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Organization

e Schedule:
o lecture 9:00-10:30, 11:00-12:30 (Mon-Fri)
e 9:30-11:00, 11:15-12:457
o exercises 14:00-14:45, 15:15-16:00 (Mon-Thu)
o 14:00-15:307
e Examination at end of week 4 (April 1st)

o Please ask questions!

mm Foundations of Informatics, Part A Winter 2010/11



Overview of Week 3

@ Regular Languages
© Context-Free Languages

@ Processes and Concurrency
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e J.E. Hopcroft, R. Motwani, J.D. Ullmann: Introduction to
Automata Theory, Languages, and Computation, 2nd ed.,
Addison-Wesley, 2001

o A. Asteroth, C. Baier: Theoretische Informatik, Pearson Studium,
2002 [in German)]

@ http://www.jflap.org/
(software for experimenting with automata formal languages and
automata)
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http://www.jflap.org/

Outline of Part A

@ Formal Languages
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Words and Languages

e Computer systems transform data
e Data encoded as (binary) words

—> Data sets = sets of words = formal languages,
data transformations = functions on words
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Words and Languages

e Computer systems transform data
e Data encoded as (binary) words

—> Data sets = sets of words = formal languages,
data transformations = functions on words

Java = {all valid Java programs},

Compiler : Java — Bytecode
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Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters
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Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

@ Boolean alphabet B := {0, 1}
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Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

@ Boolean alphabet B := {0,1}
@ Latin alphabet Yja, = {a,b,c,..., 2}
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Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

@ Boolean alphabet B := {0, 1}
@ Latin alphabet Yja, = {a,b,c,..., 2}
@ Keyboard alphabet Yy,
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Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

@ Boolean alphabet B := {0,1}

@ Latin alphabet Yja, = {a,b,c,..., 2}
@ Keyboard alphabet Yy

@ Morse alphabet Y056 := {+, — 1}
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Definition A.4

e A word is a finite sequence of letters from a given alphabet X.

@ YX* is the set of all words over X.
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Definition A.4

A word is a finite sequence of letters from a given alphabet 3.

@ YX* is the set of all words over X.

|w| denotes the length of a word w € ¥*, i.e., |a1 ...a,| :==n.

The empty word is denoted by ¢, i.e., |e| = 0.
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Definition A.4

A word is a finite sequence of letters from a given alphabet 3.

@ YX* is the set of all words over X.

|w| denotes the length of a word w € ¥*, i.e., |a1 ...a,| :==n.

The empty word is denoted by ¢, i.e., |e| = 0.

The concatenation of two words v = ay ...a,, (m € N) and
w =by...b, (n € N) is the word

V-w:i=aq...anb1... by,

(often written as vw).

e Thus: w-e=¢-w =w.
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Definition A.4

A word is a finite sequence of letters from a given alphabet 3.

@ YX* is the set of all words over X.

|w| denotes the length of a word w € ¥*, i.e., |a1 ...a,| :==n.

The empty word is denoted by ¢, i.e., |e| = 0.

The concatenation of two words v = ay ...a,, (m € N) and
w =by...b, (n € N) is the word

V-w:i=aq...anb1... by,

(often written as vw).

e Thus: w-e=¢-w =w.

A prefix/suffix v of a word w is an initial/trailing part of w, i.e.,
w = vv' /w = v'v for some v’ € X*.
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Definition A.4

A word is a finite sequence of letters from a given alphabet 3.

@ YX* is the set of all words over X.

|w| denotes the length of a word w € ¥*, i.e., |a1 ...a,| :==n.

The empty word is denoted by ¢, i.e., |e| = 0.

The concatenation of two words v = ay ...a,, (m € N) and
w =by...b, (n € N) is the word

V-w:i=aq...anb1... by,

(often written as vw).

e Thus: w-e=¢-w =w.

A prefix/suffix v of a word w is an initial/trailing part of w, i.e.,
w = vv' /w = v'v for some v’ € X*.
R.

o Ifw=ay...a,, then w' :=ay,...a1.
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Formal Languages I

Definition A.5

A set of words L C ¥* is called a (formal) language over X.
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Formal Languages I

Definition A.5

A set of words L C ¥* is called a (formal) language over X.

@ over B = {0,1}: set of all bit strings containing 1101
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Formal Languages I

Definition A.5

A set of words L C ¥* is called a (formal) language over X.

@ over B = {0,1}: set of all bit strings containing 1101
@ over ¥ ={l,V,X,L,C,D,M}: set of all valid roman numbers
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Formal Languages I

Definition A.5

A set of words L C ¥* is called a (formal) language over X.

