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Introductory Example I

Example II.1

Syntax definition of programming languages by “Backus-Naur” rules
Here: simple arithmetic expressions

〈Expression〉 ::= 0
| 1
| 〈Expression〉+ 〈Expression〉
| 〈Expression〉 ∗ 〈Expression〉
| (〈Expression〉)

Meaning:

An expression is either 0 or 1, or it is of the form u+ v,
u ∗ v, or (u) where u, v are again expressions
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Introductory Example II

Example II.2 (continued)

Here we abbreviate 〈Expression〉 as E, and use “→” instead of “::=”.

Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by applying rules to the start
symbol E:

E ⇒ E ∗ E
⇒ (E) ∗ E
⇒ (E) ∗ 1
⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1
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Context-Free Grammars I

Definition II.3

A context-free grammar (CFG) is a quadruple

G = 〈N,Σ, P, S〉

where
N is a finite set of nonterminal symbols
Σ is the (finite) alphabet of terminal symbols (disjoint from N)
P is a finite set of production rules of the form A→ α where
A ∈ N and α ∈ (N ∪ Σ)∗

S ∈ N is a start symbol
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Context-Free Grammars II

Example II.4

For the above example, we have:
N = {E}
Σ = {0, 1,+, ∗, (, )}
P = {E → 0, E → 1, E → E + E,E → E ∗ E,E → (E)}
S = E

Naming conventions:

nonterminals start with uppercase letters
terminals start with lowercase letters
start symbol = symbol on LHS of first production

=⇒ grammar completely defined by productions
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Context-Free Languages I

Definition II.5

Let G = 〈N,Σ, P, S〉 be a CFG.
A sentence γ ∈ (N ∪ Σ)∗ is directly derivable from β ∈ (N ∪ Σ)∗ if
there exist π = A→ α ∈ P and δ1, δ2 ∈ (N ∪ Σ)∗ such that
β = δ1Aδ2 and γ = δ1αδ2 (notation: β π⇒ γ or just β ⇒ γ) .
A derivation (of length n) of γ from β is a sequence of direct
derivations of the form δ0 ⇒ δ1 ⇒ . . .⇒ δn where δ0 = β, δn = γ,
and δi−1 ⇒ δi for every 1 ≤ i ≤ n (notation: β ⇒∗ γ).
A word w ∈ Σ∗ is called derivable in G if S ⇒∗ w.
The language generated by G is L(G) := {w ∈ Σ∗ | S ⇒∗ w}.
A language L ⊆ Σ∗ is called context-free (CFL) if it is generated
by some CFG.
Two grammars G1, G2 are equivalent if L(G1) = L(G2).
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Context-Free Languages II

Example II.6

The language {anbn | n ≥ 1} is context-free (but not regular—see
Ex. I.51). It is generated by the grammar G = 〈N,Σ, P, S〉 with

N = {S}
Σ = {a, b}
P = {S → aSb | ab}

(proof: on the board)

Remark: illustration of derivations by derivation trees
root labeled by start symbol
leafs labeled by terminal symbols
successors of node labeled according to right-hand side of
production rule

(example on the board)
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Context-Free Grammars and Languages

Seen:

Context-free grammars
Derivations
Context-free languages

Open:

Relation between context-free and regular languages
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Context-Free and Regular Languages

Theorem II.7
1 Every regular language is context-free.
2 There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the
class of CFLs.)

Proof.
1 Let L be a regular language, and let A = 〈Q,Σ, δ, q0, F 〉 be a DFA

which recognizes L. G := 〈N,Σ, P, S〉 is defined as follows:
N := Q, S := q0
if δ(q, a) = q′, then q → aq′ ∈ P
if q ∈ F , then q → ε ∈ P

Obviously a w-labeled run in A from q0 to F corresponds to a
derivation of w in G, and vice versa. Thus L(A) = L(G)
(example on the board).

