
Secure stepwise
refinement:

 Beating the refinement
paradox

Annabelle McIver
Macquarie University

1. Traditional refinement;
2. Security and the “refinement paradox”;
3. Motivation: why refinement and security?
4. The Shadow semantics: beating the paradox;
5. Encryption with refinement;
6. Deriving the Oblivious Transfer;
7. Deriving the Dining Cryptographers.

2

In brief ...

The refinement tradition

3

1. Adds rigour to program development;
2. Is a framework for what it means to be correct;
3. Sanctions the safe...
4. ...and prevents the unsafe implementations.

Program development by stepwise refinement
(Wirth, CACM 1971)

The dream...

4

What’s “refinement” ?

What’s “refinement” ?
5

public class StatsPackage {
 private realSeq data= [];

 void reset() { data= []; }

 void addDatum(real datum) {
 data= data++[datum];
 }

 real mean() throws NoData {
 if (data != [])
 return !data / #data;
 else throw new NoData(“No data points.”);
 }
}

WYWIWYG

sp
ecifi
catio
n

im
p
lem
en
tatio
n

!

What’s “refinement” ?
6

public class StatsPackage’ implements StatsPackage {
 private real sum= 0, count= 0;

 void reset() { sum= count= 0; }

 void addDatum(real datum) {
 sum+= datum; count+= 1;
 }

 real mean() throws NoData {
 if (count != 0)
 return sum / count;
 else throw new NoData(“No data points.”);
 }
}

WYWIWYG

sp
ecifi
catio
n

im
p
lem
en
tatio
n

!

What’s “refinement” ?
7

realSeq getData() { return data; }

public class StatsPackage {
 private realSeq data= [];

 void reset() { data= []; }

 void addDatum(real datum) {
 data= data++[datum];
 }

 real mean() throws NoData {
 if (data != [])
 return !data / #data;
 else throw new NoData(“No data points.”);
 }
}

What’s “refinement” ?
8

public class StatsPackage’ implements StatsPackage {
 private real sum= 0, count= 0;

 void reset() { sum= count= 0; }

 void addDatum(real datum) {
 sum+= datum; count+= 1;
 }

 real mean() throws NoData {
 if (count != 0)
 return sum / count;
 else throw new NoData(“No data points.”);
 }
}

realSeq getData() { ??????????? }

1. Q is at least as good as P ; or
2. Every possible behaviour of Q is a possible

behaviour of P ; or
3. Everything you can prove about P you can also

prove about Q.

P is refined by Q means:

1. What’s good?
2. What behaviours can I observe?
3. What logic do I use for proof?

9

What’s “refinement” ?

1. VDM and Z
2. B and event-B
3. CSP
4. The Refinement Calculus
5. A large body of mathematical techniques

Program development by stepwise refinement
(Wirth, CACM 1971)

The reality...

10

What’s “refinement” ?

But the Refinement Paradox
inhibits use of traditional refinement in security.

• Standard refinement is based on a relational-style semantics, with
refinement described by reverse-subset inclusion.

h:= 0 " h:= 1 ; v:= 0 " v:= 1 # ! # h:= 0 " h:= 1 ; v:= h

11

The refinement paradox

h v
0 1
1 1
0 0
1 0

h v

1 1
0 0

• Standard formal security analysis is based on classifying variables
into two kinds: “high” and “low” (or “hidden” and “visible”);

• Programs are said to be secure (or not) depending on whether their
execution causes the hidden values to be revealed;

• A refinement-oriented framework should ensure that even security
properties are preserved...

12

The refinement paradox

 v:= 0 " v:= 1 ; h:= 0 " h:= 1

 = h:= 0 " h:= 1 ; v:= 0 " v:= 1 #! # h:= 0 " h:= 1 ; v:= h

... but clearly
not this.

This would be
considered
secure...

This
refinement

doesn’t preserve
secrecy!

1. Adds rigour to secure developments;
2. Is a framework for what it means to be secret;
3. Sanctions security-preserving programs...
4. ...and prevents insecure implementations.

“Secure program development by stepwise refinement”
(Morgan, MPC 2006)

The dream...

13

What’s “secure refinement” ?

?

Motivation

14

Oblivious transfer

15

Oblivious transfer: the problem

m0,m1: M c: {0,1}

16

m: M

Alice has two messages;
Bob knows their “names”,
but not their contents.

Bob asks for one,
by name.

m:= mc

Alice sends it... ...Bob receives it.

But Alice is not to know which message Bob asked for,
and Bob is not to find out the contents of the other one.

Alice Bob

m0,m1: M c: {0,1}

17

m:= fc $ r

r0,r1: M d: {0,1}

r0,r1: M d: {0,1}

f0, f1: M

e: {0,1}
e:= c$d

f0, f1:= m0$re, m1$r1$e

r: M

r:= rd

m: M

Ted

Oblivious transfer: the solution

m0,m1: M c: {0,1}

18

m:= fc $ r

r0,r1: M d: {0,1}

f0, f1: M

e: {0,1}
e:= c$d

f0, f1:= m0$re, m1$r1$e

r: M

r:= rd

m: M

 fc $ r

= (mc $ rc$e) $ r

= mc $ rc$(c$d) $ r

= mc $ rd $ rd

= mc

Oblivious transfer: the “proof”

So what?

19

So what?

m:= mc x Not localised.

{ var c’: {0,1} •
 c’:= c;
 m:= mc’

}

!

x Reveals c to Alice.

x Reveals m1$c to Bob.

20

Alice
Bob

What “we” do...

Refinement

{ var m0’, m1’: M •
 m0’, m1’:= m0, m1;
 m:= mc’
}

!

So what?

m:= mc

{ var r, r0, r1, f0, f1: M
 d,e: {0,1} •

 r0, r1:% M,M;

 d:% {0,1};

 r:= rd ;
 e:= c$d ;

 f0, f1:= m0 $ rc, m1 $ r1$c ;

 m:= fc $r

}

! ! Reveals mc to Bob.

x Not localised.

? But how to prove this?

!only

That’s what.

21

So what?

m:= mc x Not localised.

{ var c’: {0,1} •

 c’:= c;

 m:= mc’

}

!

x Reveals c to Alice.

x Reveals m1"c to Bob.

{ var m0’, m1’: M •

 m0’, m1’:= m0, m1;

 m:= m’c

}

!

9

Alice
Bob

? And prevent these?

What Rivest does

A new approach:
Shadow semantics

22

The way to resolve the paradox is to regard insecure
 refinements at “attacks” performed during
development. Beating the refinement paradox is
possible within a framework which can distinguish
between secure and insecure refinements.

The reality...

23

What’s “secure refinement” ?

Local/globalLocal/global

A new approach

Here/there

Visible/hidden

What kind of variables are there?

• Scope

• Locale

• Visibility

24

Visible/hidden

Local/global

Visible/hidden

There/here

• Scope: Newly-declared, local variables can have arbitrary
 values assigned to them:

 skip ! { var x: T • x:= “anything” ...

