Secure stepwise
refinement:
Beating the refinement
paradox

Annabelle Mclver
Macquarie University

In brief ...

1. Traditional refinement;

2. Security and the “refinement paradox”;

3. Motivation: why refinement and security?

4. The Shadow semantics: beating the paradox;
5. Encryption with refinement;

6. Deriving the Oblivious Transfer;

7. Deriving the Dining Cryptographers.

The refinement tradition

What's “refinement” ?

The dream...

1. Adds rigour to program development;
2. Is a framework for what it means to be correct;
3. Sanctions the safe...

4. ...and prevents the unsafe implementations.

Program development by stepwise refinement
(Wirth, CACM 1971)

What's “refinement” ?

WYWIWYG

public class StatsPackage {
private realSeq data= [|;

void reset() { data=[]; }

void addDatum(real datum) {
data= data++[datum];

}

real mean() throws NoData {
if (data !=1[1])
return Y data / #data;
else throw new NoData(“No data points.”);

uonesydads—
Ir
uoneyuswa|dwi—

What's “refinement” ?

2
3
:

public class StatsPackage’ implements StatsPackage {
private real sum= 0, count= 0;

void reset() { sum= count= 0; }

void addDatum(real datum) {
sum+= datum; count+= 1;

}

real mean() throws NoData {
if (count !=0)
return sum / count;
else throw new NoData(“No data points.”);

uopnedyyads —

I

* uoneausws|dwi—

N K >

What's “refinement” ?

public class StatsPackage {
private realSeq data= [|;

void reset() { data= [J; } realSeq getData() { return data; }

void addDatum(real datum) {
data= data++[datum];

}

real mean() throws NoData {
if (data !=1[1])
return Y data / #data;
else throw new NoData(“No data points.”);

What's “refinement” ?

public class StatsPackage’ implements StatsPackage {
private real sum= 0, count= 0;

realSeq getData() { 22222222222 }

void reset() { sum= count= 0; }

void addDatum(real datum) {
sum+= datum; count+= 1;

}

real mean() throws NoData {
if (count !=0)
return sum / count;
else throw new NoData(“No data points.”);

What's “refinement” ?

P is refined by Q means:

. Qs at least @ ; or

2. Every possible(behaviour o Q is a possible
behaviour of P ; or

3. Everything you cabout P you can also

prove about Q.

—

1. What's good?
2. What behaviours can | observe?
3. What logic do | use for proof?

What's “refinement” ?

The reality...

VDM and Z

B and event-B

CSP

The Refinement Calculus 2
A large body of mathematical techniques

S 5= B9 0 6

Program development by stepwise refinement
(Wirth, CACM 1971)

But the Refinement Paradox
inhibits use of traditional refinement in security.

The refinement paradox

e Standard refinement is based on a relational-style semantics, with
refinement described by reverse-subset inclusion.

— —

h=0nh=1,;,vi=0nvi=1 C h=0nh:=1;vi=h

- O = O

OO = =<
O.A
OA

The refinement paradox

e Standard formal security analysis is based on classifying variables
into two kinds: “high” and “low” (or “hidden” and “visible”);

e Programs are said to be secure (or not) depending on whether their
execution causes the hidden values to be revealed;

* A refinement-oriented framework should ensure that even security
properties are preserved...

vi=Onvi=1;h=0nh=1
=hi=0nh=171,vi=0nvi=1 C h=0nh:=1;vi=h

This
refinement

doesn’t preserve
secrecy!

This would be
considered
secure...

... but clearly
not this.

What's “secure refinement” ?

)

The dream...

1. Adds rigour to secure developments;
2. Is a framework for what it means to be secret;
3. Sanctions security-preserving programs...
4. ...and prevents insecure implementations.

“Secure program development by stepwise refinement”
(Morgan, MPC 2006)

Motivation

Oblivious transfer

Oblivious transfer: the problem

Alice has two messages;

Bob knows their “names”, Bob asks for one,

but not their contents. by name.

mo,m1: M c: {0, 1}
Alice @ =M > © Bob

m: M

Alice sends it... ...Bob receives it.

