
Foundations of Informatics: a Bridging Course
Week 3: Formal Languages and Semantics

Thomas Noll

Lehrstuhl für Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://cosec.bit.uni-bonn.de/students/teaching/09us/09us-bridgingcourse/

http://www-i2.informatik.rwth-aachen.de/i2/b-it09/

B-IT, Bonn, Winter semester 2009/10

noll@cs.rwth-aachen.de
http://cosec.bit.uni-bonn.de/students/teaching/09us/09us-bridgingcourse/
http://www-i2.informatik.rwth-aachen.de/i2/b-it09/

Organization

Schedule:
lecture 9:00-10:30, 11:00-12:30 (Mon-Fri)

9:30-11:00, 11:15-12:45?

exercises 14:00-14:45, 15:15-16:00 (Mon-Thu)
14:00-15:30?

Examination at end of week 4
Please ask questions!

Foundations of Informatics Winter 2009/10 2

Overview of Week 3

1 Regular Languages
2 Context-Free Languages
3 Processes and Concurrency

Foundations of Informatics Winter 2009/10 3

Literature

J.E. Hopcroft, R. Motwani, J.D. Ullmann: Introduction to
Automata Theory, Languages, and Computation, 2nd ed.,
Addison-Wesley, 2001
A. Asteroth, C. Baier: Theoretische Informatik, Pearson Studium,
2002 [in German]
http://www.jflap.org/
(software for experimenting with formal languages concepts)

Foundations of Informatics Winter 2009/10 4

http://www.jflap.org/

Part I

Regular Languages

Foundations of Informatics Winter 2009/10 5

Outline

1 Formal Languages

2 Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

3 Regular Expressions

4 The Pumping Lemma

5 Outlook

Foundations of Informatics Winter 2009/10 6

Words and Languages

Computer systems transform data
Data encoded as (binary) words

=⇒ Data sets = sets of words = formal languages,
data transformations = functions on words

Example I.1

Java = {all valid Java programs},
Compiler : Java → Bytecode

Foundations of Informatics Winter 2009/10 7

Words and Languages

Computer systems transform data
Data encoded as (binary) words

=⇒ Data sets = sets of words = formal languages,
data transformations = functions on words

Example I.1

Java = {all valid Java programs},
Compiler : Java → Bytecode

Foundations of Informatics Winter 2009/10 7

Alphabets

Definition I.2

An alphabet is a finite, non-empty set of symbols (“letters”).

Σ,Γ, . . . denote alphabets
a, b, . . . denote letters

Example I.3

1 Boolean alphabet B := {0, 1}
2 Latin alphabet Σlatin := {a, b, c, . . .}
3 Keyboard alphabet Σkey

4 Morse alphabet Σmorse := {·,−, }

Foundations of Informatics Winter 2009/10 8

Alphabets

Definition I.2

An alphabet is a finite, non-empty set of symbols (“letters”).

Σ,Γ, . . . denote alphabets
a, b, . . . denote letters

Example I.3

1 Boolean alphabet B := {0, 1}

2 Latin alphabet Σlatin := {a, b, c, . . .}
3 Keyboard alphabet Σkey

4 Morse alphabet Σmorse := {·,−, }

Foundations of Informatics Winter 2009/10 8

Alphabets

Definition I.2

An alphabet is a finite, non-empty set of symbols (“letters”).

Σ,Γ, . . . denote alphabets
a, b, . . . denote letters

Example I.3

1 Boolean alphabet B := {0, 1}
2 Latin alphabet Σlatin := {a, b, c, . . .}

3 Keyboard alphabet Σkey

4 Morse alphabet Σmorse := {·,−, }

Foundations of Informatics Winter 2009/10 8

Alphabets

Definition I.2

An alphabet is a finite, non-empty set of symbols (“letters”).

Σ,Γ, . . . denote alphabets
a, b, . . . denote letters

Example I.3

1 Boolean alphabet B := {0, 1}
2 Latin alphabet Σlatin := {a, b, c, . . .}
3 Keyboard alphabet Σkey

4 Morse alphabet Σmorse := {·,−, }

Foundations of Informatics Winter 2009/10 8

Alphabets

Definition I.2

An alphabet is a finite, non-empty set of symbols (“letters”).

Σ,Γ, . . . denote alphabets
a, b, . . . denote letters

Example I.3

1 Boolean alphabet B := {0, 1}
2 Latin alphabet Σlatin := {a, b, c, . . .}
3 Keyboard alphabet Σkey

4 Morse alphabet Σmorse := {·,−, }

Foundations of Informatics Winter 2009/10 8

Words

Definition I.4

A word is a finite sequence of letters from a given alphabet Σ.
Σ∗ is the set of all words over Σ.
|w| denotes the length of a word w ∈ Σ∗, i.e., |a1 . . . an| := n.
The empty word is denoted by ε, i.e., |ε| = 0.
The concatenation of two words v = a1 . . . am (m ∈ N) and
w = b1 . . . bn (n ∈ N) is the word

v · w := a1 . . . amb1 . . . bn

(often written as vw).
Thus: w · ε = ε · w = w.
A prefix/suffix v of a word w is an initial/trailing part of w, i.e.,
w = vv′/w = v′v for some v′ ∈ Σ∗.
If w = a1 . . . an, then wR := an . . . a1.

Foundations of Informatics Winter 2009/10 9

Formal Languages I

Definition I.5

A set of words L ⊆ Σ∗ is called a (formal) language over Σ.

Example I.6

1 over B = {0, 1}: set of all bit strings containing 1101
2 over Σ = {I,V,X, L,C,D,M}: set of all valid roman numbers
3 over Σkey: set of all valid Java programs

Foundations of Informatics Winter 2009/10 10

Formal Languages I

Definition I.5

A set of words L ⊆ Σ∗ is called a (formal) language over Σ.

Example I.6

1 over B = {0, 1}: set of all bit strings containing 1101

2 over Σ = {I,V,X, L,C,D,M}: set of all valid roman numbers
3 over Σkey: set of all valid Java programs

Foundations of Informatics Winter 2009/10 10

Formal Languages I

Definition I.5

A set of words L ⊆ Σ∗ is called a (formal) language over Σ.

Example I.6

1 over B = {0, 1}: set of all bit strings containing 1101
2 over Σ = {I,V,X, L,C,D,M}: set of all valid roman numbers

3 over Σkey: set of all valid Java programs

Foundations of Informatics Winter 2009/10 10

Formal Languages I

Definition I.5

A set of words L ⊆ Σ∗ is called a (formal) language over Σ.

Example I.6

1 over B = {0, 1}: set of all bit strings containing 1101
2 over Σ = {I,V,X, L,C,D,M}: set of all valid roman numbers
3 over Σkey: set of all valid Java programs

Foundations of Informatics Winter 2009/10 10

Formal Languages II

Seen:

Basic notions: alphabets, words
Formal languages as sets of words

Open:

Description of computations on words?

Foundations of Informatics Winter 2009/10 11

Formal Languages II

Seen:

Basic notions: alphabets, words
Formal languages as sets of words

Open:

Description of computations on words?

