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Introductory Example I

Example B.1

Syntax definition of programming languages by “Backus-Naur” rules
Here: simple arithmetic expressions

〈Expression〉 ::= 0

| 1

| 〈Expression〉+ 〈Expression〉
| 〈Expression〉 ∗ 〈Expression〉
| (〈Expression〉)

Meaning:

An expression is either 0 or 1, or it is of the form u + v, u ∗ v, or
(u) where u, v are again expressions
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Introductory Example II

Example B.2 (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”.

Thus:

E → 0 | 1 | E + E | E ∗ E | (E )

Now expressions can be generated by applying rules to the start symbol E :

E ⇒ E ∗ E

⇒ (E ) ∗ E

⇒ (E ) ∗ 1

⇒ (E + E ) ∗ 1

⇒ (0 + E ) ∗ 1

⇒ (0 + 1) ∗ 1
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Context-Free Grammars I

Definition B.3

A context-free grammar (CFG) is a quadruple

G = 〈N,Σ,P,S〉

where

N is a finite set of nonterminal symbols

Σ is the (finite) alphabet of terminal symbols (disjoint from N)

P is a finite set of production rules of the form A→ α where A ∈ N
and α ∈ (N ∪ Σ)∗

S ∈ N is a start symbol
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Context-Free Grammars II

Example B.4

For the above example, we have:

N = {E}
Σ = {0, 1,+, ∗, (, )}
P = {E → 0,E → 1,E → E + E ,E → E ∗ E ,E → (E )}
S = E

Naming conventions:

nonterminals start with uppercase letters

terminals start with lowercase letters

start symbol = symbol on LHS of first production

=⇒ grammar completely defined by productions
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Context-Free Languages I

Definition B.5

Let G = 〈N,Σ,P,S〉 be a CFG.

A sentence γ ∈ (N ∪ Σ)∗ is directly derivable from β ∈ (N ∪ Σ)∗ if
there exist π = A→ α ∈ P and δ1, δ2 ∈ (N ∪ Σ)∗ such that
β = δ1Aδ2 and γ = δ1αδ2 (notation: β

π⇒ γ or just β ⇒ γ) .

A derivation (of length n) of γ from β is a sequence of direct
derivations of the form δ0 ⇒ δ1 ⇒ . . .⇒ δn where δ0 = β, δn = γ,
and δi−1 ⇒ δi for every 1 ≤ i ≤ n (notation: β ⇒∗ γ).

A word w ∈ Σ∗ is called derivable in G if S ⇒∗ w .

The language generated by G is L(G ) := {w ∈ Σ∗ | S ⇒∗ w}.
A language L ⊆ Σ∗ is called context-free (CFL) if it is generated by
some CFG.

Two grammars G1,G2 are equivalent if L(G1) = L(G2).
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Context-Free Languages II

Example B.6

The language {anbn | n ≥ 1} is context-free (but not regular—see
Ex. A.59). It is generated by the grammar G = 〈N,Σ,P,S〉 with

N = {S}
Σ = {a, b}
P = {S → aSb | ab}

(proof: on the board)

Remark: illustration of derivations by derivation trees

root labeled by start symbol

leafs labeled by terminal symbols

successors of node labeled according to right-hand side of production
rule

(example on the board)
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Context-Free Grammars and Languages

Seen:

Context-free grammars

Derivations

Context-free languages

Open:

Relation between context-free and regular languages
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Context-Free and Regular Languages

Theorem B.7
1 Every regular language is context-free.

2 There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the
class of CFLs.)

Proof.
1 Let L be a regular language, and let A = 〈Q,Σ, δ, q0,F 〉 be a DFA

which recognizes L. G := 〈N,Σ,P,S〉 is defined as follows:

N := Q, S := q0

if δ(q, a) = q′, then q → aq′ ∈ P
if q ∈ F , then q → ε ∈ P

Obviously a w -labeled run in A from q0 to F corresponds to a
derivation of w in G , and vice versa. Thus L(A) = L(G )
(example on the board).

2 A counterexample is {anbn | n ≥ 1} (see Ex. A.59 and B.6).
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Context-Free Grammars and Languages

Seen:

CFLs are more expressive than regular languages

Open:

Decidability of word problem
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The Word Problem

Goal: given G = 〈N,Σ,P,S〉 and w ∈ Σ∗, decide whether w ∈ L(G )
or not

For regular languages this was easy: just let the corresponding DFA
run on w .

