Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Semantics
Part B: Context-Free Languages

Thomas Noll

Software Modeling and Verification Group (MOVES)
RWTHAACHEN
noll@cs.rwth-aachen.de

http://cosec.bit.uni-bonn.de/students/teaching/10us/10us-bridgingcourse/
http://www-i2.informatik.rwth-aachen.de/i2/b-it10/

b-it, Bonn, Winter semester 2010/11

noll@cs.rwth-aachen.de
http://cosec.bit.uni-bonn.de/students/teaching/10us/10us-bridgingcourse/
http://www-i2.informatik.rwth-aachen.de/i2/b-it10/

Outline of Part B

@ Context-Free Grammars and Languages

Rm Foundations of Informatics, Part B Winter 2010/11

Introductory Example 1

Example B.1

Syntax definition of programming languages by “Backus-Naur” rules
Here: simple arithmetic expressions

(Expression) == 0

1
(Expression) + (Expression)
(Ezxpression) * (Expression)
((Expression))

Meaning:

An expression is either 0 or 1, or it is of the form u + v,
u*v, or (u) where u,v are again erpressions

lm“ Foundations of Informatics, Part B Winter 2010/11

Introductory Example 11

Example B.2 (continued)

”

Here we abbreviate (Expression) as E, and use “—” instead of “:=".

Thus:

E — 0|1|E+E|E+E|(E)

lm“ Foundations of Informatics, Part B Winter 2010/11

Introductory Example 11

Example B.2 (continued)

Here we abbreviate (Expression) as E, and use “—” instead of “:=".
Thus:
E - O|1|E+E|ExE|(E)

Now expressions can be generated by applying rules to the start
symbol E:

FE ExFE

(E)x E

S

)

lm“ Foundations of Informatics, Part B Winter 2010/11

Context-Free Grammars 1

Definition B.3

A context-free grammar (CFG) is a quadruple
G=(N,%,P,S)

where

@ N is a finite set of nonterminal symbols

¥ is the (finite) alphabet of terminal symbols (disjoint from N)

e P is a finite set of production rules of the form A — « where
AeNand a e (NUX)*

e S € N is a start symbol

Foundations of Informatics, Part B Winter 2010/11

Context-Free Grammars 11

Example B.4
For the above example, we have:

o N={F}
° E:{O7l7+7*7(7)}
e P={F—->0,E—->1,E-E+EEFE—ExE E— (E)}

OS:E 4

Winter 2010/11

Rm Foundations of Informatics, Part B

Context-Free Grammars 11

Example B.4

For the above example, we have:

o N={F}

o X={0,1,4,%(,)}

e P={F—->0,E—->1,E-E+EEFE—ExE E— (E)}
e S=F

Naming conventions:

@ nonterminals start with uppercase letters

e terminals start with lowercase letters

e start symbol = symbol on LHS of first production
= grammar completely defined by productions

Rm Foundations of Informatics, Part B Winter 2010/11

Context-Free Languages I

Let G = (N,X%, P,S) be a CFG.

@ A sentence v € (N UX)* is directly derivable from g € (N U X)* if
there exist 1 = A — « € P and 61,92 € (N U X)* such that
B = 61Ad; and v = d1ady (notation: B = v or just f = 7) .

o A derivation (of length n) of v from 3 is a sequence of direct
derivations of the form dp = 61 = ... = §,, where g = 3, o, = 7,
and d;,_1 = 9; for every 1 <i < n (notation: 3 =* ~).

o A word w € ¥* is called derivable in G if § =* w.

Foundations of Informatics, Part B Winter 2010/11

Context-Free Languages I

Let G = (N,X%, P,S) be a CFG.

@ A sentence v € (N UX)* is directly derivable from g € (N U X)* if
there exist 1 = A — « € P and 61,92 € (N U X)* such that
B = 61Ad; and v = d1ady (notation: B = v or just f = 7) .

A derivation (of length n) of v from j is a sequence of direct
derivations of the form dp = 61 = ... = §,, where g = 3, o, = 7,
and d;,_1 = 9; for every 1 <i < n (notation: 3 =* ~).

e A word w € X% is called derivable in G if S =* w.

e The language generated by G is L(G) := {w € &* | S =* w}.

e A language L C ¥* is called context-free (CFL) if it is generated
by some CFG.

e Two grammars G, G are equivalent if L(G1) = L(G2).