Foundations of Informatics Winter 2009/10 11

Outline

1 Formal Languages

2 Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

3 Regular Expressions

4 The Pumping Lemma

5 Outlook

Foundations of Informatics Winter 2009/10 12

Outline

1 Formal Languages

2 Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

3 Regular Expressions

4 The Pumping Lemma

5 Outlook

Foundations of Informatics Winter 2009/10 13

Example: Pattern Matching

Example I.7 (Pattern 1101)

1 Read Boolean string bit by bit
2 Test whether it contains 1101
3 Idea: remember which (initial) part of 1101 has been recognized
4 Five prefixes: ε, 1, 11, 110, 1101
5 Diagram: on the board

What we used:
finitely many (storage) states
an initial state
for every current state and every input symbol: a new state
a succesful state

Foundations of Informatics Winter 2009/10 14

Example: Pattern Matching

Example I.7 (Pattern 1101)

1 Read Boolean string bit by bit
2 Test whether it contains 1101
3 Idea: remember which (initial) part of 1101 has been recognized
4 Five prefixes: ε, 1, 11, 110, 1101
5 Diagram: on the board

What we used:
finitely many (storage) states
an initial state
for every current state and every input symbol: a new state
a succesful state

Foundations of Informatics Winter 2009/10 14

Deterministic Finite Automata I

Definition I.8

A deterministic finite automaton (DFA) is of the form

A = 〈Q,Σ, δ, q0, F 〉

where
Q is a finite set of states
Σ denotes the input alphabet
δ : Q× Σ→ Q is the transition function
q0 ∈ Q is the initial state
F ⊆ Q is the set of final (or: accepting) states

Foundations of Informatics Winter 2009/10 15

Deterministic Finite Automata II

Example I.9

Pattern matching (Example I.7):
Q = {q0, . . . , q4}
Σ = B = {0, 1}
δ : Q× Σ→ Q on the board
F = {q4}

Foundations of Informatics Winter 2009/10 16

Graphical Representation of DFA

states =⇒ nodes
δ(q, a) = q′ =⇒ q

a−→ q′

initial state: incoming edge without source state
final state(s): double circle

Foundations of Informatics Winter 2009/10 17

Acceptance by DFA I

Definition I.10

Let 〈Q,Σ, δ, q0, F 〉 be a DFA. The extension of δ : Q× Σ→ Q,
δ∗ : Q× Σ∗ → Q,

is defined by
δ∗(q, w) := state after reading w in q.

Formally:

δ∗(q, w) :=
{
q if w = ε
δ∗(δ(q, a), v) if w = av

Thus: if w = a1 . . . an and q
a1−→ q1

a2−→ . . .
an−→ qn, then δ∗(q, w) = qn

Example I.11

Pattern matching (Example I.9): on the board

Foundations of Informatics Winter 2009/10 18

Acceptance by DFA I

Definition I.10

Let 〈Q,Σ, δ, q0, F 〉 be a DFA. The extension of δ : Q× Σ→ Q,
δ∗ : Q× Σ∗ → Q,

is defined by
δ∗(q, w) := state after reading w in q.

Formally:

δ∗(q, w) :=
{
q if w = ε
δ∗(δ(q, a), v) if w = av

Thus: if w = a1 . . . an and q
a1−→ q1

a2−→ . . .
an−→ qn, then δ∗(q, w) = qn

Example I.11

Pattern matching (Example I.9): on the board

Foundations of Informatics Winter 2009/10 18

Acceptance by DFA II

Definition I.12

A accepts w ∈ Σ∗ if δ∗(q0, w) ∈ F .
The language recognized by A is

L(A) := {w ∈ Σ∗ | δ∗(q0, w) ∈ F}.

A language L ⊆ Σ∗ is called DFA-recognizable if there exists some
DFA A such that L(A) = L.
Two DFA A1,A2 are called equivalent if

L(A1) = L(A2).

Foundations of Informatics Winter 2009/10 19

Acceptance by DFA III

Example I.13
1 The set of all bit strings containing 1101 is recognized by the

automaton from Example I.9.

2 Two (equivalent) automata recognizing the language

{w ∈ B∗ | w contains 1} :

on the board
3 An automaton which recognizes

{w ∈ {0, . . . , 9}∗ | value of w divisible by 3}

Idea: test whether sum of digits is divisible by 3 – one state for
each residue class (on the board)

Foundations of Informatics Winter 2009/10 20

Acceptance by DFA III

Example I.13
1 The set of all bit strings containing 1101 is recognized by the

automaton from Example I.9.
2 Two (equivalent) automata recognizing the language

{w ∈ B∗ | w contains 1} :

on the board

3 An automaton which recognizes

{w ∈ {0, . . . , 9}∗ | value of w divisible by 3}

Idea: test whether sum of digits is divisible by 3 – one state for
each residue class (on the board)

Foundations of Informatics Winter 2009/10 20

Acceptance by DFA III

Example I.13
1 The set of all bit strings containing 1101 is recognized by the

automaton from Example I.9.
2 Two (equivalent) automata recognizing the language

{w ∈ B∗ | w contains 1} :

on the board
3 An automaton which recognizes

{w ∈ {0, . . . , 9}∗ | value of w divisible by 3}

Idea: test whether sum of digits is divisible by 3 – one state for
each residue class (on the board)

Foundations of Informatics Winter 2009/10 20

Deterministic Finite Automata

Seen:

Deterministic finite automata as a model of simple sequential
computations
Recognizability of formal languages by automata

Open:

Composition and transformation of automata?
Which languages are recognizable, which are not (alternative
characterization)?
Language definition 7→ automaton and vice versa?

Foundations of Informatics Winter 2009/10 21

Deterministic Finite Automata

Seen:

Deterministic finite automata as a model of simple sequential
computations
Recognizability of formal languages by automata

Open:

Composition and transformation of automata?
Which languages are recognizable, which are not (alternative
characterization)?
Language definition 7→ automaton and vice versa?

Foundations of Informatics Winter 2009/10 21

Outline

1 Formal Languages

2 Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

3 Regular Expressions

4 The Pumping Lemma

5 Outlook

Foundations of Informatics Winter 2009/10 22

Operations on Languages

Simplest case: Boolean operations (complement, intersection, union)

Question

Let A1, A2 be two DFA with L(A1) = L1 and L(A2) = L2.
Can we construct automata which recognize

L1 (:= Σ∗ \ L1),
L1 ∩ L2, and
L1 ∪ L2?

Foundations of Informatics Winter 2009/10 23

Language Complement

Theorem I.14

If L ⊆ Σ∗ is DFA-recognizable, then so is L.

Proof.

Let A = 〈Q,Σ, δ, q0, F 〉 be a DFA such that L(A) = L. Then:

w ∈ L ⇐⇒ w /∈ L ⇐⇒ δ∗(q0, w) /∈ F ⇐⇒ δ∗(q0, w) ∈ Q \ F.

Thus, L is recognized by the DFA 〈Q,Σ, δ, q0, Q \ F 〉.

Example I.15

on the board

Foundations of Informatics Winter 2009/10 24

Language Complement

Theorem I.14

If L ⊆ Σ∗ is DFA-recognizable, then so is L.

Proof.

Let A = 〈Q,Σ, δ, q0, F 〉 be a DFA such that L(A) = L. Then:

w ∈ L ⇐⇒ w /∈ L ⇐⇒ δ∗(q0, w) /∈ F ⇐⇒ δ∗(q0, w) ∈ Q \ F.

Thus, L is recognized by the DFA 〈Q,Σ, δ, q0, Q \ F 〉.

Example I.15

on the board

Foundations of Informatics Winter 2009/10 24

Language Complement

Theorem I.14

If L ⊆ Σ∗ is DFA-recognizable, then so is L.

Proof.

