Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Semantics

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://cosec.bit.uni-bonn.de/students/teaching/09us/09us-bridgingcourse/
http://www-i2.informatik.rwth-aachen.de/i2/b-it09/

B-IT, Bonn, Winter semester 2009/10

noll@cs.rwth-aachen.de
http://cosec.bit.uni-bonn.de/students/teaching/09us/09us-bridgingcourse/
http://www-i2.informatik.rwth-aachen.de/i2/b-it09/

Organization

@ Schedule:
o lecture 9:00-10:30, 11:00-12:30 (Mon-Fri)
e 9:30-11:00, 11:15-12:457
o exercises 14:00-14:45, 15:15-16:00 (Mon-Thu)
o 14:00-15:307
o Examination at end of week 4

o Please ask questions!

Rm Foundations of Informatics Winter 2009/10

Overview of Week 3

@ Regular Languages
© Context-Free Languages

@ Processes and Concurrency

Rm Foundations of Informatics Winter 2009/10

e J.E. Hopcroft, R. Motwani, J.D. Ullmann: Introduction to
Automata Theory, Languages, and Computation, 2nd ed.,
Addison-Wesley, 2001

o A. Asteroth, C. Baier: Theoretische Informatik, Pearson Studium,
2002 [in German)]

@ http://www.jflap.org/

(software for experimenting with formal languages concepts)

Rm Foundations of Informatics Winter 2009/10

http://www.jflap.org/

Part I

Regular Languages

“m Foundations of Informatics Winter 2009/10

@ Formal Languages

Rm Foundations of Informatics Winter 2

Words and Languages

o Computer systems transform data
e Data encoded as (binary) words

—> Data sets = sets of words = formal languages,
data transformations = functions on words

Rm Foundations of Informatics Winter 2009/10

Words and Languages

o Computer systems transform data
e Data encoded as (binary) words

—> Data sets = sets of words = formal languages,
data transformations = functions on words

Java = {all valid Java programs},

Compiler : Java — Bytecode

Rm Foundations of Informatics Winter 2009/10

Alphabets

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

Rm Foundations of Informatics Winter 2009/10

Alphabets

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

@ Boolean alphabet B := {0,1}

Rm Foundations of Informatics Winter 2009/10

Alphabets

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

@ Boolean alphabet B := {0,1}
@ Latin alphabet Yya4i, := {a,b,¢,...}

Rm Foundations of Informatics Winter 2009/10

Alphabets

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

@ Boolean alphabet B := {0,1}
@ Latin alphabet Yya4i, := {a,b,¢,...}
@ Keyboard alphabet Y,

Rm Foundations of Informatics Winter 2009/10

Alphabets

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

@ Boolean alphabet B := {0,1}

@ Latin alphabet Yya4i, := {a,b,¢,...}
@ Keyboard alphabet Y,

© Morse alphabet Y opse 1= {+, —, 1}

Rm Foundations of Informatics Winter 2009/10

Words

Definition 1.4

e A word is a finite sequence of letters from a given alphabet X.

@ X* is the set of all words over X.

|w| denotes the length of a word w € ¥*, i.e., |aj...a,| :==n.

The empty word is denoted by ¢, i.e., |e| = 0.

@ The concatenation of two words v = aq ...a,, (m € N) and
w =by...b, (n € N) is the word

V-w:i=aq...anb1... by,

(often written as vw).

@ Thus: w-e=¢-w =w.

A prefix/suffix v of a word w is an initial/trailing part of w, i.e.,
w = vv' /w = v'v for some v’ € X*.
R.

o Ifw=ay...a,, then w' :=ay,...a1.

Foundations of Informatics Winter 2009/10

Formal Languages I

Definition 1.5

A set of words L C ¥* is called a (formal) language over X.

Rm Foundations of Informatics Winter 2009/10

Formal Languages I

Definition 1.5

A set of words L C ¥* is called a (formal) language over X.

@ over B = {0,1}: set of all bit strings containing 1101

Rm Foundations of Informatics Winter 2009/10

Formal Languages I

Definition 1.5

A set of words L C ¥* is called a (formal) language over X.

@ over B = {0,1}: set of all bit strings containing 1101
@ over ¥ ={l,V,X,L,C,D,M}: set of all valid roman numbers

Rm Foundations of Informatics Winter 2009/10

Formal Languages I

Definition 1.5

A set of words L C ¥* is called a (formal) language over X.

@ over B = {0,1}: set of all bit strings containing 1101
@ over ¥ ={l,V,X,L,C,D,M}: set of all valid roman numbers

@ over Yy set of all valid Java programs

Rm Foundations of Informatics Winter 2009/10

Formal Languages II

Seen:
@ Basic notions: alphabets, words

e Formal languages as sets of words

Rm Foundations of Informatics Winter 2009/10

Formal Languages II

Seen:
@ Basic notions: alphabets, words

e Formal languages as sets of words

Open:

@ Description of computations on words?