Foundations of Informatics, Part B Winter 2010/11

Context-Free Languages II

The language {a"d" | n > 1} is context-free (but not regular—see
Ex. A.51). It is generated by the grammar G = (N, X, P, S) with

o N ={S5}
o X ={a,b}
e P={S — aSb| ab}
(proof: on the board))

Winter 2010/11

Foundations of Informatics, Part B

Context-Free Languages II

The language {a"d" | n > 1} is context-free (but not regular—see
Ex. A.51). It is generated by the grammar G = (N, X, P, S) with

o N ={S5}
o X ={a,b}
e P={S — aSb| ab}
(proof: on the board))

Remark: illustration of derivations by derivation trees

e root labeled by start symbol

o leafs labeled by terminal symbols
@ successors of node labeled according to right-hand side of

production rule

(example on the board)
Winter 2010/11

Foundations of Informatics, Part B

Context-Free Grammars and Languages

Seen:
o Context-free grammars
o Derivations

o Context-free languages

Rm Foundations of Informatics, Part B Winter 2010/11

Context-Free Grammars and Languages

Seen:
o Context-free grammars
@ Derivations

o Context-free languages

Open:

o Relation between context-free and regular languages

Rm Foundations of Informatics, Part B Winter 2010/11

Outline of Part B

© Context-Free and Regular Languages

Rm Foundations of Informatics, Part B Winter 2010/11

Context-Free and Regular Languages

Theorem B.7

@ FEvery regular language is context-free.

© There exist CFLs which are not reqular.

(In other words: the class of regular languages is a proper subset of the
class of CFLs.)

Rm Foundations of Informatics, Part B Winter 2010/11

Context-Free and Regular Languages

Theorem B.7

Q@ FEwery regular language is context-free.

© There exist CFLs which are not reqular.

(In other words: the class of regular languages is a proper subset of the
class of CFLs.)

Proof.
@ Let L be a regular language, and let 2 = (Q, X, 4, qo, F') be a DFA
which recognizes L. G := (N, X, P, S) is defined as follows:
o N:=0Q, S:=q
o if §(¢q,a) = ¢/, then ¢ — aq’ € P
o ifge F,thengq »c€ P

Obviously a w-labeled run in 2 from ¢ to F' corresponds to a
derivation of w in G, and vice versa. Thus L(2) = L(G)
(example on the board).

@ A counterexample is {a™b" | n > 1} (see Ex. A.51 and B.6).

mrH Foundations of Informatics, Part B Winter 2010/11

Context-Free Grammars and Languages

Seen:

o CFLs are more expressive than regular languages

Rm Foundations of Informatics, Part B Winter 2010/11

Context-Free Grammars and Languages

Seen:

o CFLs are more expressive than regular languages

Open:
@ Decidability of word problem

Rm Foundations of Informatics, Part B Winter 2010/11

Outline of Part B

@© The Word Problem for Context-Free Languages

Rm Foundations of Informatics, Part B Winter 2010/11

The Word Problem

e Goal: given G = (N, 3, P, S) and w € ¥*, decide whether
w € L(G) or not

For regular languages this was easy: just let the corresponding
DFA run on w.

But here: how to decide when to stop a derivation?

Solution: establish normal form for grammars which guarantees
that each nonterminal produces at least one terminal symbol

— only finitely many combinations to be inspected

Rm Foundations of Informatics, Part B Winter 2010/11

Chomsky Normal Form 1

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its
productions is of the form

A— BC or A—a.

Rm Foundations of Informatics, Part B Winter 2010/11

Chomsky Normal Form 1

Definition B.8
A CFG is in Chomsky Normal Form (Chomsky NF) if every of its

productions is of the form

A— BC or A—a.

Example B.9
Let S — ab | aSb be the grammar which generates L := {a"b" | n > 1}.
An equivalent grammar in Chomsky NF is

S — AB | AC (generates L)

A—a (generates {a})

B—=b (generates {b})

C — SB (generates {a"b" ! | n > 1})

Winter 2010/11

lmH Foundations of Informatics, Part B

Chomsky Normal Form 11

Every CFL L with € ¢ L is generatable by a CFG in Chomsky NF. \

Rm Foundations of Informatics, Part B Winter 2010/11

Chomsky Normal Form 11

Every CFL L with € ¢ L is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = (N, X, P, S) be some CFG which
generates L. The transformation of P into rules of the form A — BC
and A — a proceeds in three steps:

@ terminal symbols only in rules of the form A — a
(thus all other rules have the shape A — A;... 4,)

@ elimination of “chain rules” of the form A — B

@ climination of rules of the form A — A;...A, where n > 2

lm“ Foundations of Informatics, Part B Winter 2010/11

Chomsky Normal Form III

Proof of Theorem B.10 (continued).

