Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Semantics
Part B: Context-Free Languages

Thomas Noll

Software Modeling and Verification Group (MOVES)

RWTHAACHEN

noll@cs.rwth-aachen.de

http://cosec.bit.uni-bonn.de/students/teaching/11us/11lus-bridgingcourse/
http://www-i2.informatik.rwth-aachen.de/i2/b-it11/

b-it, Bonn, Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://cosec.bit.uni-bonn.de/students/teaching/11us/11us-bridgingcourse/
http://www-i2.informatik.rwth-aachen.de/i2/b-it11/

Outline of Part B

@ Context-Free Grammars and Languages

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 2

Introductory Example |
Example B.1

Syntax definition of programming languages by “Backus-Naur" rules
Here: simple arithmetic expressions

(Expression) ::=

0
| 1
| (Expression) + (Expression)
| (Expression) x (Expression)
| (

(Expressiony)

Meaning:

An expression is either 0 or 1, or it is of the form u—+ v, ux v, or
(u) where u, v are again expressions

RWTHAACHE Foundations of Informatics, Part B Winter 2011/12 3

Introductory Example 1|

Example B.2 (continued)

Here we abbreviate (Expression) as E, and use “—" instead of "::=".

Thus:

E — O|L|E+E|ExE|(E)

RWTH HE Foundations of Informatics, Part B Winter 2011/12 4

Introductory Example 1|

Example B.2 (continued)

Here we abbreviate (Expression) as E, and use “—" instead of "::=".

Thus:

E — O|L|E+E|ExE|(E)

Now expressions can be generated by applying rules to the start symbol E:

E = ExE

= (E)*E

) *
E+E)>k1
0+E)*1
0+1)=x

vl

(E
(
(
(

RWTH HE Foundations of Informatics, Part B Winter 2011/12 4

Context-Free Grammars |

Definition B.3

A context-free grammar (CFG) is a quadruple
G=(N,L,P,S)

where
@ N is a finite set of nonterminal symbols
@ Y is the (finite) alphabet of terminal symbols (disjoint from N)

@ P is a finite set of production rules of the form A — « where A € N
and o € (NUX)*

@ S € N is a start symbol

RWTHAACHE Foundations of Informatics, Part B Winter 2011/12 5

Context-Free Grammars |l
Example B.4

For the above example, we have:
o N={E}
o = {0,1,+,%(,)}
e P={E—-0,E—-1E—-E+EE—ExE E—(E)}
e S=E

Winter 2011/12 6

RWIHAACHEN Foundations of Informatics, Part B

Context-Free Grammars |l
Example B.4

For the above example, we have:
o N={E}

o Z:{Ovla+7*7(7)}
e P={E—-0,E—-1E—-E+EE—ExE E—(E)}
e S=E

Naming conventions:
@ nonterminals start with uppercase letters
@ terminals start with lowercase letters
@ start symbol = symbol on LHS of first production

= grammar completely defined by productions

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 6

Context-Free Languages |
Definition B.5

Let G = (N,X,P,S) be a CFG.

@ A sentence v € (N U X)* is directly derivable from g € (NUX)* if
there exist = A — « € P and 61,92 € (N U X)* such that
B = 61Ad; and v = §1ady (notation: 3 = v or just f =) .

@ A derivation (of length n) of v from [is a sequence of direct
derivations of the form dp = 61 = ... = d, where g = 3, o, = 7,
and §;,_1 = ; for every 1 < < n (notation: S ="* 7).

@ A word w € X" is called derivable in G if S =* w.

RWNTH Foundations of Informatics, Part B Winter 2011/12 7

Context-Free Languages |
Definition B.5

Let G = (N,X,P,S) be a CFG.
@ A sentence v € (N U X)* is directly derivable from g € (NUX)* if
there exist = A — « € P and 61,92 € (N U X)* such that
B = 61Ad; and v = §1ady (notation: 3 = v or just f =) .

@ A derivation (of length n) of v from [is a sequence of direct
derivations of the form dp = 61 = ... = d, where g = 3, o, = 7,
and §;,_1 = ; for every 1 < < n (notation: S ="* 7).

A word w € X* is called derivable in G if S =* w.
The language generated by G is L(G) :={w € X* | S =* w}.

A language L C Y* is called context-free (CFL) if it is generated by
some CFG.

e Two grammars G, Gy are equivalent if L(Gy) = L(Gy).