Rm Foundations of Informatics Winter 2009/10

© Finite Automata
@ Deterministic Finite Automata
@ Operations on Languages and Automata
@ Nondeterministic Finite Automata
@ More Decidability Results

Rm Foundations of Informatics Winter 2009/10

© Finite Automata
@ Deterministic Finite Automata

Rm Foundati of Informatics Winter

Example: Pattern Matching

Example 1.7 (Pattern 1101)

@ Read Boolean string bit by bit

© Test whether it contains 1101

@ Idea: remember which (initial) part of 1101 has been recognized
@ Five prefixes: €, 1, 11, 110, 1101

@ Diagram: on the board

Rm Foundations of Informatics Winter 2009/10

Example: Pattern Matching

Example 1.7 (Pattern 1101)

@ Read Boolean string bit by bit

© Test whether it contains 1101

@ Idea: remember which (initial) part of 1101 has been recognized
@ Five prefixes: €, 1, 11, 110, 1101

@ Diagram: on the board

What we used:

finitely many (storage) states

an initial state

e for every current state and every input symbol: a new state

a succesful state

Rm Foundations of Informatics Winter 2009/10

Deterministic Finite Automata 1

Definition 1.8

A deterministic finite automaton (DFA) is of the form
Ql: <Q7E767q07F>

where
e () is a finite set of states
@ Y denotes the input alphabet
@ §:(Q x X — (@ is the transition function

@ go € @ is the initial state

F C @ is the set of final (or: accepting) states

Foundations of Informatics Winter 2009/10

Deterministic Finite Automata 11

Example 1.9

Pattern matching (Example 1.7):
e Q@=1{q,..-,q4}
o ¥ =B=1{0,1}
@ J:0Q x X — @ on the board
o F'={q}

Foundations of Informatics Winter 2009/10

Graphical Representation of DFA

states — nodes

§(ga)=¢ = q->¢

initial state: incoming edge without source state

final state(s): double circle

Rm Foundations of Informatics Winter 2009/10

Acceptance by DFA 1

Definition 1.10

Let (@, 3,0, qo, F)) be a DFA. The extension of § : Q@ X ¥ — @,
QXX —Q,

is defined by
0*(q,w) := state after reading w in g.
Formally:
. _Ja ifw=e¢e
0%(a,w) = {5*(5(q, a),v) ifw=av

Thus: if w=ay...a, and ¢ =5 ¢4 =% ... 2% ¢, then 0 (q,w) = qn

Foundations of Informatics Winter 2009/10

Acceptance by DFA 1

Definition 1.10

Let (@, 3,0, qo, F)) be a DFA. The extension of § : Q@ X ¥ — @,
QXX —Q,

is defined by
0*(q,w) := state after reading w in g.
Formally:
. _Ja ifw=e¢e
0%(a,w) = {5*((5(q, a),v) ifw=av

Thus: if w=ay...a, and ¢ =5 ¢4 =% ... 2% ¢, then 0 (q,w) = qn

Pattern matching (Example 1.9): on the board

Foundations of Informatics Winter 2009/10

Acceptance by DFA 11

Definition [.12

e 2 accepts w € ¥* if §*(qo,w) € F.
@ The language recognized by 2l is

L) :={w € * | §*(qo, w) € F}.

e A language L C ¥* is called DFA-recognizable if there exists some
DFA 2 such that L(2() = L.

e Two DFA 2,2 are called equivalent if

L) = L(As).

Foundations of Informatics Winter 2009/10

Acceptance by DFA 111

@ The set of all bit strings containing 1101 is recognized by the
automaton from Example 1.9.

Foundations of Informatics Winter 2009/10

Acceptance by DFA 111

@ The set of all bit strings containing 1101 is recognized by the
automaton from Example 1.9.

@ Two (equivalent) automata recognizing the language
{w € B* | w contains 1} :

on the board

Foundations of Informatics Winter 2009/10

Acceptance by DFA 111

@ The set of all bit strings containing 1101 is recognized by the
automaton from Example 1.9.

@ Two (equivalent) automata recognizing the language
{w € B* | w contains 1} :

on the board

@ An automaton which recognizes
{w €{0,...,9}" | value of w divisible by 3}

Idea: test whether sum of digits is divisible by 3 — one state for
each residue class (on the board)

Foundations of Informatics Winter 2009/10

Deterministic Finite Automata

Seen:

@ Deterministic finite automata as a model of simple sequential
computations

@ Recognizability of formal languages by automata

Rm Foundations of Informatics Winter 2009/10

Deterministic Finite Automata

Seen:

@ Deterministic finite automata as a model of simple sequential
computations

@ Recognizability of formal languages by automata

Open:
o Composition and transformation of automata?

e Which languages are recognizable, which are not (alternative
characterization)?

e Language definition — automaton and vice versa?

Rm Foundations of Informatics Winter 2009/10

© Finite Automata

@ Operations on Languages and Automata

Rm Foundati of Informatics Winter

Operations on Languages

Simplest case: Boolean operations (complement, intersection, union)

Question

Let 211, Q[Q be two DFA with L(Q[l) = Ll and L(ng) = L2.
Can we construct automata which recognize

o Tn (= ¥\ Ly),
o L1 N Ly, and
o L1ULy?

Foundations of Informatics Winter 2009/10

Language Complement

If L C ¥* is DFA-recognizable, then so is L.

m' Foundations of Informatics Winter 2009/10

Language Complement

Theorem 1.14

If L C ¥* is DFA-recognizable, then so is L.