Let A = 〈Q,Σ, δ, q0, F 〉 be a DFA such that L(A) = L. Then:

w ∈ L ⇐⇒ w /∈ L ⇐⇒ δ∗(q0, w) /∈ F ⇐⇒ δ∗(q0, w) ∈ Q \ F.

Thus, L is recognized by the DFA 〈Q,Σ, δ, q0, Q \ F 〉.

Example I.15

on the board

Foundations of Informatics Winter 2009/10 24

Language Intersection I

Theorem I.16

If L1, L2 ⊆ Σ∗ are DFA-recognizable, then so is L1 ∩ L2.

Proof.

Let Ai = 〈Qi,Σ, δi, qi0, Fi〉 be DFA such that L(Ai) = Li (i = 1, 2). The
new automaton A has to accept w iff both A1 and A2 accept w

Idea: let A1 and A2 run in parallel
use pairs of states (q1, q2) ∈ Q1 ×Q2

start with both components in initial state
a transition updates both components independently
for acceptance both components need to be in a final state

Foundations of Informatics Winter 2009/10 25

Language Intersection I

Theorem I.16

If L1, L2 ⊆ Σ∗ are DFA-recognizable, then so is L1 ∩ L2.

Proof.

Let Ai = 〈Qi,Σ, δi, qi0, Fi〉 be DFA such that L(Ai) = Li (i = 1, 2). The
new automaton A has to accept w iff both A1 and A2 accept w

Idea: let A1 and A2 run in parallel
use pairs of states (q1, q2) ∈ Q1 ×Q2

start with both components in initial state
a transition updates both components independently
for acceptance both components need to be in a final state

Foundations of Informatics Winter 2009/10 25

Language Intersection II

Proof (continued).

Formally: let the product automaton
A := 〈Q1 ×Q2,Σ, δ, (q10, q

2
0), F1 × F2〉

be defined by
δ((q1, q2), a) := (δ1(q1, a), δ2(q2, a)) for every a ∈ Σ.

This definition yields
δ∗((q1, q2), w) = (δ∗1(q1, w), δ∗2(q2, w)) (∗)

for every w ∈ Σ∗.
Thus we have:

A accepts w
⇐⇒ δ∗((q10, q

2
0), w) ∈ F1 × F2

(∗)⇐⇒ (δ∗1(q10, w), δ∗2(q20, w)) ∈ F1 × F2

⇐⇒ δ∗1(q10, w) ∈ F1 and δ∗2(q20, w) ∈ F2

⇐⇒ A1 accepts w and A2 accepts w

Foundations of Informatics Winter 2009/10 26

Language Intersection II

Proof (continued).

Formally: let the product automaton
A := 〈Q1 ×Q2,Σ, δ, (q10, q

2
0), F1 × F2〉

be defined by
δ((q1, q2), a) := (δ1(q1, a), δ2(q2, a)) for every a ∈ Σ.

This definition yields
δ∗((q1, q2), w) = (δ∗1(q1, w), δ∗2(q2, w)) (∗)

for every w ∈ Σ∗.

Thus we have:
A accepts w

⇐⇒ δ∗((q10, q
2
0), w) ∈ F1 × F2

(∗)⇐⇒ (δ∗1(q10, w), δ∗2(q20, w)) ∈ F1 × F2

⇐⇒ δ∗1(q10, w) ∈ F1 and δ∗2(q20, w) ∈ F2

⇐⇒ A1 accepts w and A2 accepts w

Foundations of Informatics Winter 2009/10 26

Language Intersection II

Proof (continued).

Formally: let the product automaton
A := 〈Q1 ×Q2,Σ, δ, (q10, q

2
0), F1 × F2〉

be defined by
δ((q1, q2), a) := (δ1(q1, a), δ2(q2, a)) for every a ∈ Σ.

This definition yields
δ∗((q1, q2), w) = (δ∗1(q1, w), δ∗2(q2, w)) (∗)

for every w ∈ Σ∗.
Thus we have:

A accepts w
⇐⇒ δ∗((q10, q

2
0), w) ∈ F1 × F2

(∗)⇐⇒ (δ∗1(q10, w), δ∗2(q20, w)) ∈ F1 × F2

⇐⇒ δ∗1(q10, w) ∈ F1 and δ∗2(q20, w) ∈ F2

⇐⇒ A1 accepts w and A2 accepts w

Foundations of Informatics Winter 2009/10 26

Language Intersection III

Example I.17

on the board

Foundations of Informatics Winter 2009/10 27

Language Union

Theorem I.18

If L1, L2 ⊆ Σ∗ are DFA-recognizable, then so is L1 ∪ L2.

Proof.

Let Ai = 〈Qi,Σ, δi, qi0, Fi〉 be DFA such that L(Ai) = Li (i = 1, 2). The
new automaton A has to accept w iff A1 or A2 accepts w.

Idea: reuse product construction
Construct A as before but choose as final states those pairs
(q1, q2) ∈ Q1 ×Q2 with q1 ∈ F1 or q2 ∈ F2. Thus the set of final states
is given by

F := (F1 ×Q2) ∪ (Q1 × F2).

Foundations of Informatics Winter 2009/10 28

Language Union

Theorem I.18

If L1, L2 ⊆ Σ∗ are DFA-recognizable, then so is L1 ∪ L2.

Proof.

Let Ai = 〈Qi,Σ, δi, qi0, Fi〉 be DFA such that L(Ai) = Li (i = 1, 2). The
new automaton A has to accept w iff A1 or A2 accepts w.

Idea: reuse product construction
Construct A as before but choose as final states those pairs
(q1, q2) ∈ Q1 ×Q2 with q1 ∈ F1 or q2 ∈ F2. Thus the set of final states
is given by

F := (F1 ×Q2) ∪ (Q1 × F2).

Foundations of Informatics Winter 2009/10 28

Language Union

Theorem I.18

If L1, L2 ⊆ Σ∗ are DFA-recognizable, then so is L1 ∪ L2.

Proof.

Let Ai = 〈Qi,Σ, δi, qi0, Fi〉 be DFA such that L(Ai) = Li (i = 1, 2). The
new automaton A has to accept w iff A1 or A2 accepts w.

Idea: reuse product construction
Construct A as before but choose as final states those pairs
(q1, q2) ∈ Q1 ×Q2 with q1 ∈ F1 or q2 ∈ F2. Thus the set of final states
is given by

F := (F1 ×Q2) ∪ (Q1 × F2).

Foundations of Informatics Winter 2009/10 28

Language Concatenation

Definition I.19

The concatenation of two languages L1, L2 ⊆ Σ∗ is given by

L1 · L2 := {v · w ∈ Σ∗ | v ∈ L1, w ∈ L2}.

Abbreviations: w · L := {w} · L, L · w := L · {w}

Example I.20

1 If L1 = {101, 1} and L2 = {011, 1}, then

L1 · L2 = {101011, 1011, 11}.

2 If L1 = 00 · B∗ and L2 = 11 · B∗, then

L1 · L2 = {w ∈ B∗ | w has prefix 00 and contains 11}.

Foundations of Informatics Winter 2009/10 29

Language Concatenation

Definition I.19

The concatenation of two languages L1, L2 ⊆ Σ∗ is given by

L1 · L2 := {v · w ∈ Σ∗ | v ∈ L1, w ∈ L2}.

Abbreviations: w · L := {w} · L, L · w := L · {w}

Example I.20

1 If L1 = {101, 1} and L2 = {011, 1}, then

L1 · L2 = {101011, 1011, 11}.