@ over B = {0,1}: set of all bit strings containing 1101
@ over ¥ ={l,V,X,L,C,D,M}: set of all valid roman numbers

@ over Yy set of all valid Java programs
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Formal Languages II

Seen:
@ Basic notions: alphabets, words

e Formal languages as sets of words
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Formal Languages II

Seen:
@ Basic notions: alphabets, words

e Formal languages as sets of words

Open:

@ Description of computations on words?
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Outline of Part A

© Finite Automata
@ Deterministic Finite Automata
@ Operations on Languages and Automata
@ Nondeterministic Finite Automata
@ More Decidability Results
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Outline of Part A

© Finite Automata
@ Deterministic Finite Automata
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Example: Pattern Matching

Example A.7 (Pattern 1101)

@ Read Boolean string bit by bit

@ Test whether it contains 1101

@ Idea: remember which (initial) part of 1101 has been recognized
@ Five prefixes: €, 1, 11, 110, 1101

@ Diagram: on the board
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Example: Pattern Matching

Example A.7 (Pattern 1101)

@ Read Boolean string bit by bit

@ Test whether it contains 1101

@ Idea: remember which (initial) part of 1101 has been recognized
@ Five prefixes: €, 1, 11, 110, 1101

@ Diagram: on the board

What we used:

finitely many (storage) states

an initial state

e for every current state and every input symbol: a new state

a succesful state
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Deterministic Finite Automata 1

Definition A.8

A deterministic finite automaton (DFA) is of the form

Ql: <Q7E767q07F>

where
e () is a finite set of states
@ Y denotes the input alphabet
@ §:(Q x X — (@ is the transition function
@ go € @ is the initial state

e F C Q is the set of final (or: accepting) states
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Deterministic Finite Automata 11
Example A.9

Pattern matching (Example A.7):
o Q={qo,-.-,q4}
o X =B=1{0,1}
@ J:Q XX — @ on the board
o F'={q}
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Deterministic Finite Automata 11
Example A.9

Pattern matching (Example A.7):
o Q={qo,-.-,q4}
o X =B=1{0,1}
@ J:Q XX — @ on the board
F={q}

Graphical Representation of DFA:
e states = nodes

§(ga)=¢ = q->¢

initial state: incoming edge without source state

final state(s): double circle
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Acceptance by DFA 1

Definition A.10

Let (@, 3,0, qo, F)) be a DFA. The extension of § : Q@ X ¥ — @,
0 Q x ¥ —Q,

is defined by
0*(q,w) := state after reading w in gq.
Formally:
. _Ja ifw=e¢e
0%(a,w) = {5*(5(q, a),v) ifw=av

Thus: if w=ay...a, and ¢ =% ¢ 2 ... 2% ¢, then 0 (q,w) = qn
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Acceptance by DFA 1

Definition A.10

Let (@, 3,0, qo, F)) be a DFA. The extension of § : Q@ X ¥ — @,
0 Q x ¥ —Q,

is defined by
0*(q,w) := state after reading w in gq.
Formally:
. _Ja ifw=e¢e
0%(a,w) = {5*((5(q, a),v) ifw=av

Thus: if w=ay...a, and ¢ =% ¢ 2 ... 2% ¢, then 0 (q,w) = qn

Pattern matching (Example A.9): on the board
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Acceptance by DFA 11

Definition A.12

e 2 accepts w € ¥* if §*(qo,w) € F.
e The language recognized (or: accepted) by 2 is

L) :={w € * | §*(qo, w) € F}.

o A language L C ¥* is called DFA-recognizable if there exists some
DFA 2 such that L(2() = L.

o Two DFA 2,2, are called equivalent if

L) = L(As).
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Acceptance by DFA 111

@ The set of all bit strings containing 1101 is recognized by the
automaton from Example A.9.
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Acceptance by DFA 111

@ The set of all bit strings containing 1101 is recognized by the
automaton from Example A.9.

@ Two (equivalent) automata recognizing the language
{w € B* | w contains 1} :

on the board
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Acceptance by DFA 111

@ The set of all bit strings containing 1101 is recognized by the
automaton from Example A.9.

@ Two (equivalent) automata recognizing the language
{w € B* | w contains 1} :

on the board

@ An automaton which recognizes
{w €{0,...,9}" | value of w divisible by 3}

Idea: test whether sum of digits is divisible by 3 — one state for
each residue class (on the board)

Foundations of Informatics, Part A Winter 2010/11



Deterministic Finite Automata

Seen:

@ Deterministic finite automata as a model of simple sequential
computations

@ Recognizability of formal languages by automata
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Deterministic Finite Automata

Seen:

@ Deterministic finite automata as a model of simple sequential
computations

@ Recognizability of formal languages by automata

Open:
o Composition and transformation of automata?

e Which languages are recognizable, which are not (alternative
characterization)?

e Language definition — automaton and vice versa?
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Outline of Part A

© Finite Automata

@ Operations on Languages and Automata
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Operations on Languages

Simplest case: Boolean operations (complement, intersection, union)

Question

Let Q(l, Q[Q be two DFA with L(Q[l) = Ll and L(ng) = L2.
Can we construct automata which recognize

o Tn (:= ¥\ L),
e L1 N Ly, and
o L1ULy?
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Language Complement

Theorem A.14

If L C ¥* is DFA-recognizable, then so is L.
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Language Complement

Theorem A.14

If L C ¥* is DFA-recognizable, then so is L.