Let 20 = (Q, %, 0, qo, F') be a DFA such that L(2() = L. Then:

weL <= w¢L < §(q,w) ¢ F < §(q0,w) €Q\F.

Thus, L is recognized by the DFA (Q, X, 6,q0,Q \ F). O]

lmH Foundations of Informatics Winter 2009/10

Language Complement

Theorem .14
If L C ¥* is DFA-recognizable, then so is L.

Let 20 = (Q, %, 0, qo, F') be a DFA such that L(2() = L. Then:
weL < wé¢L < §(q,w) ¢ F <= §(qo0,w) €Q\ F.

Thus, L is recognized by the DFA (Q, X, 6,q0,Q \ F). O]

on the board

lmH Foundations of Informatics Winter 2009/10

Language Intersection I

If L1, Ly C ¥* are DFA-recognizable, then so is Ly N Lo. \

m' Foundations of Informatics Winter 2009/10

Language Intersection I

If L1, Ly C ¥* are DFA-recognizable, then so is Ly N Lo.

Proof.

Let 2; = (Q;, %, 6i, ¢b, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff both A1 and 25 accept w

Idea: let 2; and 25 run in parallel
@ use pairs of states (q1,¢2) € Q1 X Q2

start with both components in initial state

a transition updates both components independently

for acceptance both components need to be in a final state

m“ Foundations of Informatics Winter 2009/10

Language Intersection II

Proof (continued).

Formally: let the product automaton

A= <Q1 X QQazv(Sv (Q(%7Q(%)7F1 X F2>
be defined by
5((q1,q2),a) := (61(q1,a),62(q2,a)) for every a € X.

Foundations of Informatics Winter 2009/10

Language Intersection II

Proof (continued).

Formally: let the product automaton
A= <Q1 X Q272767 (Q(%aqa%Fl X F2>
be defined by
0((q1,92),a) := (901(q1,a), d2(g2,a)) for every a € X.
This definition yields
6*((q1,g2), w) = (67 (q1, w), 65 (g2, w)) (¥)
for every w € ¥*.

Foundations of Informatics Winter 2009/10

Language Intersection II

Proof (continued).

Formally: let the product automaton
A= <Q1 X Q272767 (Q(%aqa%Fl X F2>
be defined by
0((q1,92),a) := (901(q1,a), d2(g2,a)) for every a € X.
This definition yields
6*((q1,92), w) = (61 (q1, w), 05 (g2, w)) ()
for every w € ¥*.
Thus we have:
2 accepts w

— 6*((Q6,q3),UJ)€F1 XFZ

L (G(gh,w),55(adw) € Fi x F
— Of(qp,w) € F1 and 63(q5, w) € Fy
<= 2 accepts w and Ay accepts w

Foundations of Informatics Winter 2009/10

Language Intersection III

on the board l

Rm Foundations of Informatics Winter 2009/10

Language Union

If Ly, Ly C ¥* are DFA-recognizable, then so is Ly U Lo. \

Rm Foundations of Informatics Winter 2009/10

Language Union

If Ly, Ly C ¥* are DFA-recognizable, then so is Ly U Lo.

Let 2; = (Q;, %, 6i, ¢b, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff 2y or 2y accepts w.

lm“ Foundations of Informatics Winter 2009/10

Language Union

If Ly, Ly C ¥* are DFA-recognizable, then so is Ly U Lo.

Proof.

Let 2; = (Q;, %, 6i, ¢b, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff 2y or 2y accepts w.

Idea: reuse product construction
Construct 2 as before but choose as final states those pairs
(q1,92) € Q1 X Q2 with ¢ € F or g2 € F». Thus the set of final states
is given by
JF o= (Fl X Qg) U (Ql X Fg)

lm“ Foundations of Informatics Winter 2009/10

Language Concatenation

The concatenation of two languages L1, Lo C 3* is given by

Ly Lo I:{’U'wez*‘UELl,U}GLQ}.

Abbreviations: w-L:={w} L, L -w:=L-{w}

m' Foundations of Informatics Winter 2009/10

Language Concatenation

The concatenation of two languages L1, Lo C 3* is given by

Ly Lo ::{v-wez*‘UELl,U}GLQ}.

Abbreviations: w-L:={w} L, L -w:=L-{w}

Example 1.20

© If Ly = {101,1} and Ly = {011, 1}, then

Ly - Ly = {101011, 1011, 11}.

lm“ Foundations of Informatics Winter 2009/10

Language Concatenation

The concatenation of two languages L1, Lo C 3* is given by

Ly Lo ::{v-wez*‘UELl,U}GLQ}.

Abbreviations: w-L:={w} L, L -w:=L-{w}

Example 1.20
@ If L, = {101,1} and Ly = {011, 1}, then

Ly - Ly = {101011, 1011, 11}.

Q If L1 =00 -B* and L2 =11 'B*, then

Ly - Ly = {w € B* | w has prefix 00 and contains 11}.

lm“ Foundations of Informatics Winter 2009/10

DFA-Recognizability of Concatenation

If L1, Lo C ¥* are DFA-recognizable, then so is Ly - L. \

Rm Foundations of Informatics Winter 2009/10

DFA-Recognizability of Concatenation

If L1, Ly C ¥* are DFA-recognizable, then so is Ly - Ls.