RWTH Foundations of Informatics, Part B Winter 2011/12 7

Context-Free Languages II
Example B.6

The language {a"b" | n > 1} is context-free (but not regular—see
Ex. A.59). It is generated by the grammar G = (N, X, P, S) with

o N={S}

e ¥ ={a, b}
e P={S — aSb| ab}
(proof: on the board)

Winter 2011/12 8

RWTHAACHEN Foundations of Informatics, Part B

Context-Free Languages II
Example B.6

The language {a"b" | n > 1} is context-free (but not regular—see
Ex. A.59). It is generated by the grammar G = (N, X, P, S) with

o N={S}

e ¥ ={a, b}

e P={S — aSb| ab}
(proof: on the board)

Remark: illustration of derivations by derivation trees
@ root labeled by start symbol
o leafs labeled by terminal symbols
@ successors of node labeled according to right-hand side of production

rule

(example on the board)
{EN Foundations of Informatics, Part B Winter 2011/12 8

RWTHAACHE

Context-Free Grammars and Languages

Seen:
o Context-free grammars
@ Derivations

o Context-free languages

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 9

Context-Free Grammars and Languages

Seen:
o Context-free grammars
@ Derivations

o Context-free languages

Open:

@ Relation between context-free and regular languages

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 9

Outline of Part B

e Context-Free and Regular Languages

mllAACHEN Foundations of Informatics, Part B Winter 2011/12 10

Context-Free and Regular Languages

Theorem B.7

© CEvery regular language is context-free.

© There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the
class of CFLs.)

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 11

Context-Free and Regular Languages

Theorem B.7

© CEvery regular language is context-free.

© There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the
class of CFLs.)

Proof.

O Let L be a regular language, and let 2l = (Q, X, 0, o, F) be a DFA
which recognizes L. G := (N, X, P, S) is defined as follows:
o N:=Q, S :=q
e if (g,a) = q’, then g — aq’ € P
o ifge F,thenqg —c€ P

Obviously a w-labeled run in 2 from g to F corresponds to a
derivation of w in G, and vice versa. Thus L(2) = L(G)
(example on the board).

@ A counterexample is {a"b" | n > 1} (see Ex. A.59 and B.6).

RWTH Foundations of Informatics, Part B Winter 2011/12 11

Context-Free Grammars and Languages

Seen:

o CFLs are more expressive than regular languages

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 12

Context-Free Grammars and Languages

Seen:

o CFLs are more expressive than regular languages

Open:
@ Decidability of word problem

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 12

Outline of Part B

© The Word Problem for CFLs

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 K]

The Word Problem

e Goal: given G = (N, %, P,S) and w € £*, decide whether w € L(G)
or not

@ For regular languages this was easy: just let the corresponding DFA
run on w.

@ But here: how to decide when to stop a derivation?

@ Solution: establish normal form for grammars which guarantees that
each nonterminal produces at least one terminal symbol

= only finitely many combinations to be inspected

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 14

Chomsky Normal Form |
Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its
productions is of the form

A—-BC o A—a

mllAACHEN Foundations of Informatics, Part B Winter 2011/12 15

Chomsky Normal Form |
Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its
productions is of the form

A—-BC o A—a

Example B.9

Let S — ab | aSb be the grammar which generates L := {a"b" | n > 1}.
An equivalent grammar in Chomsky NF is

S — AB| AC (generates L)

A—a (generates {a})
B—b (generates {b})
C — SB (generates {a"b™"! | n > 1})

v

RWTH } : Foundations of Informatics, Part B Winter 2011/12 15

Chomsky Normal Form Il

Theorem B.10
Every CFL L with ¢ ¢ L is generatable by a CFG in Chomsky NF.

mllAACHEN Foundations of Informatics, Part B Winter 2011/12 16

Chomsky Normal Form Il

Theorem B.10
Every CFL L with ¢ ¢ L is generatable by a CFG in Chomsky NF.

Let L be a CFL, and let G = (N, X, P,S) be some CFG which generates L.
The transformation of P into rules of the form A — BC and A — a

proceeds in three steps:

@ terminal symbols only in rules of the form A — a
(thus all other rules have the shape A — A;...A,)

@ elimination of “chain rules” of the form A — B

© celimination of rules of the form A — A;... A, where n > 2

RWTH HE Foundations of Informatics, Part B Winter 2011/12 16

Chomsky Normal Form Il

Proof of Theorem B.10 (continued).