But Alice is not to know which message Bob asked for,
and Bob is not to find out the contents of the other one.

Oblivious transfer: the solution

Ted

rori: M © d: {0,1}

ro,ri: M
mo,Mi: M

e:=cad
e: {0,1} < m: M

fo, f1:= Mo®re, M1®rie

Oblivious transfer: the “proof”

feor
= (Mc ® reee) ® r
= Mc ® lco(cad) @
= Mc®Id® rg
= Mmec

e:=caod

m: M

fo, f1:= Mo®re, M1®rie

} fo, f]t M

m=f®r

So what?

20

SO Wh at? What “we” do...

m:= Alice X Not localised.

ci=C, «—— X Reveals c to Alice.

@ { var mo’, m;”> M e
’ Je__ o

mo, Mjp:=mMmo, Mi; <— x Reveals Miec tO BOb

/

m:=mc

}

Refinement

So what?

c {wvarr rorifo f: M
de: {0,1} o

ro, ri:e M,M;

d:€ {0,1};

r=rd;

e:=cad;

fo, f;=mo® re, M1 ® riec;
m:= fc ®r

21

What Rivest does

X Not localised.

only
v Reveals m. to Bob.

-~

But how to prove this?

¢ And prevent these?

So what?

That’s what.

A new approach:
Shadow semantics

What's “secure refinement” ?

s Z2pDuz N2l = sa]
SN e AN RTEN NGRS
m@{f"ﬂﬂ@%-mmdm

The reality...

The way to resolve the paradox is to regard insecure
refinements at “attacks” performed during
development. Beating the refinement paradox is
possible within a framework which can distinguish
between secure and insecure refinements.

L raf o MRS Y

23

A new approach —
* Locale
e Visibility

There/here Local/global

What kind of variables are there?

24

A new approach

e Scope: Newly-declared, local variables can have arbitrary
values assigned to them:

skip C {varx:Te x:="“anything” ...
Global variables are constrained by the specification:

skip z x:=“anything”

e Locale: Mixed locales cannot occur inside expressions:

x:= here + there X not allowed in code

Mixed locales across “:=” imply communication:

there:= here ¥ sends/receives a message

25

A new approach

e Visibility: Hidden variables cannot be revealed, even
partially, by refinement:

moeM T mo=r
Visible variables and constants can:

moeM C mo=m;
mo:e M T mog:= “This is written in the code.”

26

Gedanken experiments
in program algebra

What are our goals?

Security, privacy, zero-knowledge protocols...
done algebraically, logically, “refinably”.

e Treat sequential programs in the “usual” way, as far as
possible, but...

e Include ignorance (somehow defined) among the
properties that the refinement is to preserve...

e Thus permitting fewer (but not too few) refinements
than before, while...

* Keeping certain practical principles in mind, for
scalability.

e Which principles?

28

What are our principles?

Prl | All traditional “visible-only” refinements are retained — It would be imprac-
tical to search an entire program for hidden variables in order to validate
local wvisible-only reasoning in which the hiddens are not mentioned.

Pr2 All traditional “structural” refinements are retained — Associativity of se-
quential composition, distribution of code into branches of a conditional etc.
are refinements (actually equalities) that do not depend on the actual code
fragments affected: they are structurally valid, acting en bloc. It would be
impractical to have to check through the fragments’ interiors (including e.g.
procedure calls) to validate such familiar rearrangements.

Pr3||Some traditional “explicit-hidden” refinements are excluded — Those that
preserve ignorance will be retained; the others (e.g. the Paradox) will be
excluded. For this principle we need a model and a logic.

29

More briefly...

e Equality- and refinement laws of the program
algebra should be preserved “as much as
possible”. But which are the most important?

— Laws in which no hidden variable appears.

— “Schematic” laws referring to general
program fragments.

e Which can we afford to lose?
— Laws in which hidden variables appear
explicitly.