Proof (attempt).

Let 2; = (Q;, %, 6i, ¢, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff a prefix of w is recognized by 21,
and if 2, accepts the remaining suffix.

Idea: choose Q := Q1 U Q2 where each ¢ € F} is identified with ¢3
But: on the board []

lmH Foundations of Informatics Winter 2009/10

DFA-Recognizability of Concatenation

If L1, Ly C ¥* are DFA-recognizable, then so is Ly - Ls.

Proof (attempt).

Let 2; = (Q;, %, 6i, ¢, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff a prefix of w is recognized by 21,
and if 2, accepts the remaining suffix.

Idea: choose Q := Q1 U Q2 where each ¢ € F} is identified with ¢3
But: on the board []

Conclusion

| A\

Required: automata model where the successor state (for a given state
and input symbol) is not unique

A,

Foundations of Informatics Winter 2009/10

Language Iteration
Definition 1.21

e The nth power of a language L C ¥* is the n-fold composition of

L with itself (n € N): L" :=L-... L
—_——

n times
Inductively: LY := {e}, L"*1 .= L. L
e The iteration (or: Kleene star) of L is

L = U P

neN

Foundations of Informatics Winter 2009/10

Language Iteration
Definition 1.21

@ The nth power of a language L C ¥* is the n-fold composition of

L with itself (n € N): L" :=L-... L
—_—

n times
Inductively: LY := {e}, L"*1 .= L. L
e The iteration (or: Kleene star) of L is

L = U P

neN

Remarks:
o we always have ¢ € L* (since L° C L* and L° = {¢})
o we L*iff w=c¢ orif wcan be decomposed into n > 1 subwords
Viy..., Uy (1.6, w =v1-... - vy,) such that v; € L forevery 1 <i<mn
e again we would suspect that the iteration of a DFA-recognizable
language is DFA-recognizable, but there is no simple
(deterministic) construction

Foundations of Informatics Winter 2009/10

Operations on Languages and Automata

Seen:

e Operations on languages:
complement
intersection
union
concatenation
iteration

e DFA constructions for:
e complement
e intersection
e union

Rm Foundations of Informatics Winter 2009/10

Operations on Languages and Automata

Seen:

e Operations on languages:
complement
intersection
union
concatenation
iteration

e DFA constructions for:

e complement
e intersection
e union

Open:
e Automata model for (direct implementation of) concatenation and
iteration?

Rm Foundations of Informatics Winter 2009/10

© Finite Automata

@ Nondeterministic Finite Automata

Rm Foundati of Informatics Winter

Nondeterministic Finite Automata 1

Idea:

e for a given state and a given input symbol, several transitions (or
none at all) are possible

e an input word generally induces several state sequences (“runs”)

e the word is accepted if at least one accepting run exists

Rm Foundations of Informatics Winter 2009/10

Nondeterministic Finite Automata 1

Idea:

e for a given state and a given input symbol, several transitions (or
none at all) are possible

e an input word generally induces several state sequences (“runs”)

e the word is accepted if at least one accepting run exists

Advantages:

e simplifies representation of languages
(example: B* - 1101 - B*; on the board)

@ yields direct constructions for concatenation and iteration of
languages

e more adequate modeling of systems with nondeterministic
behaviour (communication protocols, multi-agent systems, ...)

Rm Foundations of Informatics Winter 2009/10

Nondeterministic Finite Automata 11
Definition 1.22

A nondeterministic finite automaton (NFA) is of the form
Q[- <Q727A7q07F>

where

e () is a finite set of states

@ Y denotes the input alphabet

o A C(@Q x X x (@ is the transition relation
qo € @ is the initial state
F C (@ is the set of final states

Foundations of Informatics Winter 2009/10

Nondeterministic Finite Automata 11
Definition 1.22

A nondeterministic finite automaton (NFA) is of the form
Q[- <Q727A7q07F>

where

e () is a finite set of states

@ Y denotes the input alphabet

o A C(@Q x X x (@ is the transition relation
qo € @ is the initial state
F C (@ is the set of final states

Remarks:
o (¢,a,q") € A usually written as ¢ — ¢
e every DFA can be considered as an NFA
((g,a,9") € A <= 6(q,a) =)
R\WNTH

Foundations of Informatics Winter 2009/10

Acceptance by NFA

o Let w=ay...a, € X*.

o A w-labeled 2l-run from ¢; to ¢o is a sequence
al a2 an
Po—P1 —.---Pn—-1 —7Pn

such that po = q1, pn = q2, and (p;—1,a;,p;) € A for every
1 <i <n (we also write: ¢ LN q2).

2 accepts w if there is a w-labeled 2A-run from gy to some g € F

The language recognized by 2 is
L(A) :={w € £* | A accepts w}.

e A language L C ¥* is called NFA-recognizable if there exists a
NFA 2 such that L(2() = L.

Two NFA 2;,2s are called equivalent if L(41) = L(22).

