It's coffee-time in the Cryptographers’ Café...

...and A,B and C have just finished having lunch. As usual,
they amuse themselves by carrying out their favourite
protocol: it determines whether one of them has already
paid, but without revealing (if so) which who it was.

It's coffee-time in the Cryptographers’ Café...

...and A,B and C have just finished having lunch. As usual,
they amuse themselves by carrying out their favourite
protocol: it determines whether one of them has already
paid, but without revealing (if so) which it was.

Between each pair is a coin out-of-sight of the third; the
coin is flipped; and each cryptographer says whether she
paid, lying however if the coins she sees are different.

i It's coffee-time in the Cryptographers’ Café...

“I didn't pay,”
a lie.

Between each pair is a coin out-of-sight of the third; the
coin is flipped; and each cryptographer says whether she
paid, lying however if the coins she sees are different.

It's coffee-time in the Cryptographers’ Café...

“I didn't pay,”
a lie.

Because an odd number claim to have paid, one of them
actually did. But no-one (else) knows who, because none
can see both coins that influenced the others” answers.

It's coffee-time in the Cryptographers’ Café...

“l never
”
pay.

In that sense the DCP preserves the anonymity of its
participants: it’s a security-based correctness criterion.
But what if C says “I didn’t pay” every single time?

Summary: qualitative vs quantitative security

e Chaum’s original article, including the correctness
proof, specifies fair coins. We did not; but we proved
correctness anyway...?

e Goguen and Meseguer’s original article on non-
interference does not mention probability either.

e Many proofs of security exist for the DCP, showcasing
various computational security frameworks; many of
those also do not mention probability.

e Yet under repeated trials (in the café, rather than for
just a one-off lunch date), the protocol is not secure
unless the coins are fair.

i Summary: qualitative vs quantitative security

Yet under repeated trials (in the café, rather than for
just a one-off lunch date), the protocol is not secure
unless the coins are fair.

The only way C can say “I didn’t pay” every single
time is if either she always does or she never does (but
we don’t know which). In addition, the coins must be
wholly fixed (but we don’t know which way).

Because we can learn this about C, if it is true and the
coins are wholly fixed, then in that case it is leaking
information. How then did we prove it correct without
using fairness of the coins?

i How does security lead to probability?

/

qualitative non-interference

' } introduce hidden-

and visible variables
sufficient for one-off attackers

e\

repeated “statistical” attacks

Goguen and Meseguer

Roscoe and Graham-Cumming
Leino and Joshi

Sabelfeld and Myers

i How does security lead to probability?

/

qualitative non-interference
' introduce hidden-
and visible variables

sufficient for one-off attackers

e\

l//

attacks

introduce

{ repeated “statistica

probability

quantitative non-interference

i What led us from probability to security?

/

probabilistic and demonic choice
’ He’s model;
Kozen'’s transformers

sufficient for quantitative refinement

V\

data-refinement

i What led us from probability to security?

/

probabilistic and demonic choice
’ He’s model;
Kozen'’s transformers

sufficient for quantitative refinement

V\

introduce hidden-

and visible variables

{ data-refinement

modular quantitative refinement

i What led us from probability to security?

/

probabilistic and demonic choice

| Lo
Koken’s transformers

sufficient for quantitative refinement

V\

intrdduce hidden-

and visible variables

{ data-refinement

modular quantitative refinement

1996: “Too hard.” *

What exactly is “too hard”?

Purely demonic choice (without probability) has a
perfectly adequate relational semantics.

Purely probabilistic choice (without demons) is the
subject of Markov Processes.

Demonic and probabilistic choice together are
modelled by Markov Decision Processes (MDP’s):
both He’s model and (eg) Segala’s are effectively this.

Demonic choice, probabilistic choice and hiding are
all three the topic of Partially Observable Markov
Decision Processes (POMDP’s).

What exactly is “too hard”?

Purely demonic choice (without probability) has a
perfectly adequate relational semantics.

Purely probabilistic choice (without demons) is the
subject of Markov Processes.

Demonic and probabilistic choice together are
modelled by Markov Decision Processes (MDP’s):
both He’s model and (eg) Segala’s are effectively this.

Demonic choice, probabilistic choice and hiding are
all three the topic of Partially Observable Markov
Decision Processes (POMDP’s).

These theories are not “too hard” to understand.

i An important disclaimer

The FM tools don’t capture and make rigorous all the
subjective criteria in the program’s context. Often they
make the requirements capture harder.

The FM tools do not make it easier to prove
mathematical facts than before. Often they make the
proofs harder.

The FM tools do make it easier to ensure that insights
from the theory are accurately reflected in the
structure of the program.

The key in the design of FM tools is to find a
formulation that unifies the algebra of the theory and
the algebra of the programs/logic in a way that
captures as much of both sides as is feasible.

What exactly is “too hard”?

relational semantics
Markov Processes.

Markov Decision Processes

Partially Observable Markov
Decision Processes

e That's why the existence of these theories is not in
itself enough for Computer Science.