2 If L1 = 00 · B∗ and L2 = 11 · B∗, then

L1 · L2 = {w ∈ B∗ | w has prefix 00 and contains 11}.

Foundations of Informatics Winter 2009/10 29

Language Concatenation

Definition I.19

The concatenation of two languages L1, L2 ⊆ Σ∗ is given by

L1 · L2 := {v · w ∈ Σ∗ | v ∈ L1, w ∈ L2}.

Abbreviations: w · L := {w} · L, L · w := L · {w}

Example I.20

1 If L1 = {101, 1} and L2 = {011, 1}, then

L1 · L2 = {101011, 1011, 11}.

2 If L1 = 00 · B∗ and L2 = 11 · B∗, then

L1 · L2 = {w ∈ B∗ | w has prefix 00 and contains 11}.

Foundations of Informatics Winter 2009/10 29

DFA-Recognizability of Concatenation

Conjecture

If L1, L2 ⊆ Σ∗ are DFA-recognizable, then so is L1 · L2.

Proof (attempt).

Let Ai = 〈Qi,Σ, δi, qi0, Fi〉 be DFA such that L(Ai) = Li (i = 1, 2). The
new automaton A has to accept w iff a prefix of w is recognized by A1,
and if A2 accepts the remaining suffix.
Idea: choose Q := Q1 ∪Q2 where each q ∈ F1 is identified with q20
But: on the board

Conclusion

Required: automata model where the successor state (for a given state
and input symbol) is not unique

Foundations of Informatics Winter 2009/10 30

DFA-Recognizability of Concatenation

Conjecture

If L1, L2 ⊆ Σ∗ are DFA-recognizable, then so is L1 · L2.

Proof (attempt).

Let Ai = 〈Qi,Σ, δi, qi0, Fi〉 be DFA such that L(Ai) = Li (i = 1, 2). The
new automaton A has to accept w iff a prefix of w is recognized by A1,
and if A2 accepts the remaining suffix.
Idea: choose Q := Q1 ∪Q2 where each q ∈ F1 is identified with q20
But: on the board

Conclusion

Required: automata model where the successor state (for a given state
and input symbol) is not unique

Foundations of Informatics Winter 2009/10 30

DFA-Recognizability of Concatenation

Conjecture

If L1, L2 ⊆ Σ∗ are DFA-recognizable, then so is L1 · L2.

Proof (attempt).

Let Ai = 〈Qi,Σ, δi, qi0, Fi〉 be DFA such that L(Ai) = Li (i = 1, 2). The
new automaton A has to accept w iff a prefix of w is recognized by A1,
and if A2 accepts the remaining suffix.
Idea: choose Q := Q1 ∪Q2 where each q ∈ F1 is identified with q20
But: on the board

Conclusion

Required: automata model where the successor state (for a given state
and input symbol) is not unique

Foundations of Informatics Winter 2009/10 30

Language Iteration

Definition I.21

The nth power of a language L ⊆ Σ∗ is the n-fold composition of
L with itself (n ∈ N): Ln := L · . . . · L︸ ︷︷ ︸

n times

.

Inductively: L0 := {ε}, Ln+1 := Ln · L
The iteration (or: Kleene star) of L is

L∗ :=
⋃
n∈N

Ln.

Remarks:
we always have ε ∈ L∗ (since L0 ⊆ L∗ and L0 = {ε})
w ∈ L∗ iff w = ε or if w can be decomposed into n ≥ 1 subwords
v1, . . . , vn (i.e., w = v1 · . . . · vn) such that vi ∈ L for every 1 ≤ i ≤ n
again we would suspect that the iteration of a DFA-recognizable
language is DFA-recognizable, but there is no simple
(deterministic) construction

Foundations of Informatics Winter 2009/10 31

Language Iteration

Definition I.21

The nth power of a language L ⊆ Σ∗ is the n-fold composition of
L with itself (n ∈ N): Ln := L · . . . · L︸ ︷︷ ︸

n times

.

Inductively: L0 := {ε}, Ln+1 := Ln · L
The iteration (or: Kleene star) of L is

L∗ :=
⋃
n∈N

Ln.

Remarks:
we always have ε ∈ L∗ (since L0 ⊆ L∗ and L0 = {ε})
w ∈ L∗ iff w = ε or if w can be decomposed into n ≥ 1 subwords
v1, . . . , vn (i.e., w = v1 · . . . · vn) such that vi ∈ L for every 1 ≤ i ≤ n
again we would suspect that the iteration of a DFA-recognizable
language is DFA-recognizable, but there is no simple
(deterministic) construction

Foundations of Informatics Winter 2009/10 31

Operations on Languages and Automata

Seen:
Operations on languages:

complement
intersection
union
concatenation
iteration

DFA constructions for:
complement
intersection
union

Open:

Automata model for (direct implementation of) concatenation and
iteration?

Foundations of Informatics Winter 2009/10 32

Operations on Languages and Automata

Seen:
Operations on languages:

complement
intersection
union
concatenation
iteration

DFA constructions for:
complement
intersection
union

Open:

Automata model for (direct implementation of) concatenation and
iteration?

Foundations of Informatics Winter 2009/10 32

Outline

1 Formal Languages

2 Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

3 Regular Expressions

4 The Pumping Lemma

5 Outlook

Foundations of Informatics Winter 2009/10 33

Nondeterministic Finite Automata I

Idea:

for a given state and a given input symbol, several transitions (or
none at all) are possible
an input word generally induces several state sequences (“runs”)
the word is accepted if at least one accepting run exists

Advantages:

simplifies representation of languages
(example: B∗ · 1101 · B∗; on the board)
yields direct constructions for concatenation and iteration of
languages
more adequate modeling of systems with nondeterministic
behaviour (communication protocols, multi-agent systems, ...)

Foundations of Informatics Winter 2009/10 34

Nondeterministic Finite Automata I

Idea:

for a given state and a given input symbol, several transitions (or
none at all) are possible
an input word generally induces several state sequences (“runs”)
the word is accepted if at least one accepting run exists

Advantages:

simplifies representation of languages
(example: B∗ · 1101 · B∗; on the board)
yields direct constructions for concatenation and iteration of
languages
more adequate modeling of systems with nondeterministic
behaviour (communication protocols, multi-agent systems, ...)

Foundations of Informatics Winter 2009/10 34

Nondeterministic Finite Automata II

Definition I.22

A nondeterministic finite automaton (NFA) is of the form

A = 〈Q,Σ,∆, q0, F 〉

where
Q is a finite set of states
Σ denotes the input alphabet
∆ ⊆ Q× Σ×Q is the transition relation
q0 ∈ Q is the initial state
F ⊆ Q is the set of final states

Remarks:
(q, a, q′) ∈ ∆ usually written as q a−→ q′

every DFA can be considered as an NFA
((q, a, q′) ∈ ∆ ⇐⇒ δ(q, a) = q′)

Foundations of Informatics Winter 2009/10 35

Nondeterministic Finite Automata II

Definition I.22

A nondeterministic finite automaton (NFA) is of the form

A = 〈Q,Σ,∆, q0, F 〉

where
Q is a finite set of states
Σ denotes the input alphabet
∆ ⊆ Q× Σ×Q is the transition relation
q0 ∈ Q is the initial state
F ⊆ Q is the set of final states

Remarks:
(q, a, q′) ∈ ∆ usually written as q a−→ q′

every DFA can be considered as an NFA
((q, a, q′) ∈ ∆ ⇐⇒ δ(q, a) = q′)

Foundations of Informatics Winter 2009/10 35

Acceptance by NFA

Definition I.23

Let w = a1 . . . an ∈ Σ∗.
A w-labeled A-run from q1 to q2 is a sequence

p0
a1−→ p1

a2−→ . . . pn−1
an−→ pn

such that p0 = q1, pn = q2, and (pi−1, ai, pi) ∈ ∆ for every
1 ≤ i ≤ n (we also write: q1

w−→ q2).
A accepts w if there is a w-labeled A-run from q0 to some q ∈ F
The language recognized by A is

L(A) := {w ∈ Σ∗ | A accepts w}.