Foundations of Informatics Winter 2009/10

Acceptance Test for NFA

Algorithm 1.24 (Acceptance Test for NFA)

Input: NFA A =(Q,%,A,q, F), we X*
Question: w € L(A)?
Procedure: successive computation of the reachability set

Ry(w) = {g€ Q| g — ¢}
Inductive definition:

Ra(e) = {q}
Ry(av) = {q€Q|p—> q for some p € Ry(v)}

Output: “yes” if Ry(w) N F # 0, otherwise “no”

Remark: this algorithm solves the word problem for NFA

lm“ Foundations of Informatics Winter 2009/10

Acceptance Test for NFA

Algorithm 1.24 (Acceptance Test for NFA)

Input: NFA A =(Q,%,A,q, F), we X*
Question: w € L(A)?
Procedure: successive computation of the reachability set

Ry(w) = {g€ Q| g — ¢}
Inductive definition:

Ra(e) = {q}
Ry(av) = {q€Q|p—> q for some p € Ry(v)}

Output: “yes” if Ry(w) N F # 0, otherwise “no”

Remark: this algorithm solves the word problem for NFA

Example 1.25

on the board
m“ Foundations of Informatics Winter 2009/10

NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)

Rm Foundations of Informatics Winter 2009/10

NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)

Solution: admit empty word ¢ as transition label

Rm Foundations of Informatics Winter 2009/10

Definition 1.26

A nondeterministic finite automaton with e-transitions (e-NFA) is of
the form A = (Q, 3, A, qo, F') where

e (Q is a finite set of states

@ 3 denotes the input alphabet

e A CQ x X, X Q is the transition relation where . := X U {¢}
@ go € @ is the initial state

e F C (@ is the set of final states

Remarks:
e every NFA is an e-NFA

e definitions of runs and acceptance: in analogy to NFA

Foundations of Informatics Winter 2009/10

Definition 1.26

A nondeterministic finite automaton with e-transitions (e-NFA) is of
the form A = (Q, 3, A, qo, F') where

e (Q is a finite set of states

@ 3 denotes the input alphabet

e A CQ x X, X Q is the transition relation where . := X U {¢}
@ go € @ is the initial state

e F C (@ is the set of final states

Remarks:
e every NFA is an e-NFA

e definitions of runs and acceptance: in analogy to NFA

on the board
RWNTH

Foundations of Informatics Winter 2009/10

e-NFA-Recognizability of Concatenation

If Ly, Ly C X* are e-NFA-recognizable, then so is Ly - Lo. \

m' Foundations of Informatics Winter 2009/10

e-NFA-Recognizability of Concatenation

If Ly, Ly C X* are e-NFA-recognizable, then so is Ly - Lo. \
on the board [] l

Rm Foundations of Informatics Winter 2009/10

e-NFA-Recognizability of Iteration

If L C ¥* is e-NFA-recognizable, then so is L*. \

m' Foundations of Informatics Winter 2009/10

e-NFA-Recognizability of Iteration

If L C ¥* is e-NFA-recognizable, then so is L*. \
on the board Ol l

Rm Foundations of Informatics Winter 2009/10

Syntax Diagrams as e-NFA

Syntax diagrams (without recursive calls) can be interpreted as e-NFA

decimal numbers (on the board)

Rm Foundations of Informatics Winter 2009/10

Types of Finite Automata

O DFA
Q@ NFA
@ = NFA

Rm Foundations of Informatics Winter 2009/10

Types of Finite Automata

O DFA
Q@ NFA
@ = NFA

Q@ FEvery DFA-recognizable language is NFA-recognizable.

© FEwery NFA-recognizable language is e-NFA-recognizable.

Rm Foundations of Informatics Winter 2009/10

Types of Finite Automata

O DFA
Q@ NFA
@ = NFA

Q@ FEvery DFA-recognizable language is NFA-recognizable.

© FEwery NFA-recognizable language is e-NFA-recognizable.

Goal: establish reverse inclusions

Rm Foundations of Informatics Winter 2009/10

From NFA to DFA 1

FEvery NFA can be transformed into an equivalent DFA. \

Rm Foundations of Informatics Winter 2009/10

From NFA to DFA 1

FEvery NFA can be transformed into an equivalent DFA.

Proof.
Idea: let the DFA operate on sets of states (“powerset construction”)
o Initial state of DFA := {initial state of NFA}

o P % P’ in DFA iff there exist ¢ € P,¢' € P’ such that ¢ — ¢ in
NFA

o P final state in DFA iff it contains some final state of NFA

lmH Foundations of Informatics Winter 2009/10

From NFA to DFA 11

Proof (continued).

Let 2 = (Q, X, A, qo, F') be a NFA.
Powerset construction of A' = (Q', %, ¥, ¢f, F'):

0 Q=29 :={P|PCQ}

e 0 :Q xX — @ with

q € 0'(P,a) < there exists p € P such that (p,a,q) € A

° ¢ = {ao}

o F':={PCQ|PNF#0}
This yields

g —qinA < g€ & ({g}w)inA
and thus
A accepts w <= A’ accepts w

lm“ Foundations of Informatics Winter 2009/10

From NFA to DFA 11

Proof (continued).
Let 2 = (Q, X, A, qo, F') be a NFA.
Powerset construction of A' = (Q', %, ¥, ¢f, F'):
0 Q=29 :={P|PCQ}
e 0 :Q xX — @ with
q € 0'(P,a) < there exists p € P such that (p,a,q) € A
° gy = {q}
o F':={PCQ|PNF#0}
This yields