 Global variables are constrained by the specification:

 skip ! x:= “anything”

• Locale: Mixed locales cannot occur inside expressions:

 x:= here + there x not allowed in code

 Mixed locales across “:=” imply communication:

 there:= here !"sends/receives a message

/

25

A new approach

• Visibility: Hidden variables cannot be revealed, even
 partially, by refinement:

 m0:% M# !# m0:= r

 Visible variables and constants can:

 m0:% M# !# m0:= m1

 m0:% M# !# m0:= “This is written in the code.”

/

26

A new approach

Gedanken experiments
in program algebra

27

What are our goals?

• Treat sequential programs in the “usual” way, as far as
possible, but...

• Include ignorance (somehow defined) among the
properties that the refinement is to preserve...

• Thus permitting fewer (but not too few) refinements
than before, while...

• Keeping certain practical principles in mind, for
scalability.

• Which principles?

Security, privacy, zero-knowledge protocols...
done algebraically, logically, “refinably”.

28

What are our principles?

1

1 Introduction

Refinement as a relation between sequential programs is based traditionally on
a state-to-state operational model, with a corresponding logic of Hoare-triples
{Φ} S {Ψ} [?] or equivalently weakest preconditions wp.S.Ψ [?], and generates
an algebra of (in-)equations between program fragments [?,?]. A specification
S1 is said to be refined by an implementation S2, written S1 ! S2, just when
S2 preserves all logically-expressible properties of S1.

Ignorance is (for us) what an observer doesn’t know about the parts of the
program state he can’t see. If we partition the state into a “visible” part v and a
“hidden” part h, and we consider a known program operating over v, h, then we
can ask “from the final value of v, what can the observer deduce about the final
value of h?” If the program is v:= 0, what he knows afterwards about h is just
what he knew beforehand; if it is v:=h mod 2, he has learned h’s parity; and if
it is v:=h he has learned h’s value exactly.

Traditional refinement does not preserve ignorance. If we assume v, h both to
have type T , then “choose v from T” is refinable into “set v to h” — it is simply
a reduction of demonic nondeterminism. But that refinement, which we write
v:∈T ! v:=h, is called the “Refinement Paradox” (Sec. 6) precisely because it
does not preserve ignorance: program v:∈T tells us nothing about h, whereas
v:=h tells us everything [?]. Thus we cannot use traditional refinement “as is”
for ignorance-preservation. — we must alter it.

Our first contribution is to propose the following principles that should apply
to a refinement algebra altered to respect ignorance-preservation:

Pr1 All traditional “visible-only” refinements are retained — It would be imprac-
tical to search an entire program for hidden variables in order to validate
local visible-only reasoning in which the hiddens are not mentioned.

Pr2 All traditional “structural” refinements are retained — Associativity of se-
quential composition, distribution of code into branches of a conditional etc.
are refinements (actually equalities) that do not depend on the actual code
fragments affected: they are structurally valid, acting en bloc. It would be
impractical to have to check through the fragments’ interiors (including e.g.
procedure calls) to validate such familiar rearrangements.

Pr3 Some traditional “explicit-hidden” refinements are excluded — Those that
preserve ignorance will be retained; the others (e.g. the Paradox) will be
excluded. For this principle we need a model and a logic.

Our second, and main contribution (Secs. 3–5) is to extend the model and
logic of sequential programming (only slightly) to realise the above principles:
existing visible-only and structural refinements will all remain sound (Pr1,Pr2);
and explicit-hidden (putative) refinements can be checked individually (Pr3) for
exclusion (e.g. Sec. 6) or retention (e.g. Sec. 7).

Ignorance-preserving refinement should be of great utility for developing zero-
knowledge- or security-sensitive protocols (at least); and our final contribution

29

More briefly...

• Equality- and refinement laws of the program
algebra should be preserved “as much as
possible”. But which are the most important?

 — Laws in which no hidden variable appears.
 — “Schematic” laws referring to general

 program fragments.

• Which can we afford to lose?
 — Laws in which hidden variables appear

 explicitly.

30

• Which laws do we keep?

v:= 0 " v:= 1 !" Doesn’t involve hiddens

! if (v " 10) then v:= 1 else v:= 0

P ; (Q " R) = P;Q " P;R !" Schematic law

31

More briefly...

• Which laws can we lose?

v:= 0 " v:= 1 x" Does involve hiddens

! if (h " 10) then v:= 0 else v:= 1

v:= 0 ! v:= h; v:= 0 x" But this is also banned

/

Draft November 5, 2005 Refinement of ignorance in sequential programs 9

2. Non-modal postconditions can be treated using standard semantics [Dijkstra,Hoare],
even if the program contains hidden variables.

3. Because of (1,2) the use of the modal semantics can be restricted to only the modal
conjuncts of a postcondition.

4. All visible-only program refinements (hence equalities) are preserved.
5. All refinements relying only on Demonic choice, Composition, identity and con-

junctivity (“structural refinements”) are preserved.

An example of (3) occurs in the Dining Cryptographers derivation at Fig. 8
below. And for example the reasoning (assuming v, h have the same type E)
“Attempt a = v:= h; (v:∈E) (by 4)
cover up”. (v:= h; v:= 0); v:∈E ↗ # v:= h; skip (by 4)
(;-assoc. by 5) = v:= h; (v:= 0; v:∈E) = v:= h (ident. by 5)

shows purely algebraically that we cannot “cover up” information leaks, by over-
writing visibles subsequently, if we are to benefit from the important principles
(4,5). That is why history sensitivity (the sequences of Sec. 2.1) was built-in.

The congruence of the logical- and operational semantics is now shown, jus-
tifying the connection between weakest preconditions and assertions.

Theorem 2. For all formulae Φ,Ψ , we have that
|= Φ ⇒ wp.P.Ψ (as in Figs. 4,5) iff {Φ} P {Ψ} (as in Def. 1).

Proof. The full proof [appendix] relies on a syntactic translation of v, h program
fragments (Fig. 5) into v, h, H fragments, and a corresponding translation of
modal formulae into normal first-order formulae, in both cases introducing an
explicit H — in effect our language and logic is regarded as syntactic sugar for
this more basic form. For example (recall Example 2.8),

v:= h mod 2 becomes v:= h mod 2; H:= {h: H | v = h mod 2}
and v=0⇒ !(h∈{2, 4}) becomes v=0⇒ (∃h: H | h∈{2, 4}).

Then the normal wp-semantics [Dijkstra] is used over the explicit v, h, H
program fragments, and the resulting preconditions are translated back from
the pure first-order ∃h:H form into the modal ! form. "

6 Avoiding the Refinement Paradox

We can now see both operationally and logically how the Refinement Paradox
is avoided (Sec. 2.3).