2 A counterexample is {anbn | n ≥ 1} (see Ex. I.51 and II.6).
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Context-Free Grammars and Languages

Seen:

CFLs are more expressive than regular languages

Open:

Decidability of word problem
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The Word Problem

Goal: given G = 〈N,Σ, P, S〉 and w ∈ Σ∗, decide whether
w ∈ L(G) or not
For regular languages this was easy: just let the corresponding
DFA run on w.
But here: how to decide when to stop a derivation?
Solution: establish normal form for grammars which guarantees
that each nonterminal produces at least one terminal symbol

=⇒ only finitely many combinations to be inspected
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Chomsky Normal Form I

Definition II.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its
productions is of the form

A→ BC or A→ a.

Example II.9

Let S → ab | aSb be the grammar which generates L := {anbn | n ≥ 1}.
An equivalent grammar in Chomsky NF is

S → AB | AC (generates L)
A → a (generates {a})
B → b (generates {b})
C → SB (generates {anbn+1 | n ≥ 1})
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Chomsky Normal Form II

Theorem II.10

Every CFL L with ε /∈ L is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = 〈N,Σ, P, S〉 be some CFG which
generates L. The transformation of P into rules of the form A→ BC
and A→ a proceeds in three steps:

1 terminal symbols only in rules of the form A→ a
(thus all other rules have the shape A→ A1 . . . An)

2 elimination of “chain rules” of the form A→ B

3 elimination of rules of the form A→ A1 . . . An where n > 2
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Chomsky Normal Form III

Proof of Theorem II.10 (continued).

Step 1: (only A→ a)
1 let N ′ := {Ba | a ∈ Σ}
2 let P ′ := {A→ α′ | A→ α ∈ P} ∪ {Ba → a | a ∈ Σ}

where α′ is obtained from α by replacing every a ∈ Σ
with Ba

This yields G′ (example: on the board)

Step 2: (elimination of A→ B)
1 determine all derivations A1 ⇒ . . .⇒ An with rules

of the form A→ B without repetition of
nonterminals ( =⇒ only finitely many!)

2 let P ′′ := (P ∪ {A1 → α | A1 ⇒ . . .⇒ An ⇒ α,
α /∈ N})

\ {A→ B | A→ B ∈ P ′}
This yields G′′ (example: on the board)
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Chomsky Normal Form IV

Proof of Theorem II.10 (continued).

Step 3: for every A→ A1 . . . An with n > 2:
1 add new symbols B1, . . . , Bn−2 to N ′′
2 replace A→ A1 . . . An by

A → A1B1

B1 → A2B2

...
Bn−3 → An−2Bn−2

Bn−2 → An−1An

This yields G′′′ (example: on the board)

One can show: G,G′, G′′, G′′′ are equivalent
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The Word Problem Revisited

Goal: given w ∈ Σ+ and G = 〈N,Σ, P, S〉 such that ε /∈ L(G), decide
if w ∈ L(G) or not

(If w = ε, then w ∈ L(G) easily decidable for arbitrary G)

Approach by Cocke, Younger, Kasami (CYK algorithm):
1 transform G into Chomsky NF
2 let w = a1 . . . an (n ≥ 1)
3 let w[i, j] := ai . . . aj for every 1 ≤ i ≤ j ≤ n
4 consider segments w[i, j] in order of increasing length, starting

with w[i, i] (i.e., single letters)
5 in each case, determine Ni,j := {A ∈ N | A⇒∗ w[i, j]}
6 test whether S ∈ N1,n (and thus, whether S ⇒∗ w[1, n] = w)
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The CYK Algorithm I

Algorithm II.11 (CYK Algorithm)

Input: G = 〈N,Σ, P, S〉, w = a1 . . . an ∈ Σ+

Question: w ∈ L(G)?
Procedure: for i := 1 to n do

Ni,i := {A ∈ N | A→ ai ∈ P}
next i
for d := 1 to n− 1 do % compute Ni,i+d

for i := 1 to n− d do
j := i+ d;Ni,j := ∅;
for k := i to j − 1 do
Ni,j := Ni,j ∪ {A ∈ N | there is A→ BC ∈ P

with B ∈ Ni,k, C ∈ Nk+1,j}
next k

next i
next d

Output: “yes” if S ∈ N1,n, otherwise “no”
Foundations of Informatics Winter 2009/10 21