Step 1: (only A — a)
Q@ let V:={B,|acX}
QletPP={A=d|A>acPtU{B,—alacX}
where o is obtained from «a by replacing every a € &
with B,
This yields G (example: on the board)

RWNTH Foundations of Informatics, Part B Winter 2011/12 17

Chomsky Normal Form Il

Proof of Theorem B.10 (continued).

Step 1: (only A — a)
Q@ let V:={B,|acX}
QletPP={A=d|A>acPtU{B,—alacX}
where o is obtained from «a by replacing every a € &
with B,
This yields G (example: on the board)

Step 2: (elimination of A — B)
@ determine all derivations A1 = ... = A, with rules of
the form A — B without repetition of nonterminals
(= only finitely many!)
QletP =PU{Ai—alAl=...= A =aq
a ¢ N})
\{A—=B|A—=BeP}
This yields G” (example: on the board)

RWTH Foundations of Informatics, Part B Winter 2011/12 17

Chomsky Normal Form IV

Proof of Theorem B.10 (continued).

Step 3: for every A — A;...A, with n > 2:

© add new symbols By, ..., B, > to N”
Q replace A— A;... A, by

A — AlBl
Bl — A2B2

an3 — Anf2Bn72
an2 — AnflAn

This yields G" (example: on the board)

One can show: G, G’, G”, G" are equivalent O

RWTH Foundations of Informatics, Part B Winter 2011/12 18

The Word Problem Reuvisited

Goal: given w € Y1 and G = (N, X, P, S) such that € ¢ L(G), decide if
w € L(G) or not

(If w = ¢, then w € L(G) easily decidable for arbitrary G)

Approach by Cocke, Younger, Kasami (CYK algorithm):
@ transform G into Chomsky NF
Q@letw=a;...a,(n>1)

Q let wli,j] :=aj...ajforevery 1 <i<;j<n

© consider segments w|[i,j] in order of increasing length, starting with
wl(i,i] (i.e., single letters)

© in each case, determine N;j := {Aec N | A=" wli,j]}
@ test whether S € Ny , (and thus, whether S =* w1, n| = w)

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 19

The CYK Algorithm |

Algorithm B.11 (CYK Algorithm)
Input: G = (N,X,P,S) in Chomsky NF, w = a1 ...a, € "
Question: w € L(G)?
Procedure: for i :=1 to ndo
N,'7,'Z:{A€N|A—>a,'€P}
next |
ford:=1ton—1do % compute N;iq
for i:=1ton—ddo
Ji=i+d;Nij:=0;
for k:=itoj—1do
N,"j = /V;’J'U{AE N‘ there is A— BC € P
with B € N,'7k, C e Nk—i—l,j}

next k
next /
next d

Output: “yes” if S € Ny ,,, otherwise “no”
RWTH Foundations of Informatics, Part B Winter 2011/12

20

The CYK Algorithm Il

Example B.12

e G: S—S5A]a
A— BS
B—BB|BS|b|c
@ w = abaaba

@ Matrix representation of /V; ;

(on the board)

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 pal

The Word Problem for Context-Free Languages

Seen:

@ Word problem decidable using CYK algorithm

RWIHAACHEN Foundations of Informatics, Part B Winter 2011/12 22

The Word Problem for Context-Free Languages

Seen:

@ Word problem decidable using CYK algorithm

Open:

@ Emptiness problem

RWIHAACHEN Foundations of Informatics, Part B Winter 2011/12 22

Outline of Part B

@ The Emptiness Problem for CFLs

RWIHAACHEN Foundations of Informatics, Part B Winter 2011/12 23

The Emptiness Problem

e Goal: given G = (N, X, P, S), decide whether L(G) = () or not

@ For regular languages this was easy: check in the corresponding DFA
whether some final state is reachable from the initial state.