Let 20 = (Q, %, 0, qo, F') be a DFA such that L(2() = L. Then:

weL <= w¢L < §(q,w) ¢ F < §(q0,w) €Q\F.

Thus, L is recognized by the DFA (Q, X, 6,q0,Q \ F). O]
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Language Complement

Theorem A.14
If L C ¥* is DFA-recognizable, then so is L.

Let 20 = (Q, %, 0, qo, F') be a DFA such that L(2() = L. Then:
weL < wé¢L < §(q,w) ¢ F < §(qo,w) €Q\ F.

Thus, L is recognized by the DFA (Q, X, 6,q0,Q \ F). O]

on the board
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Language Intersection I

If L1, Ly C ¥* are DFA-recognizable, then so is Ly N Lo. \
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Language Intersection I

Theorem A.16

If L1, Ly C ¥* are DFA-recognizable, then so is Ly N Lo.

Proof.

Let 2; = (Q;, %, 6i, ¢b, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff both A; and 2As accept w

Idea: let 2; and 2A5 run in parallel
@ use pairs of states (q1,¢2) € Q1 X Q2
e start with both components in initial state
@ a transition updates both components independently

e for acceptance both components need to be in a final state
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Language Intersection II

Proof (continued).

Formally: let the product automaton

2= <Q1 X QQazv(Sv (Q(%7Q(%)7F1 X F2>
be defined by
5((q1,q2),a) := (61(q1,a),62(q2,a)) for every a € X.
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Language Intersection II

Proof (continued).

Formally: let the product automaton
A= <Q1 X Q272767 (Q(%aqa%Fl X F2>
be defined by
0((q1,92),a) := (901(q1,a), d2(g2,a)) for every a € X.
This definition yields
6*((q1,g2), w) = (67 (q1, w), 65 (g2, w))  (¥)
for every w € ¥*.

Foundations of Informatics, Part A Winter 2010/11



Language Intersection II

Proof (continued).

Formally: let the product automaton
A= <Q1 X Q272767 (Q(%aqa%Fl X F2>
be defined by
0((q1,92),a) := (901(q1,a), d2(g2,a)) for every a € X.
This definition yields
6*((q1,q2), w) = (67 (q1, w), 05 (g2, w)) ()
for every w € ¥*.
Thus we have:
2 accepts w

— 6*((Q6,q3),UJ)€F1 XFZ

L (61(gb,w), G3(adw) € Fi x F
—  6f(qp,w) € F1 and 63(q5, w) € Fy
<= 2 accepts w and sy accepts w
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Language Intersection III

on the board I
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Language Union

If Ly, Ly C ¥* are DFA-recognizable, then so is Ly U Lo. \
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Language Union

Theorem A.18

If Ly, Ly C ¥* are DFA-recognizable, then so is Ly U Lo.

Proof.
Let 2; = (Q;, %, 6i, ¢b, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff 2y or 2y accepts w.
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Language Union

Theorem A.18

If Ly, Ly C ¥* are DFA-recognizable, then so is Ly U Lo.

Proof.

Let 2; = (Q;, %, 6i, ¢b, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff 2y or 2y accepts w.

Idea: reuse product construction
Construct 2 as before but choose as final states those pairs
(q1,92) € Q1 X Q2 with g € F} or g2 € Fy. Thus the set of final states
is given by
JF o= (Fl X Qg) U (Ql X Fg)
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Language Concatenation

Definition A.19

The concatenation of two languages L1, Lo C 3* is given by

Ly Lo I:{’U'wez*‘UELl,U}GLQ}.

Abbreviations: w-L:={w} L, L -w:=L-{w}
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Language Concatenation

Definition A.19

The concatenation of two languages L1, Lo C 3* is given by

Ly Lo ::{v-wGE*\UELl,wGLQ}.

Abbreviations: w-L:={w} L, L -w:=L-{w}

Example A.20
@ If L; = {101,1} and Ly = {011, 1}, then

Ly - Ly = {101011,1011, 11}.
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Language Concatenation

Definition A.19

The concatenation of two languages L1, Lo C 3* is given by

Ly Lo ::{v-wGE*\UELl,wGLQ}.