Operationally, for programs P,P ′ we have P # P ′ just when for some initial
(v0, h0,H0) every possible outcome (v′, h′,H ′) of P ′ has v = v′∧h = h′∧H ⊆ H ′

for some outcome (v, h, H) of P.4 Thus, recalling Fig. 3, we have for example
(3.3) # (3.2), (3.6) # (3.5) and ((3.7); v:= 0) # (3.9). Apropos the paradox we
see that v:∈E '# v:=h because the former’s final states are {e:E · (e, h0,H0)}
whereas the latter’s are { (h0, h0, {h0}) } and, even supposing h0 ∈ E, still in
general H0 '⊆ {h0}.

Fig. 6 shows how wp-logic avoids the Refinement Paradox.
4 This is the Smyth powerdomain-order over an underlying refinement on single triples

that allows the H-component —i.e. ignorance— to increase [Smyth].

Draft November 5, 2005 Refinement of ignorance in sequential programs 9

2. Non-modal postconditions can be treated using standard semantics [Dijkstra,Hoare],
even if the program contains hidden variables.

3. Because of (1,2) the use of the modal semantics can be restricted to only the modal
conjuncts of a postcondition.

4. All visible-only program refinements (hence equalities) are preserved.
5. All refinements relying only on Demonic choice, Composition, identity and con-

junctivity (“structural refinements”) are preserved.

An example of (3) occurs in the Dining Cryptographers derivation at Fig. 8
below. And for example the reasoning (assuming v, h have the same type E)
“Attempt a = v:= h; (v:∈E) (by 4)
cover up”. (v:= h; v:= 0); v:∈E ↗ # v:= h; skip (by 4)
(;-assoc. by 5) = v:= h; (v:= 0; v:∈E) = v:= h (ident. by 5)

shows purely algebraically that we cannot “cover up” information leaks, by over-
writing visibles subsequently, if we are to benefit from the important principles
(4,5). That is why history sensitivity (the sequences of Sec. 2.1) was built-in.

The congruence of the logical- and operational semantics is now shown, jus-
tifying the connection between weakest preconditions and assertions.

Theorem 2. For all formulae Φ,Ψ , we have that
|= Φ ⇒ wp.P.Ψ (as in Figs. 4,5) iff {Φ} P {Ψ} (as in Def. 1).

Proof. The full proof [appendix] relies on a syntactic translation of v, h program
fragments (Fig. 5) into v, h, H fragments, and a corresponding translation of
modal formulae into normal first-order formulae, in both cases introducing an
explicit H — in effect our language and logic is regarded as syntactic sugar for
this more basic form. For example (recall Example 2.8),

v:= h mod 2 becomes v:= h mod 2; H:= {h: H | v = h mod 2}
and v=0⇒ !(h∈{2, 4}) becomes v=0⇒ (∃h: H | h∈{2, 4}).

Then the normal wp-semantics [Dijkstra] is used over the explicit v, h, H
program fragments, and the resulting preconditions are translated back from
the pure first-order ∃h:H form into the modal ! form. "

6 Avoiding the Refinement Paradox

We can now see both operationally and logically how the Refinement Paradox
is avoided (Sec. 2.3).

Operationally, for programs P,P ′ we have P # P ′ just when for some initial
(v0, h0,H0) every possible outcome (v′, h′,H ′) of P ′ has v = v′∧h = h′∧H ⊆ H ′

for some outcome (v, h, H) of P.4 Thus, recalling Fig. 3, we have for example
(3.3) # (3.2), (3.6) # (3.5) and ((3.7); v:= 0) # (3.9). Apropos the paradox we
see that v:∈E '# v:=h because the former’s final states are {e:E · (e, h0,H0)}
whereas the latter’s are { (h0, h0, {h0}) } and, even supposing h0 ∈ E, still in
general H0 '⊆ {h0}.

Fig. 6 shows how wp-logic avoids the Refinement Paradox.
4 This is the Smyth powerdomain-order over an underlying refinement on single triples

that allows the H-component —i.e. ignorance— to increase [Smyth].

32

Gedanken argument...
for perfect recall

 — Laws in which no hidden variable appears.
 — “Schematic” laws referring to general

 program fragments.

Draft November 5, 2005 Refinement of ignorance in sequential programs 9

2. Non-modal postconditions can be treated using standard semantics [Dijkstra,Hoare],
even if the program contains hidden variables.

3. Because of (1,2) the use of the modal semantics can be restricted to only the modal
conjuncts of a postcondition.

4. All visible-only program refinements (hence equalities) are preserved.
5. All refinements relying only on Demonic choice, Composition, identity and con-

junctivity (“structural refinements”) are preserved.

An example of (3) occurs in the Dining Cryptographers derivation at Fig. 8
below. And for example the reasoning (assuming v, h have the same type E)
“Attempt a = v:= h; (v:∈E) (by 4)
cover up”. (v:= h; v:= 0); v:∈E ↗ # v:= h; skip (by 4)
(;-assoc. by 5) = v:= h; (v:= 0; v:∈E) = v:= h (ident. by 5)

shows purely algebraically that we cannot “cover up” information leaks, by over-
writing visibles subsequently, if we are to benefit from the important principles
(4,5). That is why history sensitivity (the sequences of Sec. 2.1) was built-in.

The congruence of the logical- and operational semantics is now shown, jus-
tifying the connection between weakest preconditions and assertions.

Theorem 2. For all formulae Φ,Ψ , we have that
|= Φ ⇒ wp.P.Ψ (as in Figs. 4,5) iff {Φ} P {Ψ} (as in Def. 1).

Proof. The full proof [appendix] relies on a syntactic translation of v, h program
fragments (Fig. 5) into v, h, H fragments, and a corresponding translation of
modal formulae into normal first-order formulae, in both cases introducing an
explicit H — in effect our language and logic is regarded as syntactic sugar for
this more basic form. For example (recall Example 2.8),

v:= h mod 2 becomes v:= h mod 2; H:= {h: H | v = h mod 2}
and v=0⇒ !(h∈{2, 4}) becomes v=0⇒ (∃h: H | h∈{2, 4}).

Then the normal wp-semantics [Dijkstra] is used over the explicit v, h, H
program fragments, and the resulting preconditions are translated back from
the pure first-order ∃h:H form into the modal ! form. "

6 Avoiding the Refinement Paradox

We can now see both operationally and logically how the Refinement Paradox
is avoided (Sec. 2.3).

Operationally, for programs P,P ′ we have P # P ′ just when for some initial
(v0, h0,H0) every possible outcome (v′, h′,H ′) of P ′ has v = v′∧h = h′∧H ⊆ H ′

for some outcome (v, h, H) of P.4 Thus, recalling Fig. 3, we have for example
(3.3) # (3.2), (3.6) # (3.5) and ((3.7); v:= 0) # (3.9). Apropos the paradox we
see that v:∈E '# v:=h because the former’s final states are {e:E · (e, h0,H0)}
whereas the latter’s are { (h0, h0, {h0}) } and, even supposing h0 ∈ E, still in
general H0 '⊆ {h0}.