@ Here: test whether start symbol is productive, i.e., whether it
generates a terminal word

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 24

The Productivity Test

Algorithm B.13 (Productivity Test)

Input: G =(N,%,P,S)
Question: L(G) =07
Procedure: mark every a € ¥ as productive;
repeat
if there is A — « € P such that
all symbols in « productive then
mark A as productive,
end;
until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

Foundations of Informatics, Part B Winter 2011/12 25

The Productivity Test

Algorithm B.13 (Productivity Test)
Input: G =(N,%,P,S)
Question: L(G) =07
Procedure: mark every a € ¥ as productive;
repeat
if there is A — « € P such that
all symbols in « productive then
mark A as productive,
end;
until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

Example B.14

G: S— AB|CA

A—a
B — BC | AB
C—aB|b

(on the board)

RWTHA HE Foundations of Informatics, Part B Winter 2011/12 25

The Emptiness Problem for CFLs

Seen:

@ Emptiness problem decidable using productivity test

RWIHAACHEN Foundations of Informatics, Part B Winter 2011/12 26

The Emptiness Problem for CFLs

Seen:

@ Emptiness problem decidable using productivity test

Open:

o Characterizing automata model

RWIHAACHEN Foundations of Informatics, Part B Winter 2011/12 26

Outline of Part B

© Pushdown Automata

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 27

Pushdown Automata |

@ Goal: introduce an automata model which exactly accepts CFLs
@ Clear: DFA not sufficient

(missing “counting capability”, e.g. for {a"b" | n > 1})
@ DFA will be extended to pushdown automata by

e adding a pushdown store which stores symbols from a pushdown
alphabet and uses a specific bottom symbol
e adding push and pop operations to transitions

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 28

Pushdown Automata |l
Definition B.15

A pushdown automaton (PDA) is of the form 2 = (Q, X, T, A, qo, Zo, F)
where

@ @ is a finite set of states

@ Y is the (finite) input alphabet

@ [is the (finite) pushdown alphabet

AC(QxT xX.)x(QxT*)is a finite set of transitions
go € Q is the initial state

Zy is the (pushdown) bottom symbol

F C Q is a set of final states

Foundations of Informatics, Part B Winter 2011/12 29

Pushdown Automata |l
Definition B.15

A pushdown automaton (PDA) is of the form 2 = (Q, X, T, A, qo, Zo, F)

where
@ @ is a finite set of states
@ ¥ is the (finite) input alphabet
@ [is the (finite) pushdown alphabet
AC(QxT xX.)x(QxT*)is a finite set of transitions
go € Q is the initial state
Zy is the (pushdown) bottom symbol
F C Q is a set of final states

Interpretation of ((q, Z, x),(q’,d)) € A: if the PDA 2l is in state g where
Z is on top of the stack and x is the next input symbol (or empty), then 2
reads x, replaces Z by §, and changes into the state ¢'.

RWTHA HE Foundations of Informatics, Part B Winter 2011/12 29

Configurations, Runs, Acceptance

Definition B.16

Let A = (Q,%,T, A, qo, Zo, F) be a PDA.

@ An element of @ x [* x X* is called a configuration of 2.
The initial configuration for input w € £* is given by (qo, Zo, w).
The set of final configurations is given by F x {e} x {e}.

I (4, Z,%), (¢',8)) € A, then (g, Z, xw) I- (', 87, w) for every
yel* weXx™

2 accepts w € X* if (qo, Zo, w) F* (g, ¢,€) for some q € F.

The language accepted by 21 is L(2() := {w € L* | 2 accepts w}.

A language L is called PDA-recognizable if L = L(2l) for some PDA 2.
Two PDA 21,2, are called equivalent if L(21) = L(2).

RWTHA HE Foundations of Informatics, Part B Winter 2011/12 30

Example B.17

© PDA which recognizes L = {a"b" | n > 1}
(on the board)

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 31

Example B.17

© PDA which recognizes L = {a"b" | n > 1}
(on the board)

@ PDA which recognizes L = {ww® | w € {a, b}*}
(palindromes of even length; on the board)

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 31

Example B.17

© PDA which recognizes L = {a"b" | n > 1}
(on the board)

@ PDA which recognizes L = {ww® | w € {a, b}*}
(palindromes of even length; on the board)

Observation: 2l is nondeterministic: whenever a construction transition
is applicable, the pushdown could also be deconstructed

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 31

Deterministic PDA
Definition B.18

APDA A= (Q,%,I, A, qo, 2o, F) is called deterministic (DPDA) if for
every g€ Q,Z €T,

Q for every x € ¥, at most one (g, Z, x)-transition in A and

Q@ if there is a (g, Z, a)-transition in A for some a € ¥, then there is no
(g, Z,e)-transition in A.