Abbreviations: w-L:={w} L, L -w:=L-{w}

Example A.20
@ If L; = {101,1} and Ly = {011, 1}, then

Ly - Ly = {101011,1011, 11}.

Q If L1 =00 -B* and L2 =11 'B*, then

Ly - Ly = {w € B* | w has prefix 00 and contains 11}.
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DFA-Recognizability of Concatenation

If L1, Lo C ¥* are DFA-recognizable, then so is Ly - L. \
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DFA-Recognizability of Concatenation

If L1, Ly C ¥* are DFA-recognizable, then so is Ly - L.

Proof (attempt).

Let 2; = (Q;, %, 6i, ¢, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff a prefix of w is recognized by (1,
and if 2, accepts the remaining suffix.

Idea: choose Q := Q1 U Q2 where each ¢ € F} is identified with ¢3
But: on the board []
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DFA-Recognizability of Concatenation

If L1, Ly C ¥* are DFA-recognizable, then so is Ly - L.

Proof (attempt).

Let 2; = (Q;, %, 6i, ¢, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff a prefix of w is recognized by (1,
and if 2, accepts the remaining suffix.

Idea: choose Q := Q1 U Q2 where each ¢ € F} is identified with ¢3
But: on the board []

Conclusion

| A\

Required: automata model where the successor state (for a given state
and input symbol) is not unique

A,
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Language Iteration
Definition A.21

@ The nth power of
a language L C ¥* is the n-fold composition of L with itself (n € N):
L":=L-...-L={w...wy, |Vie{l,...,n}:w; € L}.
n times
Inductively: L% := {e}, L"*1 :=L". L
@ The iteration (or: Kleene star) of L is
L =U,enL" ={w1... wn | €N, Vi€ {1,...,n} :w; € L}.
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Language Iteration
Definition A.21

@ The nth power of
a language L C ¥* is the n-fold composition of L with itself (n € N):
L":=L-...-L={w...wy, |Vie{l,...,n}:w; € L}.
n times
Inductively: L% := {e}, L"*1 :=L". L
@ The iteration (or: Kleene star) of L is
L =U,enL" ={w1... wn | €N, Vi€ {1,...,n} :w; € L}.

Remarks:
o we always have ¢ € L* (since L° C L* and L° = {e})
o we L*iff w=c¢ orif wcan be decomposed into n > 1 subwords
Viy..., Uy (1.6, w =v1-... vy,) such that v; € L forevery 1 <i<mn
e again we would suspect that the iteration of a DFA-recognizable

language is DFA-recognizable, but there is no simple
(deterministic) construction
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Operations on Languages and Automata

Seen:

e Operations on languages:
complement
intersection
union
concatenation
iteration

e DFA constructions for:
e complement
e intersection
e union
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Operations on Languages and Automata

Seen:

e Operations on languages:
complement
intersection
union
concatenation
iteration

e DFA constructions for:

e complement
e intersection
e union

Open:
e Automata model for (direct implementation of) concatenation and
iteration?
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Outline of Part A

© Finite Automata

@ Nondeterministic Finite Automata
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Nondeterministic Finite Automata 1

Idea:

e for a given state and a given input symbol, several transitions (or
none at all) are possible

e an input word generally induces several state sequences (“runs”)

e the word is accepted if at least one accepting run exists
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Nondeterministic Finite Automata 1

Idea:

e for a given state and a given input symbol, several transitions (or
none at all) are possible

e an input word generally induces several state sequences (“runs”)

e the word is accepted if at least one accepting run exists

Advantages:

e simplifies representation of languages
(example: B* - 1101 - B*; on the board)

@ yields direct constructions for concatenation and iteration of
languages

e more adequate modeling of systems with nondeterministic
behaviour (communication protocols, multi-agent systems, ...)
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Nondeterministic Finite Automata 11
Definition A.22

A nondeterministic finite automaton (NFA) is of the form
Q[ - <Q727A7q07F>

where

e () is a finite set of states

@ Y denotes the input alphabet

o A C(@Q x X x (@ is the transition relation
qo € @ is the initial state
F C (@ is the set of final states
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Nondeterministic Finite Automata 11

A nondeterministic finite automaton (NFA) is of the form
Q’[ - <Q727A7q07F>

where

e () is a finite set of states

@ Y denotes the input alphabet

o A C(@Q x X x (@ is the transition relation
qo € @ is the initial state
F C (@ is the set of final states

Remarks:
o (¢,a,q') € A usually written as ¢ — ¢
e every DFA can be considered as an NFA
((¢,a,9") € A <= 6(q,a) =¢)
RWNTH
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Acceptance by NFA

o Let w=ay...a, € X*.

o A w-labeled 2l-run from ¢; to ¢o is a sequence
al a2 an
Po——>P1—>...Pn-1 —DPn

such that po = q1, pn = q2, and (p;—1,a;,p;) € A for every
1 < i <n (we also write: ¢ LN q2).