Step 1: (only A — a)
Q let N :={B,|aeX}
Qlet PP:={A—d|A—>aeP}U{B,—alacX}
where o’ is obtained from « by replacing every a € X
with B,
This yields G’ (example: on the board)

mrH Foundations of Informatics, Part B Winter 2010/11

Chomsky Normal Form III

Proof of Theorem B.10 (continued).

Step 1: (only A — a)

Q let N :={B,|aeX}

Qlet PP:={A—d|A—>aeP}U{B,—alacX}
where o’ is obtained from « by replacing every a € X
with B,

This yields G’ (example: on the board)
Step 2: (elimination of A — B)

@ determine all derivations A; = ... = A, with rules
of the form A — B without repetition of
nonterminals (= only finitely many!)

Qlet PF:=(PU{4A s a|A1=...= A, = q,

a¢ N}
\{A—-B|A— BeP}
This yields G” (example: on the board)

mrH Foundations of Informatics, Part B Winter 2010/11

Chomsky Normal Form IV

Proof of Theorem B.10 (continued).

Step 3: for every A — A;... A, with n > 2:

© add new symbols By,...,B, 5 to N”
Q replace A —> A;... A, by

A — AlBl
Bl — AQBQ

Bn_3 — An—QBn—Q
Bn—2 — An—lAn

This yields G (example: on the board)

One can show: G,G’,G",G"" are equivalent O

m“ Foundations of Informatics, Part B Winter 2010/11

The Word Problem Revisited

Goal: given w € X" and G = (N, X, P, S) such that ¢ ¢ L(G), decide
if w € L(G) or not

(If w = ¢, then w € L(G) easily decidable for arbitrary G)

Approach by Cocke, Younger, Kasami (CYK algorithm):

@ transform G into Chomsky NF

Q@ letw=a...a, (n>1)

Q let wli,jl:=a;...ajforevery 1 <i<j<n

@ consider segments w(i, j| in order of increasing length, starting
with wli,] (i.e., single letters)

@ in each case, determine N; j :={A € N | A =" w[i, j|}

@ test whether S € Ny, (and thus, whether S =* w[l,n] = w)

Rm Foundations of Informatics, Part B Winter 2010/11

The CYK Algorithm 1

Algorithm B.11 (CYK Algorithm)

Input: G = (N, %, P,S) in Chomsky NF, w=a;...a, € T
Question: w € L(G)?
Procedure: for i :=1 to n do
Ni,i :{A€N|A—>(I@EP}
next ¢
ford:=1ton—1do % compute Nj;iq
fori:=1ton—ddo
ji=1i+d;N;j =0
for k:=1 toj—1do
N;j:=N;;U{A€ N |thereis A— BC € P
with B € N,i’k., C e Nk+1,j}
next k
next ¢
next d
Output: “yes” if S € Ni,, otherwise “no”

mrH Foundations of Informatics, Part B Winter 2010/11

The CYK Algorithm 11

Example B.12

e G: S—SA|a

A — BS

B — BB|BS|b|c
e w = abaaba

e Matrix representation of N; ;

(on the board)

Foundations of Informatics, Part B Winter 2010/11

The Word Problem for Context-Free Languages

Seen:
e Word problem decidable using CYK algorithm

Rm Foundations of Informatics, Part B Winter 2010/11

The Word Problem for Context-Free Languages

Seen:
e Word problem decidable using CYK algorithm

Open:

e Emptiness problem

Rm Foundations of Informatics, Part B Winter 2010/11

Outline of Part B

@ The Emptiness Problem for CFLs

Rm Foundations of Informatics, Part B Winter 2010/11

The Emptiness Problem

e Goal: given G = (N, X, P, S), decide whether L(G) =) or not

o For regular languages this was easy: check in the corresponding
DFA whether some final state is reachable from the initial state.