30

More briefly...

e Which laws do we keep?

vi=0nvi=1 ¥ Doesn’t involve hiddens
Cif (v<10) then v:i=1 else v:=0

P;,(Q nR)=P,Q n P;R ¥ Schematic law

e Which laws can we lose?

vi=0nvi=1 X Does involve hiddens
z if (h <10) then v:= 0 else v:=1

vi=0 # vi=h;vi=0 X But this is also banned

31

Gedanken argument...
for perfect recall

=h;v:=0);v:€ E
h; (v:=0;v:€ F)
h; (v:€ F)
h; SKIP
h

(
v:
v:
vi=h;
v:

1T |l

32

Gedanken argument...

Outlaw:
UVCZVO /

vi=h;vi=0

)\

Perfect recall

%5 in which no hidden variable appears.
— “Schematic” laws referring to general

program fragments.

33

34

Gedanken argument...
for history of program counter

Another outlaw:
if E(h) then skip else skip fi # skip

if h =0 then sSKIP else skip fi; v:eFE

if h =0 then skiIP;v:€ E else sKiP;v:€ E fi
if h =0 then v:€ F else v:c F fi
if h = 0 then v:= TRUE else v:=FALSE fi

Il

I
-
I
—~
>
I
)
=

How do we outlaw
Athe outlaws?

only

Programming language syntax

Identity

Assigment
Choose
Demonic choice
Composition
Conditional
Declare visible

Declare hidden

skip

v=F

rekl

S1mS2

S1;S2

if E then S1 else S2 fi
[visv-S]

[HID A - S

36

Informal examples of observations

Program

Informal commentary

1.1 both v:€ {0, 1} We can see the value of v, either 0 or 1.We
and v:=0 M v:=1 know h is ho, though we cannot see it.
1.2 h:€{0,1} We know that h is either 0 or 1, but we don’t
know which; we see that v is vp.
1.3 (two atomic statements) We know the value of h, because from the
program-counter history we know which of the
h:=0 N h=1 atomic h:=0 or h:=1 was executed.
1.4 h:€{0,1}; We don’t know whether h is 0 or it is 1: even
v:=0 N v=1 the M-demon cannot see the hidden variable.
1.5 h:€{0,1}; Though the choice of v refers to h it reveals no
vie {h,1-h} information, since the statement is atomic.
1.6 h:€{0,1}; Here h is revealed, because we know which of
vi=h M vi=1-h the two atomic assignments to v was executed.
1.7 h:€{0,1,2,3}; We see v; we deduce h since we can see v:=h
vi="h in the program text.
1.8 h:€{0,1,2,3}; We can see v; either we deduce h is 0 or 2, or
v:=hmod 2 that h is 1 or 3.
1.9 h:€{0,1,2,3}; We see v is 0; but our deductions about h are
v:=h mod 2; as for 1.8, because we saw v’s earlier value.

v:=0

37

Add more structure...

The Shadow Semantics adds an extra component to the normal
relational semantics of sequential programs, one that keeps “in the
shadows” the set of possible hidden values the observer must consider
possible, based on what he has seen of the execution so far.

Ignorance Refinement takes the shadow component into account, not
allowing it to shrink; and the reduce-nondeterminism/increase-
termination rules of ordinary refinement continue to apply.

A weakest-precondition logic can be given. Ultlmately the logic and
model borrows from the Kripke structu of Knowledge.

Derived by
quotienting a
Kripke model

38

Shadow Semantics

e Structure the state space using a triple.

e The H component (the shadow) captures what an
observer can infer is possible (given the observed
behaviour of the program).

e The underlying order encodes what we mean by
preservation of ignorance.

(VO, hOa HO) ;l (V17 h17 Hl)

iff vog=Vv1 A h():hl A HO Q Hl

39

lgnorance refinement |The
operational
view

e Program P refines Q just when P’s result triples are
contained in Q’s result set (of triples);

e “Healthiness conditions” ensure that h’s value is
revealed just when the H set collapses.