2 accepts w if there is a w-labeled 2A-run from gy to some g € F

The language recognized by 2 is
L(A) := {w € £* | A accepts w}.

e A language L C ¥* is called NFA-recognizable if there exists a
NFA 2 such that L(2() = L.

Two NFA 2,2 are called equivalent if L(241) = L(22).
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Acceptance Test for NFA

Algorithm A.24 (Acceptance Test for NFA)

Input: NFA A =(Q,%,A,q,F), weX*
Question: w € L(A)?
Procedure: Computation of the reachability set
Ry(w) :=={q€Q|q — q}
Iterative procedure for w = ai...ay:

Q let Ry(e) := {qo}

Q fori:=1,...,n: let

Ry(ar...a;) :={q€Q|3pc Rylar...ai_1):p —=q}
Output: “yes” if Ry(w) N F # 0, otherwise “no”

Remark: this algorithm solves the word problem for NFA
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Acceptance Test for NFA

Algorithm A.24 (Acceptance Test for NFA)

Input: NFA A =(Q,%,A,q, F), we X*
Question: w € L(A)?
Procedure: Computation of the reachability set
Ry(w) :=={q€Q|q — q}
Iterative procedure for w = ai...ay:

Q let Ry(e) := {qo}

Q fori:=1,...,n: let

Ry(ar...a;) :={q€Q|3pc Rylar...ai_1):p —=q}
Output: “yes” if Ry(w) N F # 0, otherwise “no”

Remark: this algorithm solves the word problem for NFA

on the board
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NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)
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NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)

Solution: admit empty word ¢ as transition label
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Definition A.26

A nondeterministic finite automaton with e-transitions (e-NFA) is of
the form A = (Q, 3, A, qo, F') where

e (Q is a finite set of states

@ Y denotes the input alphabet

o A CQ x Y. X Q is the transition relation where . := X U {¢}
@ ¢o € @ is the initial state

e F C (@ is the set of final states

Remarks:
e every NFA is an e-NFA

o definitions of runs and acceptance: in analogy to NFA
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Definition A.26

A nondeterministic finite automaton with e-transitions (e-NFA) is of
the form A = (Q, 3, A, qo, F') where

e (Q is a finite set of states

@ Y denotes the input alphabet

o A CQ x Y. X Q is the transition relation where . := X U {¢}
@ ¢o € @ is the initial state

e F C (@ is the set of final states

Remarks:
e every NFA is an e-NFA

o definitions of runs and acceptance: in analogy to NFA

on the board
RWTH
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e-NFA-Recognizability of Concatenation

If L, Ly C X* are e-NFA-recognizable, then so is Ly - Lo. \
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e-NFA-Recognizability of Concatenation

If L, Ly C X* are e-NFA-recognizable, then so is Ly - Lo. \
on the board [] l
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e-NFA-Recognizability of Iteration

If L C ¥* is e-NFA-recognizable, then so is L*. \
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e-NFA-Recognizability of Iteration

If L C ¥* is e-NFA-recognizable, then so is L*. \
on the board Ol l
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Syntax Diagrams as e-NFA

Syntax diagrams (without recursive calls) can be interpreted as e-NFA

decimal numbers (on the board)
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Types of Finite Automata

O DFA
Q@ NFA
@ «-NFA
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Types of Finite Automata

O DFA
Q@ NFA
@ «-NFA

Q@ FEvery DFA-recognizable language is NFA-recognizable.

© FEwery NFA-recognizable language is e-NFA-recognizable.
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Types of Finite Automata

O DFA
Q@ NFA
@ «-NFA

Q@ FEvery DFA-recognizable language is NFA-recognizable.

© FEwery NFA-recognizable language is e-NFA-recognizable.

Goal: establish reverse inclusions
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From NFA to DFA 1

FEvery NFA can be transformed into an equivalent DFA. \
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From NFA to DFA 1

FEvery NFA can be transformed into an equivalent DFA.

Proof.
Idea: let the DFA operate on sets of states (“powerset construction”)
o Initial state of DFA := {initial state of NFA}

o P % P’ in DFA iff there exist ¢ € P,¢' € P’ such that ¢ — ¢ in
NFA

o P final state in DFA iff it contains some final state of NFA
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From NFA to DFA 11

Proof (continued).