A language L ⊆ Σ∗ is called NFA-recognizable if there exists a
NFA A such that L(A) = L.
Two NFA A1,A2 are called equivalent if L(A1) = L(A2).

Foundations of Informatics Winter 2009/10 36

Acceptance Test for NFA

Algorithm I.24 (Acceptance Test for NFA)

Input: NFA A = 〈Q,Σ,∆, q0, F 〉, w ∈ Σ∗

Question: w ∈ L(A)?
Procedure: successive computation of the reachability set

RA(w) := {q ∈ Q | q0
w−→ q}

Inductive definition:

RA(ε) := {q0}
RA(av) := {q ∈ Q | p a−→ q for some p ∈ RA(v)}

Output: “yes” if RA(w) ∩ F 6= ∅, otherwise “no”

Remark: this algorithm solves the word problem for NFA

Example I.25

on the board

Foundations of Informatics Winter 2009/10 37

Acceptance Test for NFA

Algorithm I.24 (Acceptance Test for NFA)

Input: NFA A = 〈Q,Σ,∆, q0, F 〉, w ∈ Σ∗

Question: w ∈ L(A)?
Procedure: successive computation of the reachability set

RA(w) := {q ∈ Q | q0
w−→ q}

Inductive definition:

RA(ε) := {q0}
RA(av) := {q ∈ Q | p a−→ q for some p ∈ RA(v)}

Output: “yes” if RA(w) ∩ F 6= ∅, otherwise “no”

Remark: this algorithm solves the word problem for NFA

Example I.25

on the board
Foundations of Informatics Winter 2009/10 37

NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)

Solution: admit empty word ε as transition label

Foundations of Informatics Winter 2009/10 38

NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)

Solution: admit empty word ε as transition label

Foundations of Informatics Winter 2009/10 38

ε-NFA

Definition I.26

A nondeterministic finite automaton with ε-transitions (ε-NFA) is of
the form A = 〈Q,Σ,∆, q0, F 〉 where

Q is a finite set of states
Σ denotes the input alphabet
∆ ⊆ Q× Σε ×Q is the transition relation where Σε := Σ ∪ {ε}
q0 ∈ Q is the initial state
F ⊆ Q is the set of final states

Remarks:

every NFA is an ε-NFA
definitions of runs and acceptance: in analogy to NFA

Example I.27

on the board

Foundations of Informatics Winter 2009/10 39

ε-NFA

Definition I.26

A nondeterministic finite automaton with ε-transitions (ε-NFA) is of
the form A = 〈Q,Σ,∆, q0, F 〉 where

Q is a finite set of states
Σ denotes the input alphabet
∆ ⊆ Q× Σε ×Q is the transition relation where Σε := Σ ∪ {ε}
q0 ∈ Q is the initial state
F ⊆ Q is the set of final states

Remarks:

every NFA is an ε-NFA
definitions of runs and acceptance: in analogy to NFA

Example I.27

on the board

Foundations of Informatics Winter 2009/10 39

ε-NFA-Recognizability of Concatenation

Theorem I.28

If L1, L2 ⊆ Σ∗ are ε-NFA-recognizable, then so is L1 · L2.

Proof (idea).

on the board

Foundations of Informatics Winter 2009/10 40

ε-NFA-Recognizability of Concatenation

Theorem I.28

If L1, L2 ⊆ Σ∗ are ε-NFA-recognizable, then so is L1 · L2.

Proof (idea).

on the board

Foundations of Informatics Winter 2009/10 40

ε-NFA-Recognizability of Iteration

Theorem I.29

If L ⊆ Σ∗ is ε-NFA-recognizable, then so is L∗.

Proof (idea).

on the board

Foundations of Informatics Winter 2009/10 41

ε-NFA-Recognizability of Iteration

Theorem I.29

If L ⊆ Σ∗ is ε-NFA-recognizable, then so is L∗.

Proof (idea).

on the board

Foundations of Informatics Winter 2009/10 41

Syntax Diagrams as ε-NFA

Syntax diagrams (without recursive calls) can be interpreted as ε-NFA

Example I.30

decimal numbers (on the board)

Foundations of Informatics Winter 2009/10 42

Types of Finite Automata

1 DFA
2 NFA
3 ε-NFA

Corollary I.31
1 Every DFA-recognizable language is NFA-recognizable.
2 Every NFA-recognizable language is ε-NFA-recognizable.

Goal: establish reverse inclusions

Foundations of Informatics Winter 2009/10 43

Types of Finite Automata

1 DFA
2 NFA
3 ε-NFA

Corollary I.31
1 Every DFA-recognizable language is NFA-recognizable.
2 Every NFA-recognizable language is ε-NFA-recognizable.

Goal: establish reverse inclusions

Foundations of Informatics Winter 2009/10 43

Types of Finite Automata

1 DFA
2 NFA
3 ε-NFA

Corollary I.31
1 Every DFA-recognizable language is NFA-recognizable.
2 Every NFA-recognizable language is ε-NFA-recognizable.

Goal: establish reverse inclusions

Foundations of Informatics Winter 2009/10 43

From NFA to DFA I

Theorem I.32

Every NFA can be transformed into an equivalent DFA.

Proof.

Idea: let the DFA operate on sets of states (“powerset construction”)
Initial state of DFA := {initial state of NFA}
P

a−→ P ′ in DFA iff there exist q ∈ P, q′ ∈ P ′ such that q a−→ q′ in
NFA
P final state in DFA iff it contains some final state of NFA

Foundations of Informatics Winter 2009/10 44

From NFA to DFA I

Theorem I.32

Every NFA can be transformed into an equivalent DFA.

Proof.

Idea: let the DFA operate on sets of states (“powerset construction”)
Initial state of DFA := {initial state of NFA}
P

a−→ P ′ in DFA iff there exist q ∈ P, q′ ∈ P ′ such that q a−→ q′ in
NFA
P final state in DFA iff it contains some final state of NFA

Foundations of Informatics Winter 2009/10 44

From NFA to DFA II

Proof (continued).

Let A = 〈Q,Σ,∆, q0, F 〉 be a NFA.
Powerset construction of A′ = 〈Q′,Σ, δ′, q′0, F ′〉:

Q′ := 2Q := {P | P ⊆ Q}
δ′ : Q′ × Σ→ Q′ with

q ∈ δ′(P, a) ⇐⇒ there exists p ∈ P such that (p, a, q) ∈ ∆
q′0 := {q0}
F ′ := {P ⊆ Q | P ∩ F 6= ∅}

This yields
q0

w−→ q in A ⇐⇒ q ∈ δ′∗({q0}, w) in A′

and thus
A accepts w ⇐⇒ A′ accepts w

Example I.33

on the board

Foundations of Informatics Winter 2009/10 45

From NFA to DFA II

Proof (continued).