@ —qin A <= g {q},w)in A
and thus
A accepts w <= A’ accepts w

O

v

on the board ‘

Foundations of Informatics Winter 2009/10

From e-NFA to NFA

Every e-NFA can be transformed into an equivalent NFA. \

Rm Foundations of Informatics Winter 2009/10

From e-NFA to NFA

Theorem 1.34
Every e-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let 2 be a e-NFA. We construct the NFA 21’ by eliminating*all
g-transitions, addin% appropriate direct transitions: if p — g,
g5 ¢,and ¢ = rin 2, then p - r in A’. O

Rm Foundations of Informatics Winter 2009/10

From e-NFA to NFA

Theorem 1.34
Every e-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let 2 be a e-NFA. We construct the NFA 21’ by eliminating*all
g-transitions, addin% appropriate direct transitions: if p — g,

¢ ——¢,and ¢ = 7 in 2, then p — r in A’ O

on the board ‘

lmH Foundations of Informatics Winter 2009/10

From e-NFA to NFA

Theorem 1.34
FEvery e-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let 2 be a e-NFA. We construct the NFA 2 by eliminating*all
g-transitions, addin% appropriate direct transitions: if p — g,
g5 ¢,and ¢ = rin 2, then p - r in A’. O

on the board ‘
All types of finite automata recognize the same class of languages.

lm“ Foundations of Informatics Winter 2009/10

Nondeterministic Finite Automata

Seen:
@ Definition of e-NFA
e Determinization of (e-)NFA

Rm Foundations of Informatics Winter 2009/10

Nondeterministic Finite Automata

Seen:
@ Definition of e-NFA
e Determinization of (e-)NFA

Open:
o More decidablity results

Rm Foundations of Informatics Winter 2009/10

© Finite Automata

@ More Decidability Results

Rm Foundati of Informatics Winter

The Word Problem Revisited

Definition 1.37

The word problem for DFA is specified as follows:
Given a DFA 2 and a word w € ¥*, decide whether

w € L(A).

Rm Foundations of Informatics Winter 2009/10

The Word Problem Revisited

Definition 1.37
The word problem for DFA is specified as follows:

Given a DFA 2 and a word w € ¥*, decide whether

w € L(A).

As we have seen (Def. 1.10, Alg. 1.24, Thm. 1.34):

Theorem 1.38
The word problem for DFA (NFA, e-NFA) is decidable.

lmH Foundations of Informatics Winter 2009/10

The Emptiness Problem

The emptiness problem for DFA is specified as follows:
Given a DFA 2, decide whether

Rm Foundations of Informatics Winter 2009/10

The Emptiness Problem

Definition 1.39

The emptiness problem for DFA is specified as follows:
Given a DFA 2, decide whether

L(2A) = 0.

The emptiness problem for DFA (NFA, e-NFA) is decidable.

It holds that L(2A) # () iff in 2 some final state is reachable from the
initial state (simple graph-theoretic problem). Ol

lmH Foundations of Informatics Winter 2009/10

The Emptiness Problem

The emptiness problem for DFA is specified as follows:
Given a DFA 2, decide whether

L(2A) = 0.

The emptiness problem for DFA (NFA, e-NFA) is decidable.

It holds that L(2A) # () iff in 2 some final state is reachable from the
initial state (simple graph-theoretic problem). Ol

Remark: important result for formal verification (unreachability of
bad (= final) states)

lm“ Foundations of Informatics Winter 2009/10

The Equivalence Problem

The equivalence problem for DFA is specified as follows:

Given two DFA 2(;, %5, decide whether
L(2y) = L(As).

Rm Foundations of Informatics Winter 2009/10

The Equivalence Problem

The equivalence problem for DFA is specified as follows:

Given two DFA 2(;, %5, decide whether
L(2y) = L(As).

The equivalence problem for DFA (NFA, e-NFA) is decidable.

Proof.
L(A1) = L(As2)

lm“ Foundations of Informatics Winter 2009/10

The Equivalence Problem

The equivalence problem for DFA is specified as follows:

Given two DFA 2(;, %5, decide whether
L(2y) = L(As).

The equivalence problem for DFA (NFA, e-NFA) is decidable.

Proof.

L(A1) = L(As2)
< L(Qh) g L(Q[Q) and L(Q[Q) g L(Qh)

lm“ Foundations of Informatics Winter 2009/10

The Equivalence Problem

The equivalence problem for DFA is specified as follows:

Given two DFA 2(;, %5, decide whether
L(2y) = L(As).

The equivalence problem for DFA (NFA, e-NFA) is decidable.

L(A1) = L(As2)
= L(%1) C L(Ws) and L(As) C L(A1)
= (L(21) \ L(A2)) U (L(2A2) \ L(%1)) = 0

lm“ Foundations of Informatics Winter 2009/10

The Equivalence Problem

The equivalence problem for DFA is specified as follows:
Given two DFA 2(;, %5, decide whether
L(2y) = L(As).

The equivalence problem for DFA (NFA, e-NFA) is decidable.