But here: how to decide when to stop a derivation?

Solution: establish normal form for grammars which guarantees that
each nonterminal produces at least one terminal symbol

=⇒ only finitely many combinations to be inspected

Foundations of Informatics, Part B Winter 2011/12 14



Chomsky Normal Form I

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its
productions is of the form

A→ BC or A→ a

Example B.9

Let S → ab | aSb be the grammar which generates L := {anbn | n ≥ 1}.
An equivalent grammar in Chomsky NF is

S → AB | AC (generates L)
A → a (generates {a})
B → b (generates {b})
C → SB (generates {anbn+1 | n ≥ 1})
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Chomsky Normal Form II

Theorem B.10

Every CFL L with ε /∈ L is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = 〈N,Σ,P,S〉 be some CFG which generates L.
The transformation of P into rules of the form A→ BC and A→ a
proceeds in three steps:

1 terminal symbols only in rules of the form A→ a
(thus all other rules have the shape A→ A1 . . .An)

2 elimination of “chain rules” of the form A→ B

3 elimination of rules of the form A→ A1 . . .An where n > 2
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Chomsky Normal Form III

Proof of Theorem B.10 (continued).

Step 1: (only A→ a)

1 let N ′ := {Ba | a ∈ Σ}
2 let P ′ := {A→ α′ | A→ α ∈ P} ∪ {Ba → a | a ∈ Σ}

where α′ is obtained from α by replacing every a ∈ Σ
with Ba

This yields G ′ (example: on the board)

Step 2: (elimination of A→ B)

1 determine all derivations A1 ⇒ . . .⇒ An with rules of
the form A→ B without repetition of nonterminals
( =⇒ only finitely many!)

2 let P ′′ := (P ∪ {A1 → α | A1 ⇒ . . .⇒ An ⇒ α,
α /∈ N})

\ {A→ B | A→ B ∈ P ′}
This yields G ′′ (example: on the board)
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Chomsky Normal Form IV

Proof of Theorem B.10 (continued).

Step 3: for every A→ A1 . . .An with n > 2:

1 add new symbols B1, . . . ,Bn−2 to N ′′

2 replace A→ A1 . . .An by

A → A1B1

B1 → A2B2

...

Bn−3 → An−2Bn−2

Bn−2 → An−1An

This yields G ′′′ (example: on the board)

One can show: G ,G ′,G ′′,G ′′′ are equivalent
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The Word Problem Revisited

Goal: given w ∈ Σ+ and G = 〈N,Σ,P,S〉 such that ε /∈ L(G ), decide if
w ∈ L(G ) or not

(If w = ε, then w ∈ L(G ) easily decidable for arbitrary G )

Approach by Cocke, Younger, Kasami (CYK algorithm):

1 transform G into Chomsky NF

2 let w = a1 . . . an (n ≥ 1)

3 let w [i , j ] := ai . . . aj for every 1 ≤ i ≤ j ≤ n

4 consider segments w [i , j ] in order of increasing length, starting with
w [i , i ] (i.e., single letters)

5 in each case, determine Ni ,j := {A ∈ N | A⇒∗ w [i , j ]}
6 test whether S ∈ N1,n (and thus, whether S ⇒∗ w [1, n] = w)
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The CYK Algorithm I

Algorithm B.11 (CYK Algorithm)

Input: G = 〈N,Σ,P,S〉 in Chomsky NF, w = a1 . . . an ∈ Σ+

Question: w ∈ L(G )?

Procedure: for i := 1 to n do

Ni ,i := {A ∈ N | A→ ai ∈ P}
next i
for d := 1 to n − 1 do % compute Ni ,i+d

for i := 1 to n − d do

j := i + d ; Ni ,j := ∅;
for k := i to j − 1 do

Ni ,j := Ni ,j ∪ {A ∈ N | there is A→ BC ∈ P
with B ∈ Ni ,k ,C ∈ Nk+1,j}

next k
next i

next d

Output: “yes” if S ∈ N1,n, otherwise “no”
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The CYK Algorithm II

Example B.12

G : S → SA | a
A → BS
B → BB | BS | b | c

w = abaaba

Matrix representation of Ni ,j

(on the board)
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The Word Problem for Context-Free Languages

Seen:

Word problem decidable using CYK algorithm

Open:

Emptiness problem
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The Emptiness Problem

Goal: given G = 〈N,Σ,P,S〉, decide whether L(G ) = ∅ or not

For regular languages this was easy: check in the corresponding DFA
whether some final state is reachable from the initial state.