The CYK Algorithm II

Example II.12

G : S → SA | a
A → BS
B → BB | BS | b | c

w = abaaba

Matrix representation of Ni,j

(on the board)
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The Word Problem for Context-Free Languages

Seen:

Word problem decidable using CYK algorithm

Open:

Emptiness problem
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The Emptiness Problem

Goal: given G = 〈N,Σ, P, S〉, decide whether L(G) = ∅ or not
For regular languages this was easy: check in the corresponding
DFA whether some final state is reachable from the initial state.
Here: test whether start symbol is productive, i.e., whether it
generates a terminal word
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The Productivity Test

Algorithm II.13 (Productivity Test)

Input: G = 〈N,Σ, P, S〉
Question: L(G) = ∅?

Procedure: mark every a ∈ Σ as productive;
repeat
if there is A→ α ∈ P such that

all symbols in α productive then
mark A as productive;

end;
until no further productive symbols found;

Output: “no” if S productive, otherwise “yes”

Example II.14

G : S → AB | CA
A → a
B → BC | AB
C → aB | b

(on the board)
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The Emptiness Problem for CFLs

Seen:

Emptiness problem decidable using productivity test

Open:

Characterizing automata model
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Pushdown Automata I

Goal: introduce an automata model which exactly accepts CFLs
Clear: DFA not sufficient
(missing “counting capability”, e.g. for {anbn | n ≥ 1})
DFA will be extended to pushdown automata by

adding a pushdown store which stores symbols from a pushdown
alphabet and uses a specific bottom symbol
adding push and pop operations to transitions
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Pushdown Automata II

Definition II.15

A pushdown automaton (PDA) is of the form
A = 〈Q,Σ,Γ,∆, q0, Z0, F 〉 where

Q is a finite set of states
Σ is the (finite) input alphabet
Γ is the (finite) pushdown alphabet
∆ ⊆ (Q× Γ× Σε)× (Q× Γ∗) is a finite set of transitions
q0 ∈ Q is the initial state
Z0 is the (pushdown) bottom symbol
F ⊆ Q is a set of final states

Interpretation of ((q, Z, x), (q′, δ)) ∈ ∆: if the PDA A is in state q
where Z is on top of the stack and x is the next input symbol (or
empty), then A reads x, replaces Z by δ, and changes into the state q′.
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Configurations, Runs, Acceptance

Definition II.16

Let A = 〈Q,Σ,Γ,∆, q0, Z0, F 〉 be a PDA.
An element of Q× Γ∗ × Σ∗ is called a configuration of A.
The initial configuration for input w ∈ Σ∗ is given by (q0, Z0, w).
The set of final configurations is given by F × Γ∗ × {ε}.
If ((q, Z, x), (q′, δ)) ∈ ∆, then (q, Zγ, xw) ` (q′, δγ, w) for every
γ ∈ Γ∗, w ∈ Σ∗.
A accepts w ∈ Σ∗ if (q0, Z0, w) `∗ (q, γ, ε) for some q ∈ F , γ ∈ Γ∗.
The language accepted by A is L(A) := {w ∈ Σ∗ | A accepts w}.
A language L is called PDA-recognizable if L = L(A) for some
PDA A.
Two PDA A1,A2 are called equivalent if L(A1) = L(A2).
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Examples

Example II.17

1 PDA which recognizes L = {anbn | n ≥ 1}
(on the board)

2 PDA which recognizes L = {wwR | w ∈ {a, b}∗}
(palindromes of even length; on the board)

Observation: A2 is nondeterministic: whenever a construction step is
applicable, the pushdown could also be deconstructed
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Deterministic PDA

Definition II.18

A PDA A = 〈Q,Σ,Γ,∆, q0, Z0, F 〉 is called deterministic (DPDA) if for
every q ∈ Q,Z ∈ Γ,

for every x ∈ Σε, at most one (q, Z, x)-step in ∆ and
if there is a (q, Z, a)-step in ∆ for some a ∈ Σ, then no
(q, Z, ε)-step is possible.