Fig. 6 shows how wp-logic avoids the Refinement Paradox.
4 This is the Smyth powerdomain-order over an underlying refinement on single triples

that allows the H-component —i.e. ignorance— to increase [Smyth].

Draft November 5, 2005 Refinement of ignorance in sequential programs 9

2. Non-modal postconditions can be treated using standard semantics [Dijkstra,Hoare],
even if the program contains hidden variables.

3. Because of (1,2) the use of the modal semantics can be restricted to only the modal
conjuncts of a postcondition.

4. All visible-only program refinements (hence equalities) are preserved.
5. All refinements relying only on Demonic choice, Composition, identity and con-

junctivity (“structural refinements”) are preserved.

An example of (3) occurs in the Dining Cryptographers derivation at Fig. 8
below. And for example the reasoning (assuming v, h have the same type E)
“Attempt a = v:= h; (v:∈E) (by 4)
cover up”. (v:= h; v:= 0); v:∈E ↗ # v:= h; skip (by 4)
(;-assoc. by 5) = v:= h; (v:= 0; v:∈E) = v:= h (ident. by 5)

shows purely algebraically that we cannot “cover up” information leaks, by over-
writing visibles subsequently, if we are to benefit from the important principles
(4,5). That is why history sensitivity (the sequences of Sec. 2.1) was built-in.

The congruence of the logical- and operational semantics is now shown, jus-
tifying the connection between weakest preconditions and assertions.

Theorem 2. For all formulae Φ,Ψ , we have that
|= Φ ⇒ wp.P.Ψ (as in Figs. 4,5) iff {Φ} P {Ψ} (as in Def. 1).

Proof. The full proof [appendix] relies on a syntactic translation of v, h program
fragments (Fig. 5) into v, h, H fragments, and a corresponding translation of
modal formulae into normal first-order formulae, in both cases introducing an
explicit H — in effect our language and logic is regarded as syntactic sugar for
this more basic form. For example (recall Example 2.8),

v:= h mod 2 becomes v:= h mod 2; H:= {h: H | v = h mod 2}
and v=0⇒ !(h∈{2, 4}) becomes v=0⇒ (∃h: H | h∈{2, 4}).

Then the normal wp-semantics [Dijkstra] is used over the explicit v, h, H
program fragments, and the resulting preconditions are translated back from
the pure first-order ∃h:H form into the modal ! form. "

6 Avoiding the Refinement Paradox

We can now see both operationally and logically how the Refinement Paradox
is avoided (Sec. 2.3).

Operationally, for programs P,P ′ we have P # P ′ just when for some initial
(v0, h0,H0) every possible outcome (v′, h′,H ′) of P ′ has v = v′∧h = h′∧H ⊆ H ′

for some outcome (v, h, H) of P.4 Thus, recalling Fig. 3, we have for example
(3.3) # (3.2), (3.6) # (3.5) and ((3.7); v:= 0) # (3.9). Apropos the paradox we
see that v:∈E '# v:=h because the former’s final states are {e:E · (e, h0,H0)}
whereas the latter’s are { (h0, h0, {h0}) } and, even supposing h0 ∈ E, still in
general H0 '⊆ {h0}.

Fig. 6 shows how wp-logic avoids the Refinement Paradox.
4 This is the Smyth powerdomain-order over an underlying refinement on single triples

that allows the H-component —i.e. ignorance— to increase [Smyth].

33

Outlaw:
 v:= 0
! v:= h; v:= 0

Perfect recall

Gedanken argument...

(v:= 0); v:∈ E =
Culture clash

Gedanken argument...
for history of program counter 3

if h = 0 then skip else skip fi; v:∈E

= if h = 0 then skip; v:∈E else skip; v:∈E fi
= if h = 0 then v:∈E else v:∈E fi
" if h = 0 then v:=true else v:= false fi

= v:= (h = 0)

vis p, p0;hid p1, p2 ·

p:= p0 ⊕ p1 ⊕ p2

$" vis s0, s1, s2, c0, c1; hid c2 ·
s0:= c0 + p0 − c1;
s1:= c1 + p1 − c2;
s2:= c2 + p2 − c0;

p:= (s0 + s1 + s2) mod 2

(v, h,H) [[v:∈T]] (t, h,H) for all t in T
but (v, h,H) [[v:=h]] (h, h, {h})

and (t, h,H) $"′ (h, h, {h}) for any t in T

Another outlaw:
if E(h) then skip else skip fi ! skip

34

How do we outlaw
the outlaws?

35

only

Programming language syntax
36

Identity skip

Assigment x:=E

Choose x:∈E

Demonic choice S1 " S2

Composition S1;S2

Conditional if E then S1 else S2 fi

Declare visible |[vis v · S]|

Declare hidden |[hid h · S]|

Fig. 1. Programming language syntax

to (v, h, H) is thus

v = last.v ∧ h = last.h ∧ H = {h′ | (v, h
′
, p) ∼ (v, h, p) · last.h

′} . 4

From sequences v, h, p we retain only final values v, h and the induced H. 5

5 The Shadow Knows: an operational semantics

We now use our model to give an ignorance-sensitive opera-
tional interpretation of a simple sequential programming lan-
guage including nondeterminism. To begin with, we continue
to assume a state space with just two variables, the visible
v and the hidden h. (In general of course there can be many
visibles and hiddens.) Our semantics adds a third variable H
called the shadow of the hidden variable h. The semantics

will ensure that, in the sense of Sec. 4.2 above, the shadow H “knows” the set
of values that h has potentially.

5.1 Syntax and semantics

The syntax of our example programming language is given in Fig. 1.

4 Read the last as “vary h
′ such that (v, h

′
, p) ∼ (v, h, p) and take last.h

′ for each”.
5 In fact the H-component makes h redundant –i.e. we can make do with just (v,H)–
but this extra “compression” would complicate the presentation subsequently.

8

4 Carroll Morgan

In each case we imagine that we are at the end of the program given, that the initial
values were v0, h0, and that we are the observer (so we write “we know” etc.)

Program Informal commentary

1.1 both v:∈ {0, 1}
and v:= 0 " v:= 1

We can see the value of v, either 0 or 1.We
know h is h0, though we cannot see it.

1.2 h:∈ {0, 1} We know that h is either 0 or 1, but we don’t
know which; we see that v is v0.

1.3 (two atomic statements)

h:= 0 " h:= 1

We know the value of h, because from the
program-counter history we know which of the
atomic h:= 0 or h:= 1 was executed.

1.4 h:∈ {0, 1};
v:= 0 " v:= 1

We don’t know whether h is 0 or it is 1: even
the "-demon cannot see the hidden variable.

1.5 h:∈ {0, 1};
v:∈ {h, 1−h}

Though the choice of v refers to h it reveals no
information, since the statement is atomic.

1.6 h:∈ {0, 1};
v:= h " v:= 1−h

Here h is revealed, because we know which of
the two atomic assignments to v was executed.

1.7 h:∈ {0, 1, 2, 3};
v:= h

We see v; we deduce h since we can see v:= h
in the program text.