Let 20 = (Q, X, A, qo, F') be a NFA.
Powerset construction of A' = (Q', %, ¥, ¢f, F'):

0o Q=29 :={P|PCQ}

0 0 :Q xX — @ with

q € 0'(P,a) < there exists p € P such that (p,a,q) € A

° ¢y = {q}

o F':={PCQ|PNF#0}
This yields

@ —>qin A <= g {q},w)in A
and thus
A accepts w <= A’ accepts w
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From NFA to DFA 11

Proof (continued).
Let 20 = (Q, X, A, qo, F') be a NFA.
Powerset construction of A' = (Q', %, ¥, ¢f, F'):
0o Q=29 :={P|PCQ}
0 0 :Q xX — @ with
q € 0'(P,a) < there exists p € P such that (p,a,q) € A
° ¢y = {q}
o F':={PCQ|PNF#0}
This yields

@ —>qin A <= g {q},w)in A
and thus
A accepts w <= A’ accepts w

O

v

on the board ‘
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From e-NFA to NFA

Theorem A.34

Every e-NFA can be transformed into an equivalent NFA.
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From e-NFA to NFA

Theorem A.34
Every e-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let 2 be a e-NFA. We construct the NFA 2’ by eliminating*all
g-transitions, addin% appropriate direct transitions: if p — g,
g ¢,and ¢ = rin 2, then p = r in A’. O
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From e-NFA to NFA

Theorem A.34
Every e-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let 2 be a e-NFA. We construct the NFA 2’ by eliminating*all
g-transitions, addin% appropriate direct transitions: if p — g,

¢ - ¢,and ¢ = 7 in A, then p — r in A’ O

on the board ‘
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From e-NFA to NFA

Theorem A.34
FEvery e-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let 2 be a e-NFA. We construct the NFA 2 by eliminating*all
e-transitions, addin% appropriate direct transitions: if p = q,
g ¢,and ¢ = rin 2, then p = r in A’. O

on the board ‘
All types of finite automata recognize the same class of languages.
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Nondeterministic Finite Automata

Seen:
@ Definition of e-NFA
e Determinization of (e-)NFA
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Nondeterministic Finite Automata

Seen:
@ Definition of e-NFA
e Determinization of (e-)NFA

Open:
o More decidablity results
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Outline of Part A

© Finite Automata

@ More Decidability Results
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The Word Problem Revisited

Definition A.37

The word problem for DFA is specified as follows:
Given a DFA 2l and a word w € ¥*, decide whether

w € L(A).
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The Word Problem Revisited

Definition A.37
The word problem for DFA is specified as follows:

Given a DFA 2l and a word w € ¥*, decide whether

w € L(A).

As we have seen (Def. A.10, Alg. A.24, Thm. A.34):

Theorem A.38
The word problem for DFA (NFA, e-NFA) is decidable.
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The Emptiness Problem

Definition A.39

The emptiness problem for DFA is specified as follows:
Given a DFA 2, decide whether
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The Emptiness Problem

Definition A.39

The emptiness problem for DFA is specified as follows:
Given a DFA 2, decide whether

L(A) = 0.

Theorem A.40

The emptiness problem for DFA (NFA, e-NFA) is decidable.

It holds that L(2A) # () iff in 2 some final state is reachable from the
initial state (simple graph-theoretic problem). Ol
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The Emptiness Problem

Definition A.39

The emptiness problem for DFA is specified as follows:
Given a DFA 2, decide whether

L(A) = 0.

Theorem A.40

The emptiness problem for DFA (NFA, e-NFA) is decidable.

It holds that L(2A) # () iff in 2 some final state is reachable from the
initial state (simple graph-theoretic problem). Ol

Remark: important result for formal verification (unreachability of
bad (= final) states)
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The Equivalence Problem

The equivalence problem for DFA is specified as follows:

Given two DFA 2(;, %5, decide whether
L(2y) = L(2As).
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The Equivalence Problem

The equivalence problem for DFA is specified as follows:

Given two DFA 2(;, %5, decide whether
L(2y) = L(2As).

The equivalence problem for DFA (NFA, e-NFA) is decidable.

Proof.
L(2Ay) = L(As2)
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The Equivalence Problem

The equivalence problem for DFA is specified as follows:

Given two DFA 2(;, %5, decide whether
L(2y) = L(2As).

The equivalence problem for DFA (NFA, e-NFA) is decidable.
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The Equivalence Problem

The equivalence problem for DFA is specified as follows:

Given two DFA 2(;, %5, decide whether
L(2y) = L(2As).

The equivalence problem for DFA (NFA, e-NFA) is decidable.

z L(2A2) and L(™A2) C L(A1)
(L) \ L(2A2)) U (L(A2) \ (%)) = 0
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The Equivalence Problem

Definition A.41

The equivalence problem for DFA is specified as follows:
Given two DFA 2(;, %5, decide whether
L(2y) = L(2As).

The equivalence problem for DFA (NFA, e-NFA) is decidable.