If (v, h, H) is contained in a result set of program P, then

H1:heH;
H2 :sois (v, h’, H), for any h’ € H;

H3 :if (v, h, H’) is also in the result set, then so is (v, h, H'uH).

40

41

lgnorance refinement | The

operational
view

Identity [skip] = skip

Assign to visible [v:=E] = ee=F; H:={h:H | e=E}; v:i=¢

Choose visible [v:€ E] = e:€ E; H:i={h:H | e€E}; v:i=e

Assign to hidden ~ [h:=E] S p=E; H={E|hH)

Choose hidden [h:e E] = h:€e E; Hi=U{E | h: H}

Demonic choice [S1m182] = [s1] m [s2]

Composition [s1;52] = [s1]; [S2]

Conditional

I

[if E then S1 else S2 fi]
if E then H:={FE | h: H};[S1] else H:={-E | h: H};[S2] fi

Examples of operational semantics

The initial state is (vo, ho, {ho}).

Program

Final states in the “reduced” (v, h,H) model

3.1 both v:€ {0, 1} (0, ho,{ho}) , (1,ho,{ho})
and v:=0 M v:=1

3.2 h:€{0,1} (v0,0,{0,1}) , (vo,1,{0,1})

3.3 h:=0 N h:=1 (v0,0,{0}) , (vo,1,{1})

34 he{0,1); (0,0,{0,1}), (0,1,{0,1}) ,
v:i=0 M v:=1 (1,0,{0,1}), (1,1,{0,1})

3.5 h:€{0,1}; (0,0,{0,1}), (1,0,{0,1}) , Thus this and
vie {h,1-h} (0,1,{0,1}), (1,1,{0,1}) 3.4 are equal.

3.6 h:€{0,1}; (0,0,{0}), (1,0,{0}), But this one
vi=h M v:=1-h (0,1,{1}), (1,1,{1}) differs.

3.7 h:€{0,1,2,3}; (0,0,{0}), (1,1,{1}),
vi="h (2,2,{2}), (3,3,{3})

3.8 h:€{0,1,2,3}; (0,0,{0,2}), (1,1,{1,3}),
v:=hmod 2 (0,2,{0,2}), (1,3,{1,3})

3.9 h:€{0,1,2,3}; (0,0,{0,2}),(0,1,{1,3}), The final v:=0
v:=h mod 2; (0,2,{0,2}), (0,3,{1,3}) does not affect H.

v:=0

42

lgnorance refinement

The
operational

view

vieV C vi=v

vieV z vi=h

We can now outlaw
refinements which reveal

hidden state.

(initial state-triple) [program 1 (final state-triple)

(v,h,H) [vi=v'] (V/’h/lil) veV
(v,h,H) [v:i=h1 (hh{h}) heV,

(v,h,H) [v:ieV] (x,h,H) anyxeV

LI

but Hz{h} in general

43

Weakest precondition |7, logical

view

e We introduce knowledge/ignorance modalities K/ P
(they are dual) so that for example

K(h>0) means we know that h
is positive even though we
can't see it.

P(h>0) means we don’t know that h

isnt positive.

e We focus on ignorance formulae, those in which K
occurs only negatively, equivalently in which P occurs
only positively.

e We interpret these formulae a la v,h,H = ®
with P acting existentially in H.

44

Logical vs operational semantics
The operational-logical connection:

We define truth of ® at (v,h,H) under valuation w by induction, writing
(v,h,H),w |= ®. Let t be the term-valuation built inductively from the valua-
tion v<h <w. Then we have the following [9, pp. 79,81]:

e (v,h,H),w = R.Ty.---.T} for relation symbol R and terms Ty - - - Ty iff the
tuple (t.Ty,---,t.Tx) is an element of the interpretation of R.

o (V7 h7 H),W ': T1 = To iff t. T = t.To.

e (v,h,H),w = —® iff (v,h,H),w [~ ®.

o (v,h,H),w k= & A Dy iff (v,h,H),w = @y and (v, h,H),w |= ®,.

e (v,h,H),w = (VL - @) iff (v,h,H),w < (L—d) = @ for all d in D.

e (v,h,H),w = K® iff (v,h;,H),w = @ for all h; in H.