@ Here: test whether start symbol is productive, i.e., whether it
generates a terminal word

Rm Foundations of Informatics, Part B Winter 2010/11

The Productivity Test

Algorithm B.13 (Productivity Test)

Input: G = (N,%, P, S)
Question: L(G) =0?
Procedure: mark every a € ¥ as productive;
repeat
if there is A — «a € P such that
all symbols in o productive then
mark A as productive;
end;
until no further productive symbols found;
Output: “no” if S productive, otherwise “yes”

lmH Foundations of Informatics, Part B Winter 2010/11

The Productivity Test

Algorithm B.13 (Productivity Test)
Input: G = (N,%, P, S)
Question: L(G) =0?

mark every a € ¥ as productive;

repeat
if there is A — o € P such that

all symbols in o productive then
mark A as productive;

end;
until no further productive symbols found;

no” if S productive, otherwise “yes”

Procedure:

Output

| \

Example B.14
G: S— AB|CA

A—=a
B — BC | AB
C —aB|b

(on the board)
RWTH

Winter 2010/11

Foundations of Informatics, Part B

The Emptiness Problem for CFLs

Seen:

o Emptiness problem decidable using productivity test

Rm Foundations of Informatics, Part B Winter 2010/11

The Emptiness Problem for CFLs

Seen:

o Emptiness problem decidable using productivity test

Open:

e Characterizing automata model

Rm Foundations of Informatics, Part B Winter 2010/11

Outline of Part B

© Pushdown Automata

Rm Foundations of Informatics, Part B Winter 2010/11

Pushdown Automata I

o Goal: introduce an automata model which exactly accepts CFLs
@ Clear: DFA not sufficient

(missing “counting capability”, e.g. for {a"b" | n > 1})
e DFA will be extended to pushdown automata by

e adding a pushdown store which stores symbols from a pushdown
alphabet and uses a specific bottom symbol
e adding push and pop operations to transitions

Rm Foundations of Informatics, Part B Winter 2010/11

Pushdown Automata II
Definition B.15

A pushdown automaton (PDA) is of the form
A=(Q,%,T',A, q, Zo, F) where

e () is a finite set of states
¥ is the (finite) input alphabet
I is the (finite) pushdown alphabet
AC(QxT xX) x(Q xT¥) is a finite set of transitions
qo € @ is the initial state

Zy is the (pushdown) bottom symbol
e FC @ is a set of final states

Foundations of Informatics, Part B Winter 2010/11

Pushdown Automata II
Definition B.15

A pushdown automaton (PDA) is of the form
A=(Q,%,T',A, q, Zo, F) where

@ () is a finite set of states
¥ is the (finite) input alphabet
I' is the (finite) pushdown alphabet
A C(QxT x3;) x(Q xTI™)is a finite set of transitions
qo € @ is the initial state

Zy is the (pushdown) bottom symbol
e FC @ is a set of final states

Interpretation of ((q, Z,z),(¢',9)) € A: if the PDA 2l is in state ¢
where Z is on top of the stack and x is the next input symbol (or
empty), then 2 reads z, replaces Z by §, and changes into the state ¢'.

Foundations of Informatics, Part B Winter 2010/11

Configurations, Runs, Acceptance
Definition B.16

Let A =(Q,%, T, A, qo, Zo, F) be a PDA.
@ An element of @ x I'* x ¥* is called a configuration of 2.
e The initial configuration for input w € ¥* is given by (go, Zo, w).
e The set of final configurations is given by F' x I'* x {e}.

If (¢, Z,2),(¢,0)) € A, then (g, Zy,zw) = (¢, &, w) for every
v eT*, we X*

A accepts w € ¥* if (qo, Zo, w) F* (q,7,¢) for some g € F, v € T'™*.
The language accepted by 2 is L(2) := {w € ¥* | 2 accepts w}.

e A language L is called PDA-recognizable if L = L(2) for some
PDA .

Two PDA 2,2, are called equivalent if L(;) = L(A2).

Foundations of Informatics, Part B Winter 2010/11

Example B.17

@ PDA which recognizes L = {a"b" | n > 1}
(on the board)

m' Foundations of Informatics, Part B Winter 2010/11

Example B.17

@ PDA which recognizes L = {a"b" | n > 1}
(on the board)

© PDA which recognizes L = {ww® | w € {a,b}*}
(palindromes of even length; on the board)

Rm Foundations of Informatics, Part B Winter 2010/11

Example B.17

@ PDA which recognizes L = {a"b" | n > 1}
(on the board)

© PDA which recognizes L = {ww® | w € {a,b}*}
(palindromes of even length; on the board)

Observation: 2, is nondeterministic: whenever a construction
transition is applicable, the pushdown could also be deconstructed

Rm Foundations of Informatics, Part B Winter 2010/11

Deterministic PDA
Definition B.18

A PDA 2A=(Q,%X, T, A, qo, Zo, F) is called deterministic (DPDA) if for
every q € Q,Z €T,

Q for every z € 3., at most one (g, Z, x)-transition in A and

@ if there is a (g, Z, a)-transition in A for some a € 3, then there is
no (g, Z, e)-transition in A.