1.8 h:∈ {0, 1, 2, 3};
v:= h mod 2

We can see v; either we deduce h is 0 or 2, or
that h is 1 or 3.

1.9 h:∈ {0, 1, 2, 3};
v:= h mod 2;
v:= 0

We see v is 0; but our deductions about h are
as for 1.8, because we saw v’s earlier value.

Note that the two alternatives in 1.1 are the same, while 1.2 and 1.3 differ. In 1.5 and
1.6 the difference is made possible by the right-hand side’s containing h.

In 1.7 (resp. 1.8) the value of h value is totally (resp. partially) revealed.

In 1.9 the (atomic) assignment v:= 0 in the third step does not make us forget the
partial information revealed about h after the second step.

Fig. 1. Examples of ignorance, informally interpreted

In Case 1.1 we are indifferent to the two forms of choice because h does not
occur in them: this is important, because we are hoping to preserve as many
as we can of the traditional facts of programming — in particular, that reason-
ing about parts of programs in which h does not appear should be as normal.
However, other cases show that when h is referred to —either on the left or the
right— the traditional rules don’t necessarily apply; this is significant, because
the “Refinement Paradox” (Sec. 2.3) is the mis-application of a traditional rule.

2.2 The logic of knowledge and ignorance

Our logical language is first-order predicate formulae Φ, interpreted convention-
ally over the variables of the program, augmented with a “knows” modal operator
so that !Φ holds in this state just when Φ itself holds in all states accessible
via ∼ from this one, and its dual "Φ defined ¬!(¬Φ) which holds in this state

Informal examples of observations
37

The Shadow Semantics adds an extra component to the normal
relational semantics of sequential programs, one that keeps “in the
shadows” the set of possible hidden values the observer must consider
possible, based on what he has seen of the execution so far.

Ignorance Refinement takes the shadow component into account, not
allowing it to shrink; and the reduce-nondeterminism/increase-
termination rules of ordinary refinement continue to apply.

A weakest-precondition logic can be given. Ultimately the logic and
model borrows from the Kripke structures of the Logic of Knowledge.

38

Derived by
quotienting a
Kripke model

Add more structure...

2

{Φ} P {Ψ}

(v, h,H) |= Φ
∧ (v, h,H) [[P]] (v′, h′,H′)

⇒ (v′, h′,H′) |= Ψ

wp.P.Ψ is the weakest Φ such that {Φ} P {Ψ}

P # Q means |= wp.P.Ψ ⇒ wp.Q.Ψ for all ignorant Ψ

P # Q iff [[P]] #′ [[Q]]

(v0, h0,H0) #′ (v1, h1,H1)

iff v0=v1 ∧ h0=h1 ∧ H0 ⊆ H1

vis p, p0;hid p1, p2 ·

p:= p0∇p1∇p2

vis s0, s1, s2, c0, c1; hid c2 ·
s0:= c0∇p0∇c1;
s1:= c1∇p1∇c2;
s2:= c2∇p2∇c0;
p:= s0∇s1∇s2

39

Shadow Semantics

• Structure the state space using a triple.

• The H component (the shadow) captures what an
observer can infer is possible (given the observed
behaviour of the program).

• The underlying order encodes what we mean by
preservation of ignorance.

40

Ignorance refinement The
operational
view

• Program P refines Q just when P’s result triples are
contained in Q’s result set (of triples);

• “Healthiness conditions” ensure that h’s value is
revealed just when the H set collapses.

If (v, h, H) is contained in a result set of program P, then

H1 : h % H;
H2 : so is (v, h’, H), for any h’ % H;
H3 : if (v, h, H’) is also in the result set, then so is (v, h, H’&H).

41

Ignorance refinement The
operational
view

For an ignorance-sensitive program S we write [[S]] for its conversion into the shad-
owed form. In this simplified presentation we exclude declarations, supposing only
single variables v, h (ranging over a set D), so that the shadow H is simply a set of
the potential values for h (thus ranging over the powerset PD).

On the right the classical semantics applies: in particular, use of :∈ merely indicates
an ordinary nondeterministic choice from the set given. Variable e is fresh, just used
for the exposition.

Identity [[skip]] =̂ skip

Assign to visible [[v:=E]] =̂ e:=E; H:= {h:H | e=E}; v:= e

Choose visible [[v:∈E]] =̂ e:∈E; H:= {h:H | e∈E}; v:= e

Assign to hidden [[h:=E]] =̂ h:=E; H:= {E | h:H}

Choose hidden [[h:∈E]] =̂ h:∈E; H:=∪{E | h:H}

Demonic choice [[S1 # S2]] =̂ [[S1]] # [[S2]]

Composition [[S1;S2]] =̂ [[S1]]; [[S2]]

Conditional [[if E then S1 else S2 fi]]

=̂ if E then H:= {E | h:H}; [[S1]] else H:= {¬E | h:H}; [[S2]] fi

Fig. 3. Operational semantics

noted which branch was taken.

In Fig. 4 we apply the above to give the shadow semantics for our earlier
examples.

4 Interpretation of the logic

As we foreshadowed (Sec. 2.2), our logical language is first-order augmented
with a modal operator so that KΦ is read “know Φ” [9, 3.7.2]. Here we set
out its interpretation.

We give the language function- (including constant-) and relation symbols as
needed, among which we distinguish the (program-variable) symbols visibles
in V and hiddens in H; as well there are the usual (logical) variables in L
over which we allow ∀,∃ quantification. The visibles, hiddens and variables
are collectively the scalars X =̂ V ∪ H ∪ L.

A structure comprises a non-empty domain D of values, together with func-
tions and relations over it that interpret the function- and relation symbols
mentioned above; within the structure we name the partial functions v, h that

10

8 Carroll Morgan

The initial state is (v0, h0, {h0}).
Program Final states in the “reduced” (v, h, H) model

3.1 both v:∈ {0, 1}
and v:= 0 " v:= 1

(0, h0, {h0}) , (1, h0, {h0})

3.2 h:∈ {0, 1} (v0, 0, {0, 1}) , (v0, 1, {0, 1})
3.3 h:= 0 " h:= 1 (v0, 0, {0}) , (v0, 1, {1})
3.4 h:∈ {0, 1};

v:= 0 " v:= 1
(0, 0, {0, 1}) , (0, 1, {0, 1}) ,
(1, 0, {0, 1}) , (1, 1, {0, 1})

3.5 h:∈ {0, 1};
v:∈ {h, 1−h}

(0, 0, {0, 1}) , (1, 0, {0, 1}) ,
(0, 1, {0, 1}) , (1, 1, {0, 1})

Thus this and
3.4 are equal.

3.6 h:∈ {0, 1};
v:= h " v:= 1−h

(0, 0, {0}) , (1, 0, {0}) ,
(0, 1, {1}) , (1, 1, {1})

But this one
differs.