45

Logical vs operational semantics

The operational-logical connection:
e Based on our operational understanding, we

define (v,h,H) [P] (V,h',H) inductively.

e We (re-)define the Hoare-triple {®} P {¥}
as

(v,h,H) =@
A (v,h,H) [P] (V/,h',H")

= W, W, H) @

46

Logical vs operational semantics

The operational-logical connection (continued):

e We define Dijkstra-style weakest preconditions so
that

wp.P.W is the weakest @ such that {®} P {¥}

e We give syntactic predicate-transformer style rules
for calculating weakest-preconditions in general.

47

Logical vs operational semantics

The operational-logical connection (continued):

e We define refinement based on our logic of
ignorance:

PC Q means | wp.PV¥ = wp.Q.¥ for all ignorant ¥

48

The
logical
view

An outlaw outlawed

h h=C)} holds for all C
{P(h=C)} v:i=h {P(h=0C)} does not hold in general

Examples of modal postconditions

Program

Valid ¥

Invalid ¥

(in these examples, for any @)

6.1 both v:e {0,1} v e {0,1} v=0
and v:=0 M v:=1
6.2 h:e {0,1} P(h=0) K(h=0)
6.3 hi=0 M hi=1 he{0,1} P(h=0)
6.4 h:€{0,1}; P(v=h) K(v#£h)
v:i=0 M v=1
6.5 h:e {0,1}; P(h=0) P(v=0)
v:e {h,1-h} In fact Program 6.5 equals Program 6.4.
6.6 h:e {0,1}; ve{0,1} P(h=0)
vi=h M v:=1-h But Program 6.6 differs from Program 6.5.
6.7 h:€{0,1,2,3}; K(v=h) P(v#h)
vi=h
6.8 h:e {0,1,2,3); v=0 P(h=1)
v:=hmod?2 = P(he{2,4}) A P(h=2)
6.9 h:e {0,1,2,3}; P(hef1,2}) v=0

vi=hmod2; v:=0

= P(he{2,4})

50

51

Oblivious transfer: the solution

The encryption lemma

This formalises the basic idea of how to hide
information by publishing the result of an
exclusive OR with the secret. The Encryption
Lemma gives the conditions under which no
information is revealed. And it can be expressed
very easily using a secure refinement law.

skip C {hid x; vis y ® x:e X; y:= x®h}

52

Keeping secrets is meaningless
without multiple viewpoints

mo,m: M c:{0,1}
Alice @ M= 7)) — @ Bob
C “stafldard reasoning” m:M
{visd,e:{0,1}; fo, f1,7: M;
hid 7’0,7’11M o
ro,T1 (€ M, M; o
d:€ {0,1}; Bob’s
ri=rq; ’
e—c®d view
fO::mO Dre;
fii=m1 O rige ;
m:=f.®r
}

53

Derivation of OTP

mM:=Mm, L “encryption lemma”
C Skip { vis dae: {071}7 anfl:M;
o ._’ hid To,’l“liM'
m:=m,
L “local visible variables” ;l:e {(;],Bld};
. =c
{ vis d,e: {0,1} - ro.ry :€ M
d:€ {0, 1}; Jor=mo @ re ;
e:=c®d; fii=m1 @ rige |
m:=me m:=me
} }

skip C thid x; vis y ® x:e X; y:= x@h}

54

Derivation of OTP

55

L “encryption lemma” —
{ vis d,e:{0,1}; fo, f1: M; -

hid rg,r1: M -
d:€{0,1};
e=c®dd
ro,r1 (€ M, M,
Jor=mo @ e ;
fii=m1 @ rige ;
m:=me