L) = L(2)
< L(Ql ) (- L(Ql ) and L(ng) - L(Qh)
= (L) \ L(2A2)) U (L(A2) \ L(2)) =0
<— (L(Q[ ) n L(Ql2) )U (L(le) n L(Qll) ) =0
——
DFA-recognizable (Thm. A.14) DFA-recognizable (Thm. A.14)
DFA-recognizable (Thm. A.16) DFA-recognizable (Thm. A.16)
DFA-recognizable (Thm. A.18)
decidable (Thm. A.40)
g
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Finite Automata

Seen:
@ Decidability of word problem
e Decidability of emptiness problem

@ Decidability of equivalence problem
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Finite Automata

Seen:
@ Decidability of word problem
e Decidability of emptiness problem

@ Decidability of equivalence problem

Open:

o Non-algorithmic description of languages
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Outline of Part A

@ Regular Expressions
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Example A.43

Consider the set of all words over X := {a, b} which
@ start with one or three a symbols

@ continue with a (potentially empty) sequence of blocks, each
containing at least one b and exactly two a’s

@ conclude with a (potentially empty) sequence of b’s
Corresponding regular expression:

(a + aaa)(bb*ab*ab® + b*abb*ab® + b ab*abb®)*b

b before a’s b between a’s b after a’s
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Syntax of Regular Expressions

Definition A.44

The set of regular expressions over Y is inductively defined by:
e () and e are regular expressions

@ every a € ¥ is a regular expression

e if a and [ are regular expressions, then so are
o a+f3
o a-f3

o o
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Syntax of Regular Expressions

Definition A.44

The set of regular expressions over Y is inductively defined by:
e () and e are regular expressions

@ every a € ¥ is a regular expression

e if a and [ are regular expressions, then so are
o a+f3
o a-f3

o o

Notation:
@ - can be omitted

@ * binds stronger than -, - binds stronger than +

e at abbreviates a - a*
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Semantics of Regular Expressions

Definition A.45

Every regular expression « defines a language L(«):

L®) = 0
L) = {e}

L(a) = {a}
Lia+8) = La)UL(p)
Lla-B) = L(a)-L(B)

L(e®) = (L(a))*
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Semantics of Regular Expressions

Definition A.45

Every regular expression « defines a language L(«):

L®) = 0
L(e) = {e}

L(a) = {a}
Lla+p) = L(a)UL(B)
Lla-p) = L(a)-L(B)

L") = (L(a))"

A language L is called regular if it is definable by a regular expression,
ie., if L = L(«a) for some regular expression a.

Imm Foundations of Informatics, Part A Winter 2010/11



Regular Languages

Example A.46

@ {aa} is regular since

L(a-a) = L(a) - L(a) = {a} - {a} = {aa}
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Regular Languages

Example A.46

@ {aa} is regular since

L(a-a) = L(a) - L(a) = {a} - {a} = {aa}

@ {a,b}* is regular since

L((a+b)") = (L(a +0))" = (L(a) U L(Y))" = ({a} U{b})" = {a,b}"
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Regular Languages

Example A.46

@ {aa} is regular since

L(a-a) = L(a) - L(a) = {a} - {a} = {aa}

@ {a,b}* is regular since

L((a+b)") = (L(a +0))" = (L(a) U L(Y))" = ({a} U{b})" = {a,b}"

@ The set of all words over {a, b} containing abb is regular since

L(a+b)*-a-b-b-(a+b)*)={a,b}"-{abb} - {a,b}"
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Regular Languages and Finite Automata I

Theorem A.47 (Kleene’s Theorem)

To each regular expression there corresponds an e-NFA, and vice versa.
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Regular Languages and Finite Automata I

Theorem A.47 (Kleene’s Theorem)

To each regular expression there corresponds an e-NFA, and vice versa.

Proof.

— using induction over the given regular expression «, we
construct an e-NFA 2,
e with exactly one final state gy
e without transitions into the initial state
e without transitions leaving the final state
(on the board)

<= by solving a regular equation system (details omitted)

Imm Foundations of Informatics, Part A Winter 2010/11



Regular Languages and Finite Automata 11

Corollary A.48

The following properties are equivalent:

L is regular
e L is DFA-recognizable
o L is NFA-recognizable

L is e-NFA-recognizable
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Implementation of Pattern Matching

Algorithm A.49 (Pattern Matching)

Input: regular expression o and w € 3*
Question: does w contain some v € L(a)?
let :=(a1+...+ap)* a (for L ={ay,...,a,})
determine e-NFA 2Ag for 3
eliminate e-transitions
apply powerset construction to obtain DFA 2
let A run on w

Procedure:

00000

Output: “yes” if A passes through some final state, otherwise “no”

v

Remark: in UNIX/LINUX implemented by grep and lex
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Regular Expressions in UNIX (grep, flex, ...)