The many dimensions of probabilistic/ demonic
models:

non-interference

The Shadow @ Probabilistic
Shadow
demonic @ probabilistic

probabilistic and demonic

..we hope (ultimately) for this:

non-interference

The Shadow @ Probabilistic
Shadow
demonic @ probabilistic

probabilistic and demonic

Meanwhile, let’s design
The Probabilistic Shadow

...and sort out The Café.

Probabilistic
Shadow

i The (standard) Shadow: example

The semantics of shadow-enhanced programs is based on a
division of the state-space .S into visible- and hidden portions
V and H, with programs’ denotations then found in

VxPH — P(VxPH) .

We examine the two-statement program
h:€{0,1,2,3}; vi=h <2

that chooses hidden A secretly from four possible values, and

then —by assignment to visible v— reveals the more-significant
bit.

i The (standard) Shadow: example

V PH

NS
(2.7)
h:€{0,1,2,3);

vi=h <=2

i The (standard) Shadow: example

1% PH
N

(2,7) P(Vx PH)
h:€{0,1,2,3};

{(7,{0,1,2,3})}
vi=h <+ 2

i The (standard) Shadow: example

(2,7)
h:c {0,1,2,3):; Vb

{ (.{0,1,2,3}) }
vi=h =2

i The (standard) Shadow: example

(7,7)
h:€{0,1,2,3};

{ (7,{0,1,2,3}) } P(V x PH)
vi=h =2 /

{(0,40,1}),(1,{2,3})}

i The (standard) Shadow: example

(7,7)
h:€{0,1,2,3};
{ (7,{0,1,2,3}) } P(VxPH)
vi=h <+ 2
1»(0,{0,1}) , «
>(1,{2,3})
}

visible nondeterminism

i The (standard) Shadow: example

(2,7)
h:€{0,1,2,3};
{ (?7{0717273}) } P(VxPH)
vi=h + 2
{ (0,{0,1}),
(1,{2,3})
} A

hidden nondeterminism

i The probabilistic Shadow: example

VxDH — D(VxDH) .

h:€ {0@0.1, 1@0.2’ 2@0.3, 3@0.4 }’ vi=h =2

i The probabilistic Shadow: example

Vv DH
Con”
h:€ {0@0.17 1@0.27 2@0.37 3@0.4}
{ (7’ {0@0.1, 1@0.2, 2@0.3’ 3@0.4 })@1 }

//U::h+2

D(V x DH)

i The probabilistic Shadow: example

DH

)
. /
(2.7)

h:€ {0@0.17 1@0.27 2@0.37 3@0.4}
{ (7’ {0@0.17 1@0.2, 2@0.37 3@0.4 })@1 }

/v::h+2 f

D(V x DH)

t

i The probabilistic Shadow: example

V DH

N\ /
7.7)

h:€ {0@0.17 1@0.27 2@0.37 3@0.4}
{ (7’ {0@0.17 1@0.2, 2@0.37 3@0.4 })@1 }

/ /U::h+ 2
D(V x DH) I

i The probabilistic Shadow: example

2,7
h:€ {0@0.1 1@0.2 2@0.3 3@0.4}

{ (')7 {0@0'1, 1@0.2, 2@0.37 3@0.4 }) @1}
vi=h+2

i The probabilistic Shadow: example

(7,7)

h:€ {0@0.1 1@0.2 2@0.3 3@0.4}
{ (7 {0@0.1 71@0.2 72@0.3 73@0.4 }) @1}

")

vi=h+2
{ (04 1) e
(17{ }) @0.7

}

i The probabilistic Shadow: example

(7,7)

h:€ {0@0.1 1@0.2 2@0.3 3@0.4}
{ (7 {0@0.1 71@0.2 72@0.3 73@0.4 }) @1}

")

vi=h+2
{ (04 }) e
} (17{ }) @0.7 A

visible probability

i The probabilistic Shadow: example

(7,7)

h:€ {0@0.1 1@0.2 2@0.3 3@0.4}
{ (7 {0@0.1 71@0.2 72@0.3 73@0.4 }) @1}

vi=h <=2
{ (07{0@1/37 1@2/3}) @0.3 7
(1, {2@3/7, 3@4/7}) @0.7

o

hidden probability

i The probabilistic Shadow: example

(7,7)

Y

h.:€.{0@0.1 1@0.2 2@0.3 3@0.4}
(? {0@0.17 1@0.2’ 2@0.37 3@0.4 })

vi=h =2
(0,01/301) 03® (1,23/7B3)

I A |

hidden hidden

i The (standard) Shadow: refinement

The standard Shadow extends (makes more restrictive) the
usual relation of refinement that allows reduction of visible
nondeterminism, so that e.g. we still have

v:i=0MNwv:=1 C
and h:=0mh:=1 C

TS
Il
oo

but we no longer have
he{0,1} Z h=0.

That’s because in the last case the nondeterminism is hidden
and cannot be reduced while maintaining an attacker’s igno-
rance of h’s possible values.

i The probabilistic Shadow: refinement?