“local visible variable”
{ vis da e: {07 1}) f07 flar: M7
hid To,T1: M -

d:€{0,1};
ee=c®dd
ro,T1 € M, M;
for=mo & re ;

fii=m1 ® Tge ;
m:=me;

ri=f.®&m

Step 4 of 7

Derivation of OTP

56

C “local visible variable” C
{visd,e:{0,1}; fo, f1,m: M; ||
hid rg,r1: M -
d:€ {0,1};
e=c®dd
ro,T1 € M, M,
for=mo @ re ;
Jii=m1 ®rige ;
m:=me;
ri=f.®m

“standard reasoning”
{ vis d,e: {0,1}; fo, f1,7: M;
hid rg,r1: M -

d:€{0,1};
ee=cdd
ro,T1 € M, M;

fO::mO D re ;
fii=m1 ®rige ;
m:=me;

ri=ryg

Step 5 of 7

Derivation of OTP

57

C “standard reasoning”
{ vis d7e: {Oa 1}5 anfl)r: M;
hid To,T1: M -
d:€{0,1};
ee=cdd
ro,r1 € M, M;
for=mo @ re ;
fii=m1 ®rige ;
mi=my;
T'="Tq

Step 6 of 7

L

“reordering”
{ vis d,e: {0,1}; fo, f1,7: M;
hid 7“0,7“12M s

To,T1 € M,M;
d:€{0,1};
ri="rg;
ee=cdd
Jor=mo @ re ;
Jii=m1 @ rige ;
m:=me

Derivation of OTP

58

C “reordering”
{ vis d7 e: {071}7 anfl:T:M;
hid To,T1: M -

ro,T1 ‘€ M, M;
d:€{0,1};
TI=Ty;
ee=cdd
for=mg ® e ;
fii=m1 ®rige ;
m:=m,

Final step

L

“standard reasoning”

{ vis d,e:{0,1}; fo, f1,7r: M;
hid 7“0,7“12M 0

ro,T1 :€ M, M,

d:€{0,1};

r:="rq;

ee=chd

Jor=mo @ re ;

J1:=m1 B rige ;
m:=f.®r

59

Overall, in 7 steps,

m:=me

Bob’s point of view.

Ted sends ro, ri to Alice.
Ted sends d to Bob.

Ted sends rq to Bob.
Bob sends e to Alice.

Alice sends fy, f; to Bob.

Bob computes mc.

7 ; 5
L Ignorance-preserving refinement

{ vis d,e:{0,1}; fo, f1,7r: M;
hid ?“o,TliM 0
ro,T1 € M,M;
d:€{0,1};
T =Tq;
ee=chd
Jor=mo ®re ;
fi=m1 @ rige ;
m:=f.®r

}

Rivest’s Oblivious Transfer Protocol.

60

Conclusion

mi=m, L Ignorance-preserving refinement
{ vis d,e:{0,1}; fo, f1,7r: M;
The desired hid ro,r1: M -
security properties ro,T1 :€ M, M;
do not have to be d:€{0,1};
. o e e ’r‘::’r‘d;
listed initially. o ot d
L Jo:=mo ® e ;
This is the power fii=m1 ® rige ;
of refinement m=fe®r
and pr lgeb }
program algebra.

A calculus of revelations

Having an explicit reveal command simplifies
the algebra considerably, and focuses attention
—where desired— on the pure security

properties.

reveal E = || visv-vi=F]

6l

\ Previous approach:

harder to manipulate.

);9

N g

The Encryption Lemma: [|

|[Higbhek € {6 rakmeahbah’ ||
a piece of algebraic Lego | prepared earlier.”skip

hid & -

[hid &"; h':€ {0,1}; reveal hadh' ||

= skip

Does this program fragment reveal anything about h?
No — it reveals nothing at all.

62

A calculus of revelations

(1+2=3) Combine E with F; replace F with F’; separate E and F".

reveal E; reveal F
= reveal (E,F)

reveal z@y; reveal ybz
reveal (x®y, ydz)
reveal (z@y, rDz2)
reveal x®y; reveal xPHz

addition mod 2 or, equivalently, exclusive-or

63