3.7 h:∈ {0, 1, 2, 3};
v:= h

(0, 0, {0}) , (1, 1, {1}) ,
(2, 2, {2}) , (3, 3, {3})

3.8 h:∈ {0, 1, 2, 3};
v:= h mod 2

(0, 0, {0, 2}) , (1, 1, {1, 3}) ,
(0, 2, {0, 2}) , (1, 3, {1, 3})

3.9 h:∈ {0, 1, 2, 3};
v:= h mod 2;
v:= 0

(0, 0, {0, 2}) , (0, 1, {1, 3}) ,
(0, 2, {0, 2}) , (0, 3, {1, 3})

The final v:= 0
does not affect H.

That (3.4)=(3.5) is due to the sets’ {0, 1} and {h, 1−h} being equal following h:∈ {0, 1}.
But (3.6) differs because we know which "-branch was taken.

In (3.9) partial information about h remains, represented by two possibilities for H of
{0, 2} and {1, 3}, even though v=0 in all outcomes.

Fig. 3. Examples (Figs. 1,2) revisited: a relational interpretation

5 Weakest-precondition modal semantics

For practical reasoning, we introduce a weakest-precondition logical semantics
to support the assertional style of Def. 1. It corresponds to the operational
semantics of Sec. 4 (and hence via Thm. 1 to the original sequence-semantics
also), given the interpretation in Sec. 3 of the modal formulae.

The logical semantics is given in two layers, in Fig. 4 and Fig. 5, because
most programs generate both a modal- and a classical-style transformer, which
distribute differently through postconditions.

Visible and hidden variables have separate declarations vis v and hid h
respectively. Declarations within a local scope do not affect visibility: a global
hidden variable cannot be seen by the observer; a local visible variable can.

Occurrences of v, h in the rules may be vectors of visible- or vectors of hidden
variables, in which case renamings such as [h\h′] apply throughout the vector.
We assume wlog that modalities are not nested, since we can remove nestings
via |= !Φ ≡ (∃c · [h\c]Φ ∧ !(h=c)). The wp-logic has the following significant
features:

1. The transformers defined in Fig. 5 distribute conjunction, as standard transformers
do [Dijkstra]. Thus complicated postconditions can be broken at conjunction and
treated separately.

Examples of operational semantics
42

43

Ignorance refinement

v:% V# !# v:= v’

v:% V# !# v:= h/

(v,h,H) [v:% V] (x,h,H)# any x%V

(v,h,H) [v:= v’] (v’,h,H) v’%V#

(v,h,H) [v:= h] (h,h,{h}) h%V, but H'{h} in general

(initial state-triple) [program] (final state-triple)

x

/

The
operational
view

We can now outlaw
refinements which reveal
hidden state.

44

Weakest precondition The logical
view

• We introduce knowledge/ignorance modalities K / P
(they are dual) so that for example

 K(h>0) means we know that h
 is positive even though we

 can’t see it.
 P(h>0) means we don’t know that h
 isn’t positive.
• We focus on ignorance formulae, those in which K

occurs only negatively, equivalently in which P occurs
only positively.

• We interpret these formulae à la v,h,H (!
 with P acting existentially in H.

Logical vs operational semantics

The operational-logical connection:

45

defined only at x, where it takes value d.

A state (v, h, H) comprises a visible- v, hidden- h and shadow- part H; the last,
in P(H !→D), is a set of valuations over hiddens only. We require that h ∈ H. 5

We define truth of Φ at (v, h, H) under valuation w by induction, writing
(v, h, H), w |= Φ. Let t be the term-valuation built inductively from the valua-
tion v ! h ! w. Then we have the following [9, pp. 79,81]:

• (v, h, H), w |= R.t1. · · · .tk for relation symbol R and terms t1 · · ·tk iff the
tuple (t.t1, · · · , t.tk) is an element of the interpretation of R.

• (v, h, H), w |= t1 = t2 iff t.t1 = t.t2.
• (v, h, H), w |= ¬Φ iff (v, h, H), w $|= Φ.
• (v, h, H), w |= Φ1 ∧ Φ2 iff (v, h, H), w |= Φ1 and (v, h, H), w |= Φ2.
• (v, h, H), w |= (∀l · Φ) iff (v, h, H), w ! 〈l !→d〉 |= Φ for all d in D.
• (v, h, H), w |= KΦ iff (v, h1, H), w |= Φ for all h1 in H.

We write just (v, h, H) |= Φ when w is empty, and |= Φ when (v, h, H) |= Φ for
all v, h, H with h∈H, and we take advantage of the usual “syntactic sugar” for
other operators (including P as ¬K¬). Thus for example we have |= Φ ⇒ PΦ
for all Φ, a fact which we use in Sec. 6.

5 Weakest-precondition modal semantics

We now introduce a weakest-precondition semantics to support direct reason-
ing at the v, h-level of syntax, i.e. without translation to v, h,H-programs. It
corresponds to the operational semantics of Fig. 3, given the interpretation in
Sec. 4 of the modal formulae.

The predicate-transformer semantics is given in two layers, in Fig. 5 and Fig. 6,
because the modal- and classical aspects seem to separate naturally.

Visible and hidden variables have separate declarations vis v and hid h re-
spectively. Declarations within a local scope do not affect visibility: a global
hidden variable cannot be seen by the observer; a local visible variable can.

5 Our state corresponds to Fagin’s Kripke structure and state together [9]; but our
use of Kripke structures is extremely limited (App. A). Not only do we make the
Common-Domain Assumption, but we do not allow the structure to vary between
worlds except for the interpretation h of hiddens.
To allow for declarations of additional variables, we must make H a set of valuations
rather than (as in Sec. 3) simply a set of values. We hope it is clear how the simpler
view is a special case of this section’s more formal presentation.

12

• We (re-)define the Hoare-triple
 as

• Based on our operational understanding, we
define inductively.

2

(v, h,H) [[P]] (v′, h′,H′)

{Φ} P {Ψ}

(v, h,H) |= Φ
∧ (v, h,H) [[P]] (v′, h′,H′)

⇒ (v′, h′,H′) |= Ψ

wp.P.Ψ is the weakest Φ such that {Φ} P {Ψ}

P # Q means |= wp.P.Ψ ⇒ wp.Q.Ψ for all ignorant Ψ

P # Q iff [[P]] #′ [[Q]]

(v0, h0,H0) #′ (v1, h1,H1)

iff v0=v1 ∧ h0=h1 ∧ H0 ⊆ H1

v:∈T &# v:=h

Logical vs operational semantics

The operational-logical connection:

2

{Φ} P {Ψ}

{Φ} P {Ψ}

(v, h,H) |= Φ
∧ (v, h,H) [[P]] (v′, h′,H′)

⇒ (v′, h′,H′) |= Ψ

wp.P.Ψ is the weakest Φ such that {Φ} P {Ψ}

P # Q means |= wp.P.Ψ ⇒ wp.Q.Ψ for all ignorant Ψ

P # Q iff [[P]] #′ [[Q]]

