,gq\ to jump, until it
2’ exceeds N.
1/2 %
\S’JO 1 = wp.Bean.[n > N] The conditions on
/‘Q\ 1ho its behaviour
13 172 o .
guarantee that it will
‘j eventually exceed
any bound.
2/
Exercise: use the properties of the

transformers to prove this. (Should be
about 10 lines of proof.)

Automated invariant generation.

Usually the user/prover must supply the loop
invariants to enable programs to be verified.

For certain classes of invariants/programs we can
automate the process:

* Linear invariants and linear programs;

* Wp- under these conditions preserves linearity;

* Reduce searching for invariants to the solution of
linear equations.

z:= p; bi= true;

while b do
b:= false ;2@ true
if b then
= 2,

if (x > 1) then x:= z—1 else skip fi
elseif (z > 1/2) then z:= 1
else z:= 0
fi
od

z is a variable of type R and b of type B. This program is supposed to set = to 1 with probability
exactly p.

Fig. 4. Generating a biased coin from a fair one.

Probability versus nondeterminism:

(:=0M z:=1);(y:=01Dy:= 1)

= (z:=01M z:=1);(y:= 0)

(y:=01@0y:=1);(x:=0 1M x:= 1)

= y:=0;(z:=0nMN x:=1)
1/2®
y:=1(x:=0T0 z:=1)

The demon can
predict the future.

The demon can
access the past.

Probability versus nondeterminism:

Smyth powerdomain, for
nondeterminism; then the The demon can

probabilistic powerdomain on top | predict the future.
of that.

Probabilistic powerdomain to make
EwalS . then the Smyth
powerdomain to make,S1 — PEval.Sy
with a special definition of “;”

The demon can
access the past.

Suppose we wanted to prevent the demon
from accessing the past, i.e.

(Yy:=01Py:=1);(x:=01M z:=1)

= (y:=01p0®y:= 1);2:=0
[l
(Y= 010y :=

|
—
=
8
Il
—

How would we build a semantic domain justifying
this algebraic property?

Suppose we wanted to prevent the demon
from accessing the past, i.e.

Use the probabilistic powerdomain
to build Ewval.S, — Eval.S |,

and then the Smyth powerdomain
to build Eval.S| — PEval.S|

Key thing is to define the sequence operator so that
it doesn’t “split up” the probabilistic results.

The “refinement paradox”

Properties of the logic/algebra in the context where “hidden
state” is an issue are hard to get right, even when there
are no probabilities.

It turns out to be a really hard problem to find a
formalisation which behaves properly for refinement

h “High security” variables (are “private”)
I “Low security” variables (are “public”)

“Obviously” we want to make sure that going up the
refinement order preserves our security properties.