Foundations of Informatics, Part B Winter 2010/11

Deterministic PDA

Definition B.18

A PDA 2A=(Q,%X, T, A, qo, Zo, F) is called deterministic (DPDA) if for
every q € Q,Z €T,

Q for every z € 3., at most one (g, Z, x)-transition in A and

@ if there is a (g, Z, a)-transition in A for some a € 3, then there is
no (g, Z, e)-transition in A.

Remark: this excludes two types of nondeterminism:
o if ((Q7 Z7 I), (Qia 61))) ((Q7 Zu '1")7 (qév 62)) S A:
(qlla 5177) (qv Z"y’ xw) (Q’27 62'77 ’IU)
e if ((Q7 Z7 a)? (qlla 51))7 ((Q7 Z 8)7 <QZ7 52))
(qlla 5177) () Z’% CL’(U) (QQ7 52/77 aw)

lmH Foundations of Informatics, Part B Winter 2010/11

Deterministic PDA
Definition B.18

A PDA 2A=(Q,%X, T, A, qo, Zo, F) is called deterministic (DPDA) if for
every q € Q,Z €T,

Q for every z € 3., at most one (g, Z, x)-transition in A and

@ if there is a (g, Z, a)-transition in A for some a € 3, then there is
no (g, Z, e)-transition in A.

Remark: this excludes two types of nondeterminism:
o if ((Q7 Z7 .’E), (Qia 61))) ((Q7 Zu '1")7 (qév 62)) S A:
(q1,017,w) 7 (g, Z~, ww) (g3, 027, w)
e if ((Q7 Z? a)? (qlla 61))7 ((Q7 Z 8)7 (QZa 52))
(q/1a5177) (,Z’)/,CL’(U) (QQ75277aw)

Corollary B.19

In a DPDA, every configuration has at most one F-successor.

lmH Foundations of Informatics, Part B Winter 2010/11

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognizable languages are closed under complement, which is
generally not true for PDA-recognizable languages)

m' Foundations of Informatics, Part B Winter 2010/11

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognizable languages are closed under complement, which is
generally not true for PDA-recognizable languages)

The set of palindromes of even length is PDA-recognizable, but not
DPDA-recognizable (without proof).

Rm Foundations of Informatics, Part B Winter 2010/11

PDA and Context-Free Languages I

Theorem B.21

A language is context-free iff it is PDA-recognizable.

Rm Foundations of Informatics, Part B Winter 2010/11

PDA and Context-Free Languages I

Theorem B.21
A language is context-free iff it is PDA-recognizable.

Proof.
<— omitted

— let G = (N,X, P, S) be a CFG. Construction of PDA 20
recognizing L(G):

o 2 simulates a derivation of G where the leftmost
nonterminal of a sentence form is replaced (“leftmost
derivation”)

@ begin with S on pushdown

o if nonterminal on top: apply a corresponding
production rule

e if terminal on top: match with next input symbol

mrH Foundations of Informatics, Part B Winter 2010/11

PDA and Context-Free Languages II

Proof of Theorem B.21 (continued).

= Formally: g = (Q, X, T, A, qo, Zo, F) is given by
° Q:={qo}
o ':=NUX
o if A— « € P, then ((qo, 4,¢),(qo,0)) € A
e if a € X, then ((qo,a,a),(q,€)) € A
e Zp:=S
o F:=qQ
L]

lmH Foundations of Informatics, Part B Winter 2010/11

PDA and Context-Free Languages II

Proof of Theorem B.21 (continued).

= Formally: g = (Q, X, T, A, qo, Zo, F) is given by
o Q:={q}
o ':=NUX
o if A— « € P, then ((qo, 4,¢),(qo,0)) € A
e if a € X, then ((qo, a,a), (go,€)) € A
e Zp:=S
o FF:=0Q

| D
5\

Example B.22
“Bracket language”, given by G:

S=(1(5)]85

(on the board)

m“ Foundations of Informatics, Part B Winter 2010/11

Pushdown Automata

Seen:
@ Definition of PDA

e Equivalence of PDA-recognizable and context-free languages

Rm Foundations of Informatics, Part B Winter 2010/11

Pushdown Automata

Seen:
@ Definition of PDA

e Equivalence of PDA-recognizable and context-free languages

Open:
o Closure and decidability properties of CFLs

Rm Foundations of Informatics, Part B Winter 2010/11

Outline of Part B

@ Closure Properties of CFLs

Rm Foundations of Informatics, Part B Winter 2010/11

Positive Results

Theorem B.23
The set of CFLs is closed under concatenation, union, and iteration.