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 32

Deterministic PDA
Definition B.18

APDA A= (Q,%,I, A, qo, 2o, F) is called deterministic (DPDA) if for
every g€ Q,Z €T,

Q for every x € ¥, at most one (g, Z, x)-transition in A and

Q@ if there is a (g, Z, a)-transition in A for some a € ¥, then there is no
(g, Z,e)-transition in A.

Remark: this excludes two types of nondeterminism:
Q if ((g.2,x),(q1,01)),((q, Z,x), (a3, 02)) € A:
(qlla 61’% W) . (qa Z’%XW) + (qé7 5277 W)
e if ((q7 Z? a)? (qj/[7 51))7 ((q7 Z7 6)7 (qéy 52)) S A:
(qia 5175 W) . (q’ Z% aW) + (qéa 5275 aW)

Foundations of Informatics, Part B Winter 2011/12 32

Deterministic PDA
Definition B.18

APDA A= (Q,%,I, A, qo, 2o, F) is called deterministic (DPDA) if for
every ge Q,Z €T,

Q for every x € ¥, at most one (g, Z, x)-transition in A and

Q@ if there is a (g, Z, a)-transition in A for some a € ¥, then there is no
(g, Z,e)-transition in A.

Remark: this excludes two types of nondeterminism:

o if ((qv Z’X)7 (q17 51))7 ((qv Z)X)) (qé7 52)) € A:

(qlla 61’% W) . (qa Z’%XW) + (qé7 5277 W)
o if ((qv Z, a)? (q:/l7 51)), ((q, Z, 5)7 (qé7 52)) € A:

(qiv 51’75 W) - (qa Z% aW) + (qév 52’}/’ aW)

Corollary B.19

In a DPDA, every configuration has at most one --successor.

RWTHAACHE! Foundations of Informatics, Part B Winter 2011/12 32

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognizable languages are closed under complement, which is
generally not true for PDA-recognizable languages)

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 3

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognizable languages are closed under complement, which is
generally not true for PDA-recognizable languages)

Example B.20

The set of palindromes of even length is PDA-recognizable, but not
DPDA-recognizable (without proof).

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 33

PDA and Context-Free Languages |

Theorem B.21
A language is context-free iff it is PDA-recognizable.

RWIHAACHEN Foundations of Informatics, Part B Winter 2011/12 34

PDA and Context-Free Languages |

Theorem B.21
A language is context-free iff it is PDA-recognizable.

<— omitted

= let G = (N,%,P,S) be a CFG. Construction of PDA ¢
recognizing L(G):

@ s simulates a derivation of G where the leftmost
nonterminal of a sentence form is replaced (“leftmost
derivation")

@ begin with S on pushdown

o if nonterminal on top: apply a corresponding production
rule

@ if terminal on top: match with next input symbol

RWTH Foundations of Informatics, Part B Winter 2011/12 34

PDA and Context-Free Languages ||

Proof of Theorem B.21 (continued).

= Formally: ¢ :=(Q,X,T, A, qo, Zo, F) is given by
o @:={qo}
oN:=NUX
e if A— a € P, then ((qo, A, €),(q0,a)) € A
e if a€ X, then ((qo, a,a),(qo0,¢)) € A
e /p:=S
e F:=Q
L]

Foundations of Informatics, Part B Winter 2011/12 35

PDA and Context-Free Languages Il
Proof of Theorem B.21 (continued).

= Formally: ¢ :=(Q,X,T, A, qo, Zo, F) is given by
° Q:={qo}
o[=NUZ
e if A— a € P, then ((qo, A, €),(q0,a)) € A
e if a€ X, then ((qo, a,a),(qo0,¢)) € A
e /p:=S
e F:=Q
L]

Example B.22

“Bracket language”, given by G:

S=0I1(S)]SS

(on the board)
V.
RWTH HE Foundations of Informatics, Part B Winter 2011/12 35

Pushdown Automata

Seen:
@ Definition of PDA

@ Equivalence of PDA-recognizable and context-free languages

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 36

Pushdown Automata

Seen:
@ Definition of PDA

@ Equivalence of PDA-recognizable and context-free languages

Open:
@ Closure properties of CFLs

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 36

Outline of Part B

@ Closure Properties of CFLs

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 37

Positive Results

Theorem B.23
The set of CFLs is closed under concatenation, union, and iteration.