Let A = 〈Q,Σ,∆, q0, F 〉 be a NFA.
Powerset construction of A′ = 〈Q′,Σ, δ′, q′0, F ′〉:

Q′ := 2Q := {P | P ⊆ Q}
δ′ : Q′ × Σ→ Q′ with

q ∈ δ′(P, a) ⇐⇒ there exists p ∈ P such that (p, a, q) ∈ ∆
q′0 := {q0}
F ′ := {P ⊆ Q | P ∩ F 6= ∅}

This yields
q0

w−→ q in A ⇐⇒ q ∈ δ′∗({q0}, w) in A′

and thus
A accepts w ⇐⇒ A′ accepts w

Example I.33

on the board

Foundations of Informatics Winter 2009/10 45

From ε-NFA to NFA

Theorem I.34

Every ε-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let A be a ε-NFA. We construct the NFA A′ by eliminating all
ε-transitions, adding appropriate direct transitions: if p ε−→

∗
q,

q
a−→ q′, and q′

ε−→
∗
r in A, then p

a−→ r in A′.

Example I.35

on the board

Corollary I.36

All types of finite automata recognize the same class of languages.

Foundations of Informatics Winter 2009/10 46

From ε-NFA to NFA

Theorem I.34

Every ε-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let A be a ε-NFA. We construct the NFA A′ by eliminating all
ε-transitions, adding appropriate direct transitions: if p ε−→

∗
q,

q
a−→ q′, and q′

ε−→
∗
r in A, then p

a−→ r in A′.

Example I.35

on the board

Corollary I.36

All types of finite automata recognize the same class of languages.

Foundations of Informatics Winter 2009/10 46

From ε-NFA to NFA

Theorem I.34

Every ε-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let A be a ε-NFA. We construct the NFA A′ by eliminating all
ε-transitions, adding appropriate direct transitions: if p ε−→

∗
q,

q
a−→ q′, and q′

ε−→
∗
r in A, then p

a−→ r in A′.

Example I.35

on the board

Corollary I.36

All types of finite automata recognize the same class of languages.

Foundations of Informatics Winter 2009/10 46

From ε-NFA to NFA

Theorem I.34

Every ε-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let A be a ε-NFA. We construct the NFA A′ by eliminating all
ε-transitions, adding appropriate direct transitions: if p ε−→

∗
q,

q
a−→ q′, and q′

ε−→
∗
r in A, then p

a−→ r in A′.

Example I.35

on the board

Corollary I.36

All types of finite automata recognize the same class of languages.

Foundations of Informatics Winter 2009/10 46

Nondeterministic Finite Automata

Seen:

Definition of ε-NFA
Determinization of (ε-)NFA

Open:

More decidablity results

Foundations of Informatics Winter 2009/10 47

Nondeterministic Finite Automata

Seen:

Definition of ε-NFA
Determinization of (ε-)NFA

Open:

More decidablity results

Foundations of Informatics Winter 2009/10 47

Outline

1 Formal Languages

2 Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

3 Regular Expressions

4 The Pumping Lemma

5 Outlook

Foundations of Informatics Winter 2009/10 48

The Word Problem Revisited

Definition I.37

The word problem for DFA is specified as follows:

Given a DFA A and a word w ∈ Σ∗, decide whether

w ∈ L(A).

As we have seen (Def. I.10, Alg. I.24, Thm. I.34):

Theorem I.38

The word problem for DFA (NFA, ε-NFA) is decidable.

Foundations of Informatics Winter 2009/10 49

The Word Problem Revisited

Definition I.37

The word problem for DFA is specified as follows:

Given a DFA A and a word w ∈ Σ∗, decide whether

w ∈ L(A).

As we have seen (Def. I.10, Alg. I.24, Thm. I.34):

Theorem I.38

The word problem for DFA (NFA, ε-NFA) is decidable.

Foundations of Informatics Winter 2009/10 49

The Emptiness Problem

Definition I.39

The emptiness problem for DFA is specified as follows:

Given a DFA A, decide whether

L(A) = ∅.

Theorem I.40

The emptiness problem for DFA (NFA, ε-NFA) is decidable.

Proof.

It holds that L(A) 6= ∅ iff in A some final state is reachable from the
initial state (simple graph-theoretic problem).

Remark: important result for formal verification (unreachability of
bad (= final) states)

Foundations of Informatics Winter 2009/10 50

The Emptiness Problem

Definition I.39

The emptiness problem for DFA is specified as follows:

Given a DFA A, decide whether

L(A) = ∅.

Theorem I.40

The emptiness problem for DFA (NFA, ε-NFA) is decidable.

Proof.

It holds that L(A) 6= ∅ iff in A some final state is reachable from the
initial state (simple graph-theoretic problem).

Remark: important result for formal verification (unreachability of
bad (= final) states)

Foundations of Informatics Winter 2009/10 50

The Emptiness Problem

Definition I.39

The emptiness problem for DFA is specified as follows:

Given a DFA A, decide whether

L(A) = ∅.

Theorem I.40

The emptiness problem for DFA (NFA, ε-NFA) is decidable.

Proof.

It holds that L(A) 6= ∅ iff in A some final state is reachable from the
initial state (simple graph-theoretic problem).

Remark: important result for formal verification (unreachability of
bad (= final) states)

Foundations of Informatics Winter 2009/10 50

The Equivalence Problem

Definition I.41
The equivalence problem for DFA is specified as follows:
Given two DFA A1,A2, decide whether

L(A1) = L(A2).

Theorem I.42

The equivalence problem for DFA (NFA, ε-NFA) is decidable.

Proof.

L(A1) = L(A2)
⇐⇒ L(A1) ⊆ L(A2) and L(A2) ⊆ L(A1)
⇐⇒ (L(A1) \ L(A2)) ∪ (L(A2) \ L(A1)) = ∅
⇐⇒ (L(A1) ∩ L(A2)| {z }

DFA-recognizable (Thm. I.14)

)

| {z }
DFA-recognizable (Thm. I.16)

∪ (L(A2) ∩ L(A1)| {z }
DFA-recognizable (Thm. I.14)

)

| {z }
DFA-recognizable (Thm. I.16)| {z }

DFA-recognizable (Thm. I.18)

= ∅

| {z }
decidable (Thm. I.40)

Foundations of Informatics Winter 2009/10 51

The Equivalence Problem

Definition I.41
The equivalence problem for DFA is specified as follows:
Given two DFA A1,A2, decide whether

L(A1) = L(A2).

Theorem I.42

The equivalence problem for DFA (NFA, ε-NFA) is decidable.

Proof.

L(A1) = L(A2)

⇐⇒ L(A1) ⊆ L(A2) and L(A2) ⊆ L(A1)
⇐⇒ (L(A1) \ L(A2)) ∪ (L(A2) \ L(A1)) = ∅
⇐⇒ (L(A1) ∩ L(A2)| {z }

DFA-recognizable (Thm. I.14)

)

| {z }
DFA-recognizable (Thm. I.16)

∪ (L(A2) ∩ L(A1)| {z }
DFA-recognizable (Thm. I.14)

)

| {z }
DFA-recognizable (Thm. I.16)| {z }

DFA-recognizable (Thm. I.18)

= ∅

| {z }
decidable (Thm. I.40)

Foundations of Informatics Winter 2009/10 51

The Equivalence Problem

Definition I.41
The equivalence problem for DFA is specified as follows:
Given two DFA A1,A2, decide whether

L(A1) = L(A2).

Theorem I.42

The equivalence problem for DFA (NFA, ε-NFA) is decidable.

Proof.