The probabilistic Shadow, on the other hand, has no “usual”
notion of refinement to extend. That is, purely probabilistic
assignments (while not wholly determined) have no non-trivial
refinements: we note that

v:i=0,Dv:=1 VA vi=0,pv:=1
and h:=0,® h:=1 iz h:=0,0 h:=1,

unless of course p=q — in which case it’s equality anyway.

As with the standard Shadow, however, there is have a notion
of refinement of ignorance — it’s not present in the standard
framework because ignorance cannot be expressed there. For
the probabilistic Shadow this is the only kind of refinement.

i “"Amoeba” refinement is present in both

In the standard Shadow, the refinement
h:€{0,1} Mh:€{1,2} C h:€{0,1,2}

is strict, although it doesn’t reduce the overall nondeterminism
in h at all.

What it does reduce is an attacker’s potential knowledge of
h: on the left, he is certain to discover a final value that it
cannot have (either it isn’t 2 or it isn’t 0).

On the right, however, he discovers nothing about h at all:
that it’s in {0, 1,2} he knows already.

i “"Amoeba” refinement is present in both

In the probabilistic Shadow, the refinement

h2€{0@2/3,1@1/3} 1/2@ h:e {1@1/3,2@2/3}
O h:€{0@1/3,1@1/3,2@1/3}

is strict, although it doesn’t change the overall final distribu-
tion of h at all.

What it does reduce is an attacker’s likelihood of guessing
the value of h: on the left, he will have a 2/3 chance, once he’s
observed the resolution of the ;/,5@®. On the right, his chance
is at most 1/3, no matter what he chooses.

i The probabilistic Shadow: refinement?

This refinement over STruttured tcasfiordatin
traditional formulations of entropy:

e (Conditional) Shannon Entropy increases up the refine-
ment order;

e (Conditional) Guessing Entropy increases up the refine-
ment order.

(Expected number of guesses of the form “Is the secret
C?” to achieve an affirmative answer.)

i The probabilistic Encryption Lemma

[vis v;hid h'; R:=0,81; v:i=h+h']|

= skip.

i The probabilistic Encryption Lemma

[vis v;hid h'; R:=0,81; v:i=h+h']|
= “Atomicity lemma”
[vis v;hid A'; (R:=0,® 1; v:i=h+h") ||

i The probabilistic Encryption Lemma

= “Atomicity lemma”

[vis v;hid A'; (R:=0,® 1; v:i=h+h") ||
= “Classical reasoning”

[vis v;hid A'; (vi=h ,® —h; B :=h+v)) ||

i The probabilistic Encryption Lemma

= “Classical reasoning”

[vis v;hid A'; (vi=h ,® —h; B :=h+v)) ||
= “Atomicity lemma”

[vis v;hid A'; vi=h @ —h; h:=h+v ||

i The probabilistic Encryption Lemma

= “Atomicity lemma”

[vis v;hid A'; vi=h @ —h; h:=h+v ||
= “Provided p is 1/2”

[vis v;hid A'; ©v:=0,®1; h:=h+v]|

i The probabilistic Encryption Lemma

= “Provided p is 1/2”
[vis v;hid A'; ©v:=0,®1; h:=h+v]|
= “Rh’ is not free in rhs of assignment to v”
[vis v; v:=0,®1; |[hid b’; h:=h+v]|]|

i The probabilistic Encryption Lemma

= “h’ 1s not free 1n rhs of assignment to v”
[vis v; v:=0,®1; |[hid b’; h:=h+v]|]|
= skip.

i The probabilistic Encryption Lemma

[vis v;hid 5 h":=01,0® 1; v:=h+h']|

= skip.

i The standard Encryption Lemma

[vis v;hid A'; h':€{0,1} ; v:i=h+h ||

e The Dining Cryptographers Maths. Prog. Const. vi2006
e Rivest’s Oblivious Transfer Sci. Comp. Prog. i2009

e The 1001 Cryptographers CARH Festschrift article iii2009

e The Three Judges CARH Festschrift presentation iv2009
e Secure Database Lookup ICTAC vi2009
e The Millionaires FM xi2009

= skip.

i The standard Encryption Lemma

[vis v;hid A'; h':€{0,1} ; v:i=h+h ||

e The Dining Cryptographers Maths. Prog. Const. vi2006
e Rivest’s Oblivious Transfer Sci. Comp. Prog. i2009

e The 1001 Cryptographers CARH Festschrift article iii2009

e The Three Judges CARH Festschrift presentation iv2009

e Secure Database Lookup ICTAC vi2009

e The Millionaires FM xi2009
= skip.

Sound for one-off's — but not for the café

i The probabilistic Encryption Lemma

[vis v;hid h'; (h":=01/2® 1;)v:=h+h']|

The Dining Cryptographers Maths. Prog. Const. vi2006 0

Rivest’s Oblivious Transfer Sci. Comp. Prog. i2009 0

The 1001 Cryptographers CARH Festschrift article iii2009 0

The Three Judges CARH Festschrift presentation iv2009 0

Secure Database Lookup ICTAC vi2009 0

The Millionaires FM xi2009 0
= skip.

Café-Certified: and proofs unchanged.