| Syntax | Meaning \
printable character | this character
\n, \t, \123, etc. newline, tab, octal representation, etc.
. any character except \n
[Chars] one of Chars; ranges possible (“0-9”)
[~ Chars] none of Chars
A\, \., \[, etc. \, ., [, etc.
"Text" Text without interpretation of ., [, \, etc.
e’ a at beginning of line
o$ a at end of line
a? Zero or one «
ok ZE€ro Or IMOore o
a+ one Or more «
a{n,m} between n and m times « (“,m” optional)
() «
1o concatenation
a1 las alternative
a1/ oy aq but only if followed by ae (lookahead)
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Regular Expressions

Seen:
@ Definition of regular expressions

e Equivalence of regular and DFA-recognizable languages
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Regular Expressions

Seen:
@ Definition of regular expressions

e Equivalence of regular and DFA-recognizable languages

Open:

e Limitations of regular languages?
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Outline of Part A

@ The Pumping Lemma
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Observation: a language L is DFA-recognizable (and thus regular) if
the membership of a word w can be tested by symbol-wise reading of
w, using a bounded memory
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Observation: a language L is DFA-recognizable (and thus regular) if
the membership of a word w can be tested by symbol-wise reading of
w, using a bounded memory

Conjecture: languages of the form {a™b" | n € N} are not regular
since the test for membership requires the capability of comparing the
number of a symbols to the number of b symbols (which can grow
arbitrarily large)
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The Pumping Lemma I

Theorem A.50 (Pumping Lemma for Regular Languages)

If L is regular, then there exists n > 1 (called pumping index) such that
any w € L with |{w| > n can be decomposed as w = xyz where

® y#e and
o for everyi >0, zy'z € L
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The Pumping Lemma II

Proof (idea).
Let 2 = (Q, 3,9, qo, F') be a DFA such that L(2() = L. Choose
n :=|Q|, and let w € L.
Then: w=ai...ap with k >n
— the accepting run visits k + 1 > n + 1 states:
qogqlﬂh..&)qk
= some state in @ occurs (at least) twice:
there exist 1 <4 < j < k such that ¢; = g;
Choose y := a;41...a; to be the substring which is read between the
two visits of g. Clearly, y # . Moreover the cycle can be omitted or
repeated such that zz € L, xzyz € L, zy’z € L, ... []

v
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The Pumping Lemma II

Proof (idea).
Let 2 = (Q, 3,9, qo, F') be a DFA such that L(2() = L. Choose
n :=|Q|, and let w € L.
Then: w=ai...ap with k >n
— the accepting run visits k + 1 > n + 1 states:
qogqlﬂh..&)qk
= some state in @ occurs (at least) twice:
there exist 1 <4 < j < k such that ¢; = g;
Choose y := a;41...a; to be the substring which is read between the
two visits of g. Clearly, y # . Moreover the cycle can be omitted or
repeated such that zz € L, xzyz € L, zy’z € L, ... []

v

Remark: Pumping Lemma states a necessary condition for regularity
= can only be used to show the non-regularity of a language
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The Pumping Lemma II1

@ L := {a"b* | k € N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := a"b". Since |w| > n, it can be decomposed as w = xyz with
y # &. The following cases are possible:
o y € L(a™t): then xy?z ¢ L (more as than bs)
o y € L(b"): then xy?z ¢ L (less as than bs)
o y € L(atbh): then zy?z ¢ L (a follows b)
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The Pumping Lemma II1

@ L := {a"b* | k € N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := a"b". Since |w| > n, it can be decomposed as w = xyz with
y # &. The following cases are possible:
o y € L(a™t): then xy?z ¢ L (more as than bs)
o y € L(b"): then xy?z ¢ L (less as than bs)
o y € L(atbh): then zy?z ¢ L (a follows b)

© Similarly: the set of all arithmetic expressions is not regular
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The Pumping Lemma II1

@ L := {a"b* | k € N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := a"b". Since |w| > n, it can be decomposed as w = xyz with
y # &. The following cases are possible:
o y € L(a™): then zy?2 ¢ L (more as than bs)
o y € L(b"): then xy?z ¢ L (less as than bs)
o y € L(atbh): then zy?z ¢ L (a follows b)

© Similarly: the set of all arithmetic expressions is not regular

v
Conclusion

Finite automata are too weak for defining the syntax of programming
languages (a ="(", b=")")!
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The Pumping Lemma IV

Seen:
@ Necessary condition for regularity of languages

o Counterexamples
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The Pumping Lemma IV

Seen:
@ Necessary condition for regularity of languages

o Counterexamples

Open:

e More expressive formalisms for describing languages?

mm Foundations of Informatics, Part A Winter 2010/11



Outline of Part A

© Outlook
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e Minimization of DFA
e More language operations (reversion, homomorphisms, ...)

e Construction of scanners for compilers
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