L() = L(A2)

< L(Qh) C L(Q[Q) and L(Q[Q) (- L(Qh)

= (L) \ L(A2)) U (L(A2) \ L(2)) = 0

— (LERL)N L(As2) YU (L(2A2) N L(21)) =10

N—~— ~——
DFA-recognizable (Thm. 1.14) DFA-recognizable (Thm. 1.14)
DFA-recognizable (Thm. 1.16) DFA-recognizable (Thm. 1.16)
DFA-recognizable (Thm. I.18)
decidable (Thm. 1.40)
g

mrH Foundations of Informatics Winter 2009/10

Finite Automata

Seen:
@ Decidability of word problem
e Decidability of emptiness problem

@ Decidability of equivalence problem

Rm Foundations of Informatics Winter 2009/10

Finite Automata

Seen:
@ Decidability of word problem
e Decidability of emptiness problem

@ Decidability of equivalence problem

Open:

e Non-algorithmic description of languages

Rm Foundations of Informatics Winter 2009/10

@ Regular Expressions

Rm Foundations of Informatics Winter 2

Example .43

Consider the set of all words over X := {a, b} which
© start with one or three a symbols

@ continue with a (potentially empty) sequence of blocks, each
containing at least one b and exactly two a’s

@ conclude with a (potentially empty) sequence of b’s
Corresponding regular expression:

(a + aaa)(bb*ab*ab® + b*abb*ab® +b*ab*abb®)*b

b before a’s b between a’s b after a’s

lmH Foundations of Informatics Winter 2009/10

Syntax of Regular Expressions

Definition .44

The set of regular expressions over Y is inductively defined by:
e () and e are regular expressions

@ every a € ¥ is a regular expression

e if a and [are regular expressions, then so are
o a+ [
o a-f3

° o

lmH Foundations of Informatics Winter 2009/10

Syntax of Regular Expressions

Definition .44

The set of regular expressions over Y is inductively defined by:
e () and e are regular expressions

@ every a € ¥ is a regular expression

e if a and [are regular expressions, then so are
o a+ [
o a-f3

° o

Notation:
@ - can be omitted

@ * binds stronger than -, - binds stronger than +

e at abbreviates a - a*

lmH Foundations of Informatics Winter 2009/10

Semantics of Regular Expressions

Definition 1.45

Every regular expression « defines a language L(«):

L) = 0

L(e) = {e}

L(a) = {a}
Lia+p8) = L(a)UL(p)
L(a-B) = L(a)- L(B)

L(e®) = (L()"

Foundations of Informatics Winter 2009/10

Semantics of Regular Expressions

Definition 1.45

Every regular expression « defines a language L(«):

L) = 0
L(e) = {e}
L(a) = {a}
Lla+) = L(a)UL(B)
L(a- B) L(a) - L(B)
L(e®) = (L(a))"

A language L is called regular if it is definable by a regular expression,
i.e., if L = L(«a) for some regular expression a.

Foundations of Informatics Winter 2009/10

Regular Languages

Example 1.46

O {aa} is regular since

L(a-a) = L(a) - L(a) = {a} - {a} = {aa}

lmH Foundations of Informatics Winter 2009/10

Regular Languages

Example 1.46

O {aa} is regular since

L(a-a) = L(a) - L(a) = {a} - {a} = {aa}

@ {a,b}* is regular since

L((a+b)") = (L(a +b))" = (L(a) U L(Y))" = ({a} U{b})" = {a,b}"

lmH Foundations of Informatics Winter 2009/10

Regular Languages

Example 1.46

O {aa} is regular since

L(a-a) = L(a) - L(a) = {a} - {a} = {aa}

@ {a,b}* is regular since

L((a+b)") = (L(a +b))" = (L(a) U L(Y))" = ({a} U{b})" = {a,b}"

@ The set of all words over {a, b} containing abb is regular since

L(a+b)*-a-b-b-(a+b)*)={a,b}"-{abb} - {a,b}"

lm“ Foundations of Informatics Winter 2009/10

Regular Languages and Finite Automata I

Theorem 1.47 (Kleene’s Theorem)

To each regular expression there corresponds an e-NFA, and vice versa.

Rm Foundations of Informatics Winter 2009/10

Regular Languages and Finite Automata I

Theorem 1.47 (Kleene’s Theorem)

To each regular expression there corresponds an e-NFA, and vice versa.

Proof.

— using induction over the given regular expression «, we
construct an e-NFA 2,
e with exactly one final state gy
e without transitions into the initial state
e without transitions leaving the final state
(on the board)

<= by solving a regular equation system (details omitted)

lm“ Foundations of Informatics Winter 2009/10

Regular Languages and Finite Automata 11

Corollary 1.48

The following properties are equivalent:

L is regular
o L is DFA-recognizable
o L is NFA-recognizable

L is e-NFA-recognizable

Rm Foundations of Informatics Winter 2009/10

Implementation of Pattern Matching

Algorithm 1.49 (Pattern Matching)

Input: regular expression o and w € 3*
Question: does w contain some v € L(a)?
let B:=(a1+...+ap)* a (for L ={ay,...,a,})
determine e-NFA g for (3
eliminate e-transitions
apply powerset construction to obtain DFA 2
let A run on w

Procedure:

©0000

Output: “yes” if A passes through some final state, otherwise “no”

v

Remark: in UNIX/LINUX implemented by grep and lex

lmH Foundations of Informatics Winter 2009/10

Regular Expressions

Seen:
@ Definition of regular expressions

e Equivalence of regular and DFA-recognizable languages

Rm Foundations of Informatics Winter 2009/10

Regular Expressions

Seen:
@ Definition of regular expressions

e Equivalence of regular and DFA-recognizable languages

Open:

e Limitations of regular languages?