Rm Foundations of Informatics, Part B Winter 2010/11

Positive Results

Theorem B.23
The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2, let G; = <Nl, E,PZ,SZ> with L; := L(Gl) and N1 N Ny = ().

Then

Winter 2010/11

lm“ Foundations of Informatics, Part B

Positive Results

Theorem B.23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2, let G; = <Nl, E,PZ,SZ> with L; := L(Gl) and N1 N Ny = 0.
Then
o G:=(N,%,P,S) with N := {S} UN; UN; and
P :={S — 5152} U P, U P, generates Lj - Ly;

lm“ Foundations of Informatics, Part B Winter 2010/11

Positive Results

Theorem B.23

The set of CFLs is closed under concatenation, union, and iteration.

Proof
Fori=1,2, let G; = <Nl, E,PZ,SZ> with L; := L(Gl) and N1 N Ny = 0.
Then

o G := <NEPS>WithN—{S}UN1UN2and

P = {S — 5152} U Py U P, generates Lj - Lo;

o G:=(N,%,P,S) with N :={S} UN; UN; and

P:={S — 51| S2} UP; UP;, generates L1 U Lg; and

lm“ Foundations of Informatics, Part B Winter 2010/11

Positive Results

Theorem B.23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2, let G; = <Nl, E,PZ,SZ> with L; := L(Gl) and N1 N Ny = ().
Then

o G:=(N,%,P,S) with N := {S} UN; UN; and
P :={S — 5152} U P, U P, generates Lj - Ly;
e G:=(N,X, P,S) with N :={S} UN; UN;, and
P:={S — 81|52} UP;UP, generates L U Lz; and
e G:=(N,X, P, S) with N :={S}UN; and

P:={S —¢|S515}U P, generates L.

m“ Foundations of Informatics, Part B Winter 2010/11

Negative Results

The set of CFLs is not closed under intersection and complement. \

Rm Foundations of Informatics, Part B Winter 2010/11

Negative Results

The set of CFLs is not closed under intersection and complement.

o Both Ly := {a*b¥c | k,1 € N} and Lo := {a*b'd | k,1 € N} are
CFLs, but not Ly N Ly = {a"b"c™ | n € N} (without proof).

lmH Foundations of Informatics, Part B Winter 2010/11

Negative Results

The set of CFLs is not closed under intersection and complement.

o Both Ly := {a*b¥c | k,1 € N} and Lo := {a*b'd | k,1 € N} are
CFLs, but not Ly N Ly = {a"b"c™ | n € N} (without proof).

o If CFLs were closed under complement, then also under
intersection (as L1 N Ly = L1 U Lg).

lmH Foundations of Informatics, Part B Winter 2010/11

Overview of Decidability and Closure Results

Decidability Results
wE L L=10 Ly = Lo
Reg | + (A.38) + (A.40) + (A.42)
CFL | + (B.11) + (B.13) -

Rm Foundations of Informatics, Part B Winter 2010/11

Overview of Decidability and Closure Results

Decidability Results

we L L=10 Ly =1Ly
Reg | + (A38) + (A40) + (A42)
CFL | + (B.11) + (B.13) -
Closure Results
Ly Ly L ULy LN Lo L L*
Reg | + (A.28) + (A.18) + (A.16) + (A.14) + (A.29)
CFL | + (B.23) + (B.23) - (B.24) - (B.24) + (B.23)

Foundations of Informatics, Part B

Winter 2010/11

Outline of Part B

@ Outlook

Rm Foundations of Informatics, Part B Winter 2010/11

Equivalence problem for CFG and PDA (“L(X;) = L(X2)?”)
(generally undecidable, decidable for DPDA)

Pumping Lemma for CFL
e Greibach Normal Form for CFG

e Construction of parsers for compilers

e Non-context-free grammars and languages (context-sensitive and
recursively enumerable languages, Turing machines—see Week 4)

Rm Foundations of Informatics, Part B Winter 2010/11

	Context-Free Languages
	Context-Free Grammars and Languages
	Context–Free and Regular Languages
	The Word Problem for Context-Free Languages
	The Emptiness Problem for CFLs
	Pushdown Automata
	Closure Properties of CFLs
	Outlook

