
Foundations of Informatics: a Bridging Course
Week 3: Formal Languages and Semantics

Part C: Processes and Concurrency

Thomas Noll

Software Modeling and Verification Group (MOVES)

noll@cs.rwth-aachen.de

http://cosec.bit.uni-bonn.de/students/teaching/10us/10us-bridgingcourse/

http://www-i2.informatik.rwth-aachen.de/i2/b-it10/

b-it, Bonn, Winter semester 2010/11

noll@cs.rwth-aachen.de
http://cosec.bit.uni-bonn.de/students/teaching/10us/10us-bridgingcourse/
http://www-i2.informatik.rwth-aachen.de/i2/b-it10/


Outline of Part C

1 Motivation

2 Communicating Automata

Foundations of Informatics, Part C Winter 2010/11 2



Motivation

So far: only sequential models of computation

Now: Consider systems of processes with concurrent behaviour

Applications:

Programming languages with concurrency (e.g., Java’s threads)
Operating systems
Embedded systems with interacting hardware and software
components
Web services

Goals:

Better understanding of behaviour
Formal verification of desirable properties
(e.g., absence of deadlocks)
Systematic construction of implementations from (abstract)
specifications

Foundations of Informatics, Part C Winter 2010/11 3



Motivation

So far: only sequential models of computation

Now: Consider systems of processes with concurrent behaviour

Applications:

Programming languages with concurrency (e.g., Java’s threads)
Operating systems
Embedded systems with interacting hardware and software
components
Web services

Goals:

Better understanding of behaviour
Formal verification of desirable properties
(e.g., absence of deadlocks)
Systematic construction of implementations from (abstract)
specifications

Foundations of Informatics, Part C Winter 2010/11 3



Motivation

So far: only sequential models of computation

Now: Consider systems of processes with concurrent behaviour

Applications:

Programming languages with concurrency (e.g., Java’s threads)
Operating systems
Embedded systems with interacting hardware and software
components
Web services

Goals:

Better understanding of behaviour
Formal verification of desirable properties
(e.g., absence of deadlocks)
Systematic construction of implementations from (abstract)
specifications

Foundations of Informatics, Part C Winter 2010/11 3



Outline of Part C

1 Motivation

2 Communicating Automata

Foundations of Informatics, Part C Winter 2010/11 4



Reminder

Product construction for DFA A1,A2:

A := 〈Q1 ×Q2,Σ, δ, (q
1
0, q

2
0), F 〉

is defined by

δ((q1, q2), a) := (δ1(q1, a), δ2(q1, a)) for every a ∈ Σ

and
F := F1 × F2

=⇒ recognizes L(A1)∩L(A2) (similar construction for L(A1)∪L(A2))

Interpretation: fully synchronized parallel execution of two automata

Generalization:

arbitrary number of automata

NFA rather than DFA

no full synchronization, i.e., not every action relevant for every
automaton

Foundations of Informatics, Part C Winter 2010/11 5



Reminder

Product construction for DFA A1,A2:

A := 〈Q1 ×Q2,Σ, δ, (q
1
0, q

2
0), F 〉

is defined by

δ((q1, q2), a) := (δ1(q1, a), δ2(q1, a)) for every a ∈ Σ

and
F := F1 × F2

=⇒ recognizes L(A1)∩L(A2) (similar construction for L(A1)∪L(A2))

Interpretation: fully synchronized parallel execution of two automata

Generalization:

arbitrary number of automata

NFA rather than DFA

no full synchronization, i.e., not every action relevant for every
automaton

Foundations of Informatics, Part C Winter 2010/11 5



Reminder

Product construction for DFA A1,A2:

A := 〈Q1 ×Q2,Σ, δ, (q
1
0, q

2
0), F 〉

is defined by

δ((q1, q2), a) := (δ1(q1, a), δ2(q1, a)) for every a ∈ Σ

and
F := F1 × F2

=⇒ recognizes L(A1)∩L(A2) (similar construction for L(A1)∪L(A2))

Interpretation: fully synchronized parallel execution of two automata

Generalization:

arbitrary number of automata

NFA rather than DFA

no full synchronization, i.e., not every action relevant for every
automaton

Foundations of Informatics, Part C Winter 2010/11 5



Synchronized Product of Automata I

Definition C.1

Let Ai = 〈Qi,Σi,∆i, q
i
0, Fi〉 be NFA for 1 ≤ i ≤ n.

The synchronized product of A1, . . . ,An is the NFA

A1 ⊗ . . .⊗ An := 〈Q,Σ,∆, q0, F 〉

where

Q := Q1 × . . .×Qn

Σ := Σ1 ∪ . . . ∪ Σn

((q1, . . . , qn), a, (q′1, . . . , q
′
n)) ∈ ∆ ⇐⇒

{
(qi, a, q

′
i) ∈ ∆i if a ∈ Σi

q′i = qi otherwise

q0 := (q1
0, . . . , q

n
0 )

F := F1 × . . .× Fn

Foundations of Informatics, Part C Winter 2010/11 6



Synchronized Product of Automata II

Example C.2

Dining Philosophers Problem:

n philosophers sitting around a table

a fork between every two of them

philosophers are thinking, hungry or eating

need both neighbouring forks to eat

component automata + product: on the board

Foundations of Informatics, Part C Winter 2010/11 7


	Processes and Concurrency
	Motivation
	Communicating Automata