Rm Foundations of Informatics Winter 2009/10

@ The Pumping Lemma

Rm Foundations of Informatics Winter 2

Observation: a language L is DFA-recognizable (and thus regular) if
the membership of a word w can be tested by symbol-wise reading of
w, using a bounded memory

Rm Foundations of Informatics Winter 2009/10

Observation: a language L is DFA-recognizable (and thus regular) if
the membership of a word w can be tested by symbol-wise reading of
w, using a bounded memory

Conjecture: languages of the form {a"b" | n € N} are not regular
since the test for membership requires the capability of comparing the
number of a symbols to the number of b symbols (which can grow
arbitrarily large)

Rm Foundations of Informatics Winter 2009/10

The Pumping Lemma I

Theorem 1.50 (Pumping Lemma for Regular Languages)

If L is regular, then there exists n > 1 (called pumping index) such that
any w € L with |{w| > n can be decomposed as w = xyz where

@ y#e and
o for everyi >0, zy'z € L

Rm Foundations of Informatics Winter 2009/10

The Pumping Lemma II

Proof (idea).
Let 2 = (Q, 3,9, qo, F) be a DFA such that L(2() = L. Choose
n :=|Q|, and let w € L.
Then: w=aj...a with k >n
— the accepting run visits k + 1 > n + 1 states:

ai az ak
Q —q — ... — 4k
= some state in @) occurs (at least) twice:
there exist 1 <4 < j < k such that ¢; = g;
Choose y := a;41...a; to be the substring which is read between the
two visits of g. Clearly, y # . Moreover the cycle can be omitted or
repeated such that zz € L, xzyz € L, zy’z € L, ... []

v

Foundations of Informatics Winter 2009/10

The Pumping Lemma II

Proof (idea).
Let 2 = (Q, 3,9, qo, F) be a DFA such that L(2() = L. Choose
n :=|Q|, and let w € L.
Then: w=aj...a with k >n
— the accepting run visits k + 1 > n + 1 states:

ai az ak
Q —q — ... — 4k
= some state in @) occurs (at least) twice:
there exist 1 <4 < j < k such that ¢; = g;
Choose y := a;41...a; to be the substring which is read between the
two visits of g. Clearly, y # . Moreover the cycle can be omitted or
repeated such that zz € L, xzyz € L, zy’z € L, ... []

v

Remark: Pumping Lemma states a necessary condition for regularity
= can only be used to show the non-regularity of a language

Foundations of Informatics Winter 2009/10

The Pumping Lemma II1

@ L := {a"b* | k € N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := a"b". Since |w| > n, it can be decomposed as w = xyz with
y # &. The following cases are possible:
o y € L(a™): then 2y%2 ¢ L (more as than bs)
o y € L(b"): then xy?z ¢ L (less as than bs)
o y € L(atbh): then zy?z ¢ L (a follows b)

Foundations of Informatics Winter 2009/10

The Pumping Lemma II1

@ L := {a"b* | k € N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := a"b". Since |w| > n, it can be decomposed as w = xyz with
y # &. The following cases are possible:
o y € L(a™): then 2y%2 ¢ L (more as than bs)
o y € L(b"): then xy?z ¢ L (less as than bs)
o y € L(atbh): then zy?z ¢ L (a follows b)

@ Similarly: the set of all arithmetic expressions is not regular

Foundations of Informatics Winter 2009/10

The Pumping Lemma II1

@ L := {a"b* | k € N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := a"b". Since |w| > n, it can be decomposed as w = xyz with
y # &. The following cases are possible:
o y € L(a™): then zy?2 ¢ L (more as than bs)
o y € L(b"): then xy?z ¢ L (less as than bs)
o y € L(atbh): then zy?z ¢ L (a follows b)

@ Similarly: the set of all arithmetic expressions is not regular

v

Conclusion

Finite automata are too weak for defining the syntax of programming
languages!

A\

Foundations of Informatics Winter 2009/10

The Pumping Lemma IV

Seen:
@ Necessary condition for regularity of languages

o Counterexamples

Rm Foundations of Informatics Winter 2009/10

The Pumping Lemma IV

Seen:
@ Necessary condition for regularity of languages

o Counterexamples

Open:

e More expressive formalisms for describing languages?

Rm Foundations of Informatics Winter 2009/10

@ Outlook

Rm Foundations of Informatics Winter 2

e Minimization of DFA
e More language operations (reversion, homomorphisms, ...)

e Construction of scanners for compilers

Rm Foundati of Informatics Winter

	Regular Languages
	Formal Languages
	Finite Automata
	Deterministic Finite Automata
	Operations on Languages and Automata
	Nondeterministic Finite Automata
	More Decidability Results

	Regular Expressions
	The Pumping Lemma
	Outlook