Here: test whether start symbol is productive, i.e., whether it
generates a terminal word
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The Productivity Test

Algorithm B.13 (Productivity Test)

Input: G = 〈N,Σ,P,S〉
Question: L(G ) = ∅?

Procedure: mark every a ∈ Σ as productive;
repeat

if there is A→ α ∈ P such that
all symbols in α productive then

mark A as productive;
end;

until no further productive symbols found;
Output: “no” if S productive, otherwise “yes”

Example B.14

G : S → AB | CA
A → a
B → BC | AB
C → aB | b

(on the board)
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The Emptiness Problem for CFLs

Seen:

Emptiness problem decidable using productivity test

Open:

Characterizing automata model
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Pushdown Automata I

Goal: introduce an automata model which exactly accepts CFLs

Clear: DFA not sufficient
(missing “counting capability”, e.g. for {anbn | n ≥ 1})
DFA will be extended to pushdown automata by

adding a pushdown store which stores symbols from a pushdown
alphabet and uses a specific bottom symbol
adding push and pop operations to transitions
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Pushdown Automata II

Definition B.15

A pushdown automaton (PDA) is of the form A = 〈Q,Σ, Γ,∆, q0,Z0,F 〉
where

Q is a finite set of states

Σ is the (finite) input alphabet

Γ is the (finite) pushdown alphabet

∆ ⊆ (Q × Γ× Σε)× (Q × Γ∗) is a finite set of transitions

q0 ∈ Q is the initial state

Z0 is the (pushdown) bottom symbol

F ⊆ Q is a set of final states

Interpretation of ((q,Z , x), (q′, δ)) ∈ ∆: if the PDA A is in state q where
Z is on top of the stack and x is the next input symbol (or empty), then A
reads x , replaces Z by δ, and changes into the state q′.
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Configurations, Runs, Acceptance

Definition B.16

Let A = 〈Q,Σ, Γ,∆, q0,Z0,F 〉 be a PDA.

An element of Q × Γ∗ × Σ∗ is called a configuration of A.

The initial configuration for input w ∈ Σ∗ is given by (q0,Z0,w).

The set of final configurations is given by F × {ε} × {ε}.
If ((q,Z , x), (q′, δ)) ∈ ∆, then (q,Zγ, xw) ` (q′, δγ,w) for every
γ ∈ Γ∗, w ∈ Σ∗.

A accepts w ∈ Σ∗ if (q0,Z0,w) `∗ (q, ε, ε) for some q ∈ F .

The language accepted by A is L(A) := {w ∈ Σ∗ | A accepts w}.
A language L is called PDA-recognizable if L = L(A) for some PDA A.

Two PDA A1,A2 are called equivalent if L(A1) = L(A2).
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Examples

Example B.17

1 PDA which recognizes L = {anbn | n ≥ 1}
(on the board)

2 PDA which recognizes L = {wwR | w ∈ {a, b}∗}
(palindromes of even length; on the board)

Observation: A2 is nondeterministic: whenever a construction transition
is applicable, the pushdown could also be deconstructed
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Deterministic PDA

Definition B.18

A PDA A = 〈Q,Σ, Γ,∆, q0,Z0,F 〉 is called deterministic (DPDA) if for
every q ∈ Q,Z ∈ Γ,

1 for every x ∈ Σε, at most one (q,Z , x)-transition in ∆ and

2 if there is a (q,Z , a)-transition in ∆ for some a ∈ Σ, then there is no
(q,Z , ε)-transition in ∆.

Remark: this excludes two types of nondeterminism:

1 if ((q,Z , x), (q′1, δ1)), ((q,Z , x), (q′2, δ2)) ∈ ∆:
(q′1, δ1γ,w) a (q,Zγ, xw) ` (q′2, δ2γ,w)

2 if ((q,Z , a), (q′1, δ1)), ((q,Z , ε), (q′2, δ2)) ∈ ∆:
(q′1, δ1γ,w) a (q,Zγ, aw) ` (q′2, δ2γ, aw)

Corollary B.19

In a DPDA, every configuration has at most one `-successor.
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2 if there is a (q,Z , a)-transition in ∆ for some a ∈ Σ, then there is no
(q,Z , ε)-transition in ∆.