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 38

Positive Results

Theorem B.23

The set of CFLs is closed under concatenation, union, and iteration.

Fori=1,2, let G; = <N,‘,Z, P,‘,S,') with L; := L(G,') and Ny N N, = 0.
Then

RWNTH HE Foundations of Informatics, Part B Winter 2011/12 38

Positive Results

Theorem B.23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2, let G = <N,‘,Z, P,‘,S,') with L; := L(G,') and Vi N Np = 0.
Then

G:=(N,X,P,S) with N := {S} UN; UN> and
P:={S — 515} U P; U P, generates L; - Lp;

RWNTH HE Foundations of Informatics, Part B Winter 2011/12 38

Positive Results

Theorem B.23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2, let G = <N,‘,Z, P,‘,S,') with L; := L(G,') and Vi N Np = 0.
Then

G:=(N,X,P,S) with N := {S} UN; UN> and
P:={S — 515} U P; U P, generates L; - Lp;

G :=(N,X,P,S) with N:={S} UN; UN> and

[P = {5 — 5 ‘ 52} U P; U P, generates L1 U Lp; and

RWNTH Foundations of Informatics, Part B Winter 2011/12 38

Positive Results

Theorem B.23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2, let G = <N,‘,Z, P,‘,S,') with L; := L(G,') and Vi N Np = 0.

Then

G
P
G
P
G

= (N,X,P,S) with N := {S} UN; UN, and
={S — 515} U P U P, generates L; - Lyp;

= (N,X%,P,S) with N := {S} UN; U N> and

= {5 — 5 ‘ 52} U P; U P, generates L1 U Lp; and

= (N,%,P,S) with N:={S}UN;and P:={S — e |S1S}UP;

*
generates L].

Ol

v

RWNTH Foundations of Informatics, Part B Winter 2011/12

38

Negative Results

Theorem B.24
The set of CFLs is not closed under intersection and complement.

RWIHAACHEN Foundations of Informatics, Part B Winter 2011/12 39

Negative Results

Theorem B.24
The set of CFLs is not closed under intersection and complement.

@ Both Ly := {akbkc! | k,1 € N} and Ly := {a*b/c! | k,1 € N} are
CFLs, but not L1 N Ly = {a"b"c" | n € N} (without proof).

Foundations of Informatics, Part B Winter 2011/12 39

Negative Results

Theorem B.24
The set of CFLs is not closed under intersection and complement.

Proof.
@ Both Ly := {akbkc! | k,1 € N} and Ly := {a*b/c! | k,1 € N} are
CFLs, but not L1 N Ly = {a"b"c" | n € N} (without proof).
o If CFLs were closed under complement, then also under intersection
(as LyN Ly = L1 ULy).

Foundations of Informatics, Part B Winter 2011/12 39

Overview of Decidability and Closure Results

Decidability Results

welL L=1(Li= 1L,
Reg | + (A38) = (A40) + (A42)
CFL | + (B11) +(B13) -

RWTHAACHEN

Foundations of Informatics, Part B

Winter 2011/12

40

Overview of Decidability and Closure Results

Decidability Results

welL L=1(Li= 1L,
Reg | + (A.38) + (A.40) + (A.42)
CFL | + (B.11) + (B.13) -
Closure Results
Ly-L, LU L LinL, L L*
Reg | + (A.28) + (A.18) + (A.16) + (A.14) + (A.29)
CFL | +(B.23) + (B.23) -(B.24) -(B.24) + (B.23)

RWTHAACHEN

Foundations of Informatics, Part B

Winter 2011/12

40

Outline of Part B

@ Outlook

RWTHAACHEN Foundations of Informatics, Part B Winter 2011/12 41

e Equivalence problem for CFG and PDA (“L(X1) = L(X2)?")
(generally undecidable, decidable for DPDA)

Pumping Lemma for CFL
Greibach Normal Form for CFG

Construction of parsers for compilers

Non-context-free grammars and languages (context-sensitive and
recursively enumerable languages, Turing machines—see Week 4)

RWIHAACHEN Foundations of Informatics, Part B Winter 2011/12 42

	Context-Free Languages
	Context-Free Grammars and Languages
	Context-Free and Regular Languages
	The Word Problem for CFLs
	The Emptiness Problem for CFLs
	Pushdown Automata
	Closure Properties of CFLs
	Outlook