Corollary II.19

In a DPDA, every configuration has at most one `-successor.
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Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognizable languages are closed under complement, which is
generally not true for PDA-recognizable languages)

Example II.20

The set of palindromes of even length is PDA-recognizable, but not
DPDA-recognizable (without proof).

Foundations of Informatics Winter 2009/10 34



Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognizable languages are closed under complement, which is
generally not true for PDA-recognizable languages)

Example II.20

The set of palindromes of even length is PDA-recognizable, but not
DPDA-recognizable (without proof).

Foundations of Informatics Winter 2009/10 34



PDA and Context-Free Languages I

Theorem II.21

A language is context-free iff it is PDA-recognizable.

Proof.

⇐= omitted
=⇒ let G = 〈N,Σ, P, S〉 be a CFG. Construction of PDA AG

recognizing L(G):
AG simulates a derivation of G where the leftmost
nonterminal of a sentence form is replaced (“leftmost
derivation”)
begin with S on pushdown
if nonterminal on top: apply a corresponding
production rule
if terminal on top: match with next input symbol
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PDA and Context-Free Languages II

Proof of Theorem II.21 (continued).

=⇒ Formally: AG := 〈Q,Σ,Γ,∆, q0, Z0, F 〉 is given by
Q := {q0}
Γ := N ∪ Σ
if A→ α ∈ P , then ((q0, A, ε), (q0, α)) ∈ ∆
if a ∈ Σ, then ((q0, a, a), (q0, ε)) ∈ ∆
Z0 := S
F := Q

Example II.22

“Bracket language”, given by G:

S → 〈〉 | 〈S〉 | SS

(on the board)
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Pushdown Automata

Seen:

Definition of PDA
Equivalence of PDA-recognizable and context-free languages

Open:

Closure and decidability properties of CFLs
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Positive Results

Theorem II.23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let Gi = 〈Ni,Σ, Pi, Si〉 with Li := L(Gi) and N1 ∩N2 = ∅.
Then

G := 〈N,Σ, P, S〉 with N := {S} ∪N1 ∪N2 and
P := {S → S1S2} ∪ P1 ∪ P2 generates L1 · L2;
G := 〈N,Σ, P, S〉 with N := {S} ∪N1 ∪N2 and
P := {S → S1 | S2} ∪ P1 ∪ P2 generates L1 ∪ L2; and
G := 〈N,Σ, P, S〉 with N := {S} ∪N1 and
P := {S → ε | S1S} ∪ P1 generates L∗1.
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Negative Results

Theorem II.24

The set of CFLs is not closed under intersection and complement.

Proof.

Both L1 := {akbkcl | k, l ∈ N} and L2 := {akblcl | k, l ∈ N} are
CFLs, but not L1 ∩ L2 = {anbncn | n ∈ N} (without proof).
If CFLs would be closed under complement, then also under
intersection (as L1 ∩ L2 = L1 ∪ L2).
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Overview of Decidability and Closure Results

Decidability Results
w ∈ L L = ∅ L1 = L2

Reg + (I.38) + (I.40) + (I.42)
CFL + (II.11) + (II.13) –

Closure Results
L1 · L2 L1 ∪ L2 L1 ∩ L2 L L∗

Reg + (I.28) + (I.18) + (I.16) + (I.14) + (I.29)
CFL + (II.23) + (II.23) – (II.24) – (II.24) + (II.23)
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Outlook

Equivalence problem for CFG and PDA (“L(X1) = L(X2)?”)
(generally undecidable, decidable for DPDA)
Pumping Lemma for CFL
Greibach Normal Form for CFG
Construction of parsers for compilers
Non-context-free grammars and languages (context-sensitive and
recursively enumerable languages, Turing machines—see Week 4)
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