L(A1) = L(A2)
⇐⇒ L(A1) ⊆ L(A2) and L(A2) ⊆ L(A1)

⇐⇒ (L(A1) \ L(A2)) ∪ (L(A2) \ L(A1)) = ∅
⇐⇒ (L(A1) ∩ L(A2)| {z }

DFA-recognizable (Thm. I.14)

)

| {z }
DFA-recognizable (Thm. I.16)

∪ (L(A2) ∩ L(A1)| {z }
DFA-recognizable (Thm. I.14)

)

| {z }
DFA-recognizable (Thm. I.16)| {z }

DFA-recognizable (Thm. I.18)

= ∅

| {z }
decidable (Thm. I.40)

Foundations of Informatics Winter 2009/10 51

The Equivalence Problem

Definition I.41
The equivalence problem for DFA is specified as follows:
Given two DFA A1,A2, decide whether

L(A1) = L(A2).

Theorem I.42

The equivalence problem for DFA (NFA, ε-NFA) is decidable.

Proof.

L(A1) = L(A2)
⇐⇒ L(A1) ⊆ L(A2) and L(A2) ⊆ L(A1)
⇐⇒ (L(A1) \ L(A2)) ∪ (L(A2) \ L(A1)) = ∅

⇐⇒ (L(A1) ∩ L(A2)| {z }
DFA-recognizable (Thm. I.14)

)

| {z }
DFA-recognizable (Thm. I.16)

∪ (L(A2) ∩ L(A1)| {z }
DFA-recognizable (Thm. I.14)

)

| {z }
DFA-recognizable (Thm. I.16)| {z }

DFA-recognizable (Thm. I.18)

= ∅

| {z }
decidable (Thm. I.40)

Foundations of Informatics Winter 2009/10 51

The Equivalence Problem

Definition I.41
The equivalence problem for DFA is specified as follows:
Given two DFA A1,A2, decide whether

L(A1) = L(A2).

Theorem I.42

The equivalence problem for DFA (NFA, ε-NFA) is decidable.

Proof.

L(A1) = L(A2)
⇐⇒ L(A1) ⊆ L(A2) and L(A2) ⊆ L(A1)
⇐⇒ (L(A1) \ L(A2)) ∪ (L(A2) \ L(A1)) = ∅
⇐⇒ (L(A1) ∩ L(A2)| {z }

DFA-recognizable (Thm. I.14)

)

| {z }
DFA-recognizable (Thm. I.16)

∪ (L(A2) ∩ L(A1)| {z }
DFA-recognizable (Thm. I.14)

)

| {z }
DFA-recognizable (Thm. I.16)| {z }

DFA-recognizable (Thm. I.18)

= ∅

| {z }
decidable (Thm. I.40)

Foundations of Informatics Winter 2009/10 51

Finite Automata

Seen:

Decidability of word problem
Decidability of emptiness problem
Decidability of equivalence problem

Open:

Non-algorithmic description of languages

Foundations of Informatics Winter 2009/10 52

Finite Automata

Seen:

Decidability of word problem
Decidability of emptiness problem
Decidability of equivalence problem

Open:

Non-algorithmic description of languages

Foundations of Informatics Winter 2009/10 52

Outline

1 Formal Languages

2 Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

3 Regular Expressions

4 The Pumping Lemma

5 Outlook

Foundations of Informatics Winter 2009/10 53

An Example

Example I.43

Consider the set of all words over Σ := {a, b} which
1 start with one or three a symbols
2 continue with a (potentially empty) sequence of blocks, each

containing at least one b and exactly two a’s
3 conclude with a (potentially empty) sequence of b’s

Corresponding regular expression:

(a+ aaa)(bb∗ab∗ab∗︸ ︷︷ ︸
b before a’s

+ b∗abb∗ab∗︸ ︷︷ ︸
b between a’s

+ b∗ab∗abb∗︸ ︷︷ ︸
b after a’s

)∗b∗

Foundations of Informatics Winter 2009/10 54

Syntax of Regular Expressions

Definition I.44

The set of regular expressions over Σ is inductively defined by:
∅ and ε are regular expressions
every a ∈ Σ is a regular expression
if α and β are regular expressions, then so are

α+ β
α · β
α∗

Notation:

· can be omitted
∗ binds stronger than ·, · binds stronger than +
α+ abbreviates α · α∗

Foundations of Informatics Winter 2009/10 55

Syntax of Regular Expressions

Definition I.44

The set of regular expressions over Σ is inductively defined by:
∅ and ε are regular expressions
every a ∈ Σ is a regular expression
if α and β are regular expressions, then so are

α+ β
α · β
α∗

Notation:

· can be omitted
∗ binds stronger than ·, · binds stronger than +
α+ abbreviates α · α∗

Foundations of Informatics Winter 2009/10 55

Semantics of Regular Expressions

Definition I.45

Every regular expression α defines a language L(α):

L(∅) := ∅
L(ε) := {ε}
L(a) := {a}

L(α+ β) := L(α) ∪ L(β)
L(α · β) := L(α) · L(β)
L(α∗) := (L(α))∗

A language L is called regular if it is definable by a regular expression,
i.e., if L = L(α) for some regular expression α.

Foundations of Informatics Winter 2009/10 56

Semantics of Regular Expressions

Definition I.45

Every regular expression α defines a language L(α):

L(∅) := ∅
L(ε) := {ε}
L(a) := {a}

L(α+ β) := L(α) ∪ L(β)
L(α · β) := L(α) · L(β)
L(α∗) := (L(α))∗

A language L is called regular if it is definable by a regular expression,
i.e., if L = L(α) for some regular expression α.

Foundations of Informatics Winter 2009/10 56

Regular Languages

Example I.46

1 {aa} is regular since

L(a · a) = L(a) · L(a) = {a} · {a} = {aa}

2 {a, b}∗ is regular since

L((a+ b)∗) = (L(a+ b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = {a, b}∗

3 The set of all words over {a, b} containing abb is regular since

L((a+ b)∗ · a · b · b · (a+ b)∗) = {a, b}∗ · {abb} · {a, b}∗

Foundations of Informatics Winter 2009/10 57

Regular Languages

Example I.46

1 {aa} is regular since

L(a · a) = L(a) · L(a) = {a} · {a} = {aa}

2 {a, b}∗ is regular since

L((a+ b)∗) = (L(a+ b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = {a, b}∗

3 The set of all words over {a, b} containing abb is regular since

L((a+ b)∗ · a · b · b · (a+ b)∗) = {a, b}∗ · {abb} · {a, b}∗

Foundations of Informatics Winter 2009/10 57

Regular Languages

Example I.46

1 {aa} is regular since

L(a · a) = L(a) · L(a) = {a} · {a} = {aa}

2 {a, b}∗ is regular since

L((a+ b)∗) = (L(a+ b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = {a, b}∗

3 The set of all words over {a, b} containing abb is regular since

L((a+ b)∗ · a · b · b · (a+ b)∗) = {a, b}∗ · {abb} · {a, b}∗

Foundations of Informatics Winter 2009/10 57

Regular Languages and Finite Automata I

Theorem I.47 (Kleene’s Theorem)

To each regular expression there corresponds an ε-NFA, and vice versa.

Proof.

=⇒ using induction over the given regular expression α, we
construct an ε-NFA Aα

with exactly one final state qf
without transitions into the initial state
without transitions leaving the final state

(on the board)
⇐= by solving a regular equation system (details omitted)

Foundations of Informatics Winter 2009/10 58

Regular Languages and Finite Automata I

Theorem I.47 (Kleene’s Theorem)

To each regular expression there corresponds an ε-NFA, and vice versa.