(v0, h0,H0) #′ (v1, h1,H1)

iff v0 = v1 ∧ h0 = h1 ∧ H0 ⊆ H1

vis p, p0;hid p1, p2 ·

p:= p0∇p1∇p2

vis s0, s1, s2, c0, c1; hid c2 ·
s0:= c0∇p0∇c1;
s1:= c1∇p1∇c2;
s2:= c2∇p2∇c0;
p:= s0∇s1∇s2

2

{Φ} P {Ψ}

{Φ} P {Ψ}

(v, h,H) |= Φ
∧ (v, h,H) [[P]] (v′, h′,H′)

⇒ (v′, h′,H′) |= Ψ

wp.P.Ψ is the weakest Φ such that {Φ} P {Ψ}

P # Q means |= wp.P.Ψ ⇒ wp.Q.Ψ for all ignorant Ψ

P # Q iff [[P]] #′ [[Q]]

(v0, h0,H0) #′ (v1, h1,H1)

iff v0 = v1 ∧ h0 = h1 ∧ H0 ⊆ H1

vis p, p0;hid p1, p2 ·

p:= p0∇p1∇p2

vis s0, s1, s2, c0, c1; hid c2 ·
s0:= c0∇p0∇c1;
s1:= c1∇p1∇c2;
s2:= c2∇p2∇c0;
p:= s0∇s1∇s2

46

• We give syntactic predicate-transformer style rules
for calculating weakest-preconditions in general.

The operational-logical connection (continued):

2

{Φ} P {Ψ}

{Φ} P {Ψ}

(v, h,H) |= Φ
∧ (v, h,H) [[P]] (v′, h′,H′)

⇒ (v′, h′,H′) |= Ψ

wp.P.Ψ is the weakest Φ such that {Φ} P {Ψ}

P # Q means |= wp.P.Ψ ⇒ wp.Q.Ψ for all ignorant Ψ

P # Q iff [[P]] #′ [[Q]]

(v0, h0,H0) #′ (v1, h1,H1)

iff v0 = v1 ∧ h0 = h1 ∧ H0 ⊆ H1

vis p, p0;hid p1, p2 ·

p:= p0∇p1∇p2

vis s0, s1, s2, c0, c1; hid c2 ·
s0:= c0∇p0∇c1;
s1:= c1∇p1∇c2;
s2:= c2∇p2∇c0;
p:= s0∇s1∇s2

• We define Dijkstra-style weakest preconditions so
that

47

Logical vs operational semantics

The operational-logical connection (continued):

2

{Φ} P {Ψ}

{Φ} P {Ψ}

(v, h,H) |= Φ
∧ (v, h,H) [[P]] (v′, h′,H′)

⇒ (v′, h′,H′) |= Ψ

wp.P.Ψ is the weakest Φ such that {Φ} P {Ψ}

P # Q means |= wp.P.Ψ ⇒ wp.Q.Ψ for all ignorant Ψ

P # Q iff [[P]] #′ [[Q]]

(v0, h0,H0) #′ (v1, h1,H1)

iff v0 = v1 ∧ h0 = h1 ∧ H0 ⊆ H1

vis p, p0;hid p1, p2 ·

p:= p0∇p1∇p2

vis s0, s1, s2, c0, c1; hid c2 ·
s0:= c0∇p0∇c1;
s1:= c1∇p1∇c2;
s2:= c2∇p2∇c0;
p:= s0∇s1∇s2

• We define refinement based on our logic of
ignorance:

48

Logical vs operational semantics

49

The
logical
view

{P(h=C)} v:% V {P(h=C)} holds for all C

{P(h=C)} v:= h {P(h=C)} does not hold in general

An outlaw outlawed

Examples of modal postconditions
50

Program Valid Ψ Invalid Ψ
(in these examples, for any Φ)

6.1 both v:∈ {0, 1}
and v:= 0 " v:= 1

v ∈ {0, 1} v = 0

6.2 h:∈ {0, 1} P(h=0) K(h=0)

6.3 h:= 0 " h:= 1 h ∈ {0, 1} P(h=0)

6.4 h:∈ {0, 1};
v:= 0 " v:= 1

P(v=h) K(v #=h)

6.5 h:∈ {0, 1};
v:∈ {h, 1−h}

P(h=0)
In fact Program 6.5 equals Program 6.4.

P(v=0)

6.6 h:∈ {0, 1};
v:=h " v:= 1−h

v ∈ {0, 1}
But Program 6.6 differs from Program 6.5.

P(h=0)

6.7 h:∈ {0, 1, 2, 3};
v:=h

K(v=h) P(v #=h)

6.8 h:∈ {0, 1, 2, 3};
v:=h mod 2

v=0
⇒ P(h∈{2, 4})

P(h=1)
∧ P(h=2)

6.9 h:∈ {0, 1, 2, 3};
v:=h mod 2; v:= 0

P(h∈{1, 2}) v=0
⇒ P(h∈{2, 4})

· In 6.3 the invalidity is because " might resolve to the right: then h=0 is impossible.
· In 6.6 the invalidity is because :∈ might choose 1 and the subsequent " choose
v:=h, in which case v would be 1 and h=0 impossible.

· In 6.8 the validity is weak: we know h cannot be 4; yet still its membership of {2, 4}
is possible. The invalidity is because the assignment v:=h mod 2 reveals h’s parity;
the adversary cannot simultaneously consider both 1 and 2 to be possible.

· In 6.9 the invalidity is due to the fact that v’s value might have been 1 earlier; the
assignment v:= 0 is an unsuccessful “cover up”.

Fig. 6. Examples of valid and invalid postconditions

7 A program logic of Hoare-triples

7.1 Pre-conditions and postconditions

We say that {Φ} S {Ψ} just when any initial state (v, h, H) |= Φ must lead via
S only to final states (v′, h′, H′) |= Ψ; typically Φ is called the precondition and
Ψ is called the postcondition. Fig. 6 illustrates this proposed program logic
using our earlier examples from Fig. 3. (Because the example postconditions
Ψ do not refer to initial values, their validities in this example are independent
of the precondition Φ.)