Remark: this excludes two types of nondeterminism:

1 if ((q,Z , x), (q′1, δ1)), ((q,Z , x), (q′2, δ2)) ∈ ∆:
(q′1, δ1γ,w) a (q,Zγ, xw) ` (q′2, δ2γ,w)

2 if ((q,Z , a), (q′1, δ1)), ((q,Z , ε), (q′2, δ2)) ∈ ∆:
(q′1, δ1γ,w) a (q,Zγ, aw) ` (q′2, δ2γ, aw)

Corollary B.19

In a DPDA, every configuration has at most one `-successor.
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Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognizable languages are closed under complement, which is
generally not true for PDA-recognizable languages)

Example B.20

The set of palindromes of even length is PDA-recognizable, but not
DPDA-recognizable (without proof).
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PDA and Context-Free Languages I

Theorem B.21

A language is context-free iff it is PDA-recognizable.

Proof.

⇐= omitted

=⇒ let G = 〈N,Σ,P,S〉 be a CFG. Construction of PDA AG

recognizing L(G ):

AG simulates a derivation of G where the leftmost
nonterminal of a sentence form is replaced (“leftmost
derivation”)
begin with S on pushdown
if nonterminal on top: apply a corresponding production
rule
if terminal on top: match with next input symbol

Foundations of Informatics, Part B Winter 2011/12 34



PDA and Context-Free Languages I

Theorem B.21

A language is context-free iff it is PDA-recognizable.

Proof.

⇐= omitted

=⇒ let G = 〈N,Σ,P,S〉 be a CFG. Construction of PDA AG

recognizing L(G ):

AG simulates a derivation of G where the leftmost
nonterminal of a sentence form is replaced (“leftmost
derivation”)
begin with S on pushdown
if nonterminal on top: apply a corresponding production
rule
if terminal on top: match with next input symbol

Foundations of Informatics, Part B Winter 2011/12 34



PDA and Context-Free Languages II

Proof of Theorem B.21 (continued).

=⇒ Formally: AG := 〈Q,Σ, Γ,∆, q0,Z0,F 〉 is given by

Q := {q0}
Γ := N ∪ Σ
if A→ α ∈ P, then ((q0,A, ε), (q0, α)) ∈ ∆
if a ∈ Σ, then ((q0, a, a), (q0, ε)) ∈ ∆
Z0 := S
F := Q

Example B.22

“Bracket language”, given by G :

S → 〈〉 | 〈S〉 | SS

(on the board)
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Pushdown Automata

Seen:

Definition of PDA

Equivalence of PDA-recognizable and context-free languages

Open:

Closure properties of CFLs
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Outline of Part B

1 Context-Free Grammars and Languages

2 Context-Free and Regular Languages

3 The Word Problem for CFLs

4 The Emptiness Problem for CFLs

5 Pushdown Automata

6 Closure Properties of CFLs

7 Outlook
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Positive Results

Theorem B.23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let Gi = 〈Ni ,Σ,Pi ,Si 〉 with Li := L(Gi ) and N1 ∩ N2 = ∅.
Then

G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and
P := {S → S1S2} ∪ P1 ∪ P2 generates L1 · L2;

G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and
P := {S → S1 | S2} ∪ P1 ∪ P2 generates L1 ∪ L2; and

G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 and P := {S → ε | S1S} ∪ P1

generates L∗1.
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Negative Results

Theorem B.24

The set of CFLs is not closed under intersection and complement.

Proof.

Both L1 := {akbkc l | k, l ∈ N} and L2 := {akblc l | k , l ∈ N} are
CFLs, but not L1 ∩ L2 = {anbncn | n ∈ N} (without proof).

If CFLs were closed under complement, then also under intersection

(as L1 ∩ L2 = L1 ∪ L2).
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Overview of Decidability and Closure Results

Decidability Results
w ∈ L L = ∅ L1 = L2

Reg + (A.38) + (A.40) + (A.42)
CFL + (B.11) + (B.13) –

Closure Results

L1 · L2 L1 ∪ L2 L1 ∩ L2 L L∗

Reg + (A.28) + (A.18) + (A.16) + (A.14) + (A.29)
CFL + (B.23) + (B.23) – (B.24) – (B.24) + (B.23)
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Outline of Part B

1 Context-Free Grammars and Languages

2 Context-Free and Regular Languages

3 The Word Problem for CFLs
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Outlook

Equivalence problem for CFG