Proof.

=⇒ using induction over the given regular expression α, we
construct an ε-NFA Aα

with exactly one final state qf
without transitions into the initial state
without transitions leaving the final state

(on the board)
⇐= by solving a regular equation system (details omitted)

Foundations of Informatics Winter 2009/10 58

Regular Languages and Finite Automata II

Corollary I.48

The following properties are equivalent:
L is regular
L is DFA-recognizable
L is NFA-recognizable
L is ε-NFA-recognizable

Foundations of Informatics Winter 2009/10 59

Implementation of Pattern Matching

Algorithm I.49 (Pattern Matching)

Input: regular expression α and w ∈ Σ∗

Question: does w contain some v ∈ L(α)?
Procedure: 1 let β := (a1 + . . .+ an)∗ · α (for Σ = {a1, . . . , an})

2 determine ε-NFA Aβ for β
3 eliminate ε-transitions
4 apply powerset construction to obtain DFA A
5 let A run on w

Output: “yes” if A passes through some final state, otherwise “no”

Remark: in UNIX/LINUX implemented by grep and lex

Foundations of Informatics Winter 2009/10 60

Regular Expressions

Seen:

Definition of regular expressions
Equivalence of regular and DFA-recognizable languages

Open:

Limitations of regular languages?

Foundations of Informatics Winter 2009/10 61

Regular Expressions

Seen:

Definition of regular expressions
Equivalence of regular and DFA-recognizable languages

Open:

Limitations of regular languages?

Foundations of Informatics Winter 2009/10 61

Outline

1 Formal Languages

2 Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

3 Regular Expressions

4 The Pumping Lemma

5 Outlook

Foundations of Informatics Winter 2009/10 62

Motivation

Observation: a language L is DFA-recognizable (and thus regular) if
the membership of a word w can be tested by symbol-wise reading of
w, using a bounded memory

Conjecture: languages of the form {anbn | n ∈ N} are not regular
since the test for membership requires the capability of comparing the
number of a symbols to the number of b symbols (which can grow
arbitrarily large)

Foundations of Informatics Winter 2009/10 63

Motivation

Observation: a language L is DFA-recognizable (and thus regular) if
the membership of a word w can be tested by symbol-wise reading of
w, using a bounded memory

Conjecture: languages of the form {anbn | n ∈ N} are not regular
since the test for membership requires the capability of comparing the
number of a symbols to the number of b symbols (which can grow
arbitrarily large)

Foundations of Informatics Winter 2009/10 63

The Pumping Lemma I

Theorem I.50 (Pumping Lemma for Regular Languages)

If L is regular, then there exists n ≥ 1 (called pumping index) such that
any w ∈ L with |w| ≥ n can be decomposed as w = xyz where

y 6= ε and
for every i ≥ 0, xyiz ∈ L

Foundations of Informatics Winter 2009/10 64

The Pumping Lemma II

Proof (idea).

Let A = 〈Q,Σ, δ, q0, F 〉 be a DFA such that L(A) = L. Choose
n := |Q|, and let w ∈ L.
Then: w = a1 . . . ak with k ≥ n

=⇒ the accepting run visits k + 1 ≥ n+ 1 states:
q0

a1−→ q1
a2−→ . . .

ak−→ qk
=⇒ some state in Q occurs (at least) twice:

there exist 1 ≤ i < j ≤ k such that qi = qj
Choose y := ai+1 . . . aj to be the substring which is read between the
two visits of q. Clearly, y 6= ε. Moreover the cycle can be omitted or
repeated such that xz ∈ L, xyz ∈ L, xy2z ∈ L, ...

Remark: Pumping Lemma states a necessary condition for regularity
=⇒ can only be used to show the non-regularity of a language

Foundations of Informatics Winter 2009/10 65

The Pumping Lemma II

Proof (idea).

Let A = 〈Q,Σ, δ, q0, F 〉 be a DFA such that L(A) = L. Choose
n := |Q|, and let w ∈ L.
Then: w = a1 . . . ak with k ≥ n

=⇒ the accepting run visits k + 1 ≥ n+ 1 states:
q0

a1−→ q1
a2−→ . . .

ak−→ qk
=⇒ some state in Q occurs (at least) twice:

there exist 1 ≤ i < j ≤ k such that qi = qj
Choose y := ai+1 . . . aj to be the substring which is read between the
two visits of q. Clearly, y 6= ε. Moreover the cycle can be omitted or
repeated such that xz ∈ L, xyz ∈ L, xy2z ∈ L, ...

Remark: Pumping Lemma states a necessary condition for regularity
=⇒ can only be used to show the non-regularity of a language

Foundations of Informatics Winter 2009/10 65

The Pumping Lemma III

Example I.51

1 L := {akbk | k ∈ N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := anbn. Since |w| ≥ n, it can be decomposed as w = xyz with
y 6= ε. The following cases are possible:

y ∈ L(a+): then xy2z /∈ L (more as than bs)
y ∈ L(b+): then xy2z /∈ L (less as than bs)
y ∈ L(a+b+): then xy2z /∈ L (a follows b)

2 Similarly: the set of all arithmetic expressions is not regular

Conclusion

Finite automata are too weak for defining the syntax of programming
languages!

Foundations of Informatics Winter 2009/10 66

The Pumping Lemma III

Example I.51

1 L := {akbk | k ∈ N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := anbn. Since |w| ≥ n, it can be decomposed as w = xyz with
y 6= ε. The following cases are possible:

y ∈ L(a+): then xy2z /∈ L (more as than bs)
y ∈ L(b+): then xy2z /∈ L (less as than bs)
y ∈ L(a+b+): then xy2z /∈ L (a follows b)

2 Similarly: the set of all arithmetic expressions is not regular

Conclusion

Finite automata are too weak for defining the syntax of programming
languages!

Foundations of Informatics Winter 2009/10 66

The Pumping Lemma III

Example I.51

1 L := {akbk | k ∈ N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := anbn. Since |w| ≥ n, it can be decomposed as w = xyz with
y 6= ε. The following cases are possible:

y ∈ L(a+): then xy2z /∈ L (more as than bs)
y ∈ L(b+): then xy2z /∈ L (less as than bs)
y ∈ L(a+b+): then xy2z /∈ L (a follows b)

2 Similarly: the set of all arithmetic expressions is not regular

Conclusion

Finite automata are too weak for defining the syntax of programming
languages!

Foundations of Informatics Winter 2009/10 66

The Pumping Lemma IV

Seen:

Necessary condition for regularity of languages
Counterexamples

Open:

More expressive formalisms for describing languages?

Foundations of Informatics Winter 2009/10 67

The Pumping Lemma IV

Seen:

Necessary condition for regularity of languages
Counterexamples

Open:

More expressive formalisms for describing languages?

Foundations of Informatics Winter 2009/10 67

Outline

1 Formal Languages

2 Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

3 Regular Expressions

4 The Pumping Lemma

5 Outlook

Foundations of Informatics Winter 2009/10 68

Outlook

Minimization of DFA
More language operations (reversion, homomorphisms, ...)
Construction of scanners for compilers

Foundations of Informatics Winter 2009/10 69

	Regular Languages
	Formal Languages
	Finite Automata
	Deterministic Finite Automata
	Operations on Languages and Automata
	Nondeterministic Finite Automata
	More Decidability Results

	Regular Expressions
	The Pumping Lemma
	Outlook