16

m0,m1: M c: {0,1}

51

m:= fc $ r

r0,r1: M d: {0,1}

r0,r1: M d: {0,1}

f0, f1: M

e: {0,1}
e:= c$d

f0, f1:= m0$re, m1$r1$e

r: M

r:= rd

m: M

Ted

Oblivious transfer: the solution

52

The encryption lemma

skip ! {hid x; vis y • x:% X; y:= x$h}

 This formalises the basic idea of how to hide
information by publishing the result of an
exclusive OR with the secret. The Encryption
Lemma gives the conditions under which no
information is revealed. And it can be expressed
very easily using a secure refinement law.

m0,m1: M c: {0,1}

53

m: M

m:= mcAlice

Keeping secrets is meaningless
without multiple viewpoints

3

! “reordering”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
r0, r1 :∈ M,M ;
d:∈ {0, 1};
r:= rd;
e:= c⊕ d
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
r0, r1 :∈ M,M ;
d:∈ {0, 1};
r:= rd;
e:= c⊕ d
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:= fc ⊕ r

}

Bob

Bob’s
view

Derivation of OTP

2

m:=mc

! skip;
m:=mc

! “local visible variables”

{ vis d, e: {0, 1} ·
d:∈ {0, 1};
e:= c⊕ d;
m:=mc

}
! “encryption lemma”

{ vis d, e: {0, 1}; f0, f1:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “local visible variable”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= fc ⊕m

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= rd

}

2

m:=mc

! skip;
m:=mc

! “local visible variables”

{ vis d, e: {0, 1} ·
d:∈ {0, 1};
e:= c⊕ d;
m:=mc

}
! “encryption lemma”

{ vis d, e: {0, 1}; f0, f1:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0, f1 := m0 ⊕ re, m1 ⊕ r1⊕e ;
m:=mc

}
! “local visible variable”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0, f1 := m0 ⊕ re, m1 ⊕ r1⊕e ;
m:=mc;
r:= fc ⊕m

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0, f1 := m0 ⊕ re, m1 ⊕ r1⊕e ;
m:=mc;
r:= rd

}

54

skip ! {hid x; vis y • x:% X; y:= x$h}

2

m:=mc

! skip;
m:=mc

! “local visible variables”

{ vis d, e: {0, 1} ·
d:∈ {0, 1};
e:= c⊕ d;
m:=mc

}
! “encryption lemma”

{ vis d, e: {0, 1}; f0, f1:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “local visible variable”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= fc ⊕m

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= rd

}

2

m:=mc

! skip;
m:=mc

! “local visible variables”

{ vis d, e: {0, 1} ·
d:∈ {0, 1};
e:= c⊕ d;
m:=mc

}
! “encryption lemma”

{ vis d, e: {0, 1}; f0, f1:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “local visible variable”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= fc ⊕m

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= rd

}

55

Step 4 of 7

Derivation of OTP

2

m:=mc

! skip;
m:=mc

! “local visible variables”

{ vis d, e: {0, 1} ·
d:∈ {0, 1};
e:= c⊕ d;
m:=mc

}
! “encryption lemma”

{ vis d, e: {0, 1}; f0, f1:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “local visible variable”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= fc ⊕m

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= rd

}

2

m:=mc

! skip;
m:=mc

! “local visible variables”

{ vis d, e: {0, 1} ·
d:∈ {0, 1};
e:= c⊕ d;
m:=mc

}
! “encryption lemma”

{ vis d, e: {0, 1}; f0, f1:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “local visible variable”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= fc ⊕m

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= rd

}

56

Step 5 of 7

Derivation of OTP

2

m:=mc

! skip;
m:=mc

! “local visible variables”

{ vis d, e: {0, 1} ·
d:∈ {0, 1};
e:= c⊕ d;
m:=mc

}
! “encryption lemma”

{ vis d, e: {0, 1}; f0, f1:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “local visible variable”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= fc ⊕m

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= rd

}

3

! “reordering”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
r0, r1 :∈ M,M ;
d:∈ {0, 1};
r:= rd;
e:= c⊕ d
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
r0, r1 :∈ M,M ;
d:∈ {0, 1};
r:= rd;
e:= c⊕ d
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:= fc ⊕ r

}

57

Step 6 of 7

Derivation of OTP

3

! “reordering”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
r0, r1 :∈ M,M ;
d:∈ {0, 1};
r:= rd;
e:= c⊕ d
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
r0, r1 :∈ M,M ;
d:∈ {0, 1};
r:= rd;
e:= c⊕ d
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:= fc ⊕ r

}

3

! “reordering”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
r0, r1 :∈ M,M ;
d:∈ {0, 1};
r:= rd;
e:= c⊕ d
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
r0, r1 :∈ M,M ;
d:∈ {0, 1};
r:= rd;
e:= c⊕ d
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:= fc ⊕ r

}

58

Final step

Derivation of OTP

2

m:=mc

! skip;
m:=mc

! “local visible variables”

{ vis d, e: {0, 1} ·
d:∈ {0, 1};
e:= c⊕ d;
m:=mc

}
! “encryption lemma”

{ vis d, e: {0, 1}; f0, f1:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “local visible variable”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= fc ⊕m

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= rd

}

3

! “reordering”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
r0, r1 :∈ M,M ;
d:∈ {0, 1};
r:= rd;
e:= c⊕ d
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
r0, r1 :∈ M,M ;
d:∈ {0, 1};
r:= rd;
e:= c⊕ d
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:= fc ⊕ r

}

Bob’s point of view.

Ted sends d to Bob.

Ted sends rd to Bob.

Bob sends e to Alice.

Ted sends r0, r1 to Alice.

Bob computes mc.

Alice sends f0, f1 to Bob.

59

Overall, in 7 steps,

Rivest’s Oblivious Transfer Protocol.

Ignorance-preserving refinement

2

m:=mc

! skip;
m:=mc

! “local visible variables”

{ vis d, e: {0, 1} ·
d:∈ {0, 1};
e:= c⊕ d;
m:=mc

}
! “encryption lemma”

{ vis d, e: {0, 1}; f0, f1:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “local visible variable”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= fc ⊕m

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
d:∈ {0, 1};
e:= c⊕ d
r0, r1 :∈ M,M ;
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc;
r:= rd

}

3

! “reordering”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
r0, r1 :∈ M,M ;
d:∈ {0, 1};
r:= rd;
e:= c⊕ d
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:=mc

}
! “standard reasoning”

{ vis d, e: {0, 1}; f0, f1, r:M ;
hid r0, r1:M ·
r0, r1 :∈ M,M ;
d:∈ {0, 1};
r:= rd;
e:= c⊕ d
f0:=m0 ⊕ re ;
f1:=m1 ⊕ r1⊕e ;
m:= fc ⊕ r

}

60

Ignorance-preserving refinement

Conclusion

The desired
security properties
do not have to be

listed initially.

This is the power
of refinement

and program algebra.

A calculus of revelations

61

Having an explicit reveal command simplifies
the algebra considerably, and focuses attention
—where desired— on the pure security
properties.

reveal E = |[vis v · v:=E]|

Previous approach:
harder to manipulate.

The Encryption Lemma:
a piece of algebraic Lego

Does this program fragment reveal anything about h?

hid h ·

|[hid h′; h′:∈ {0, 1}; reveal h⊕h′]|

No — it reveals nothing at all.

62

“Here’s a little refinement
I prepared earlier.”

|[hid h′; h′:∈ {0, 1}; reveal h⊕h′]|
= skip

= skip

A calculus of revelations

= reveal (E,F)

reveal x⊕y; reveal y⊕z

reveal E; reveal F

= reveal (x⊕y, y⊕z)
= reveal (x⊕y, x⊕z)

reveal x⊕y; reveal x⊕z=

addition mod 2 or, equivalently, exclusive-or

63

(1+2=3) Combine E with F; replace F with F’; separate E and F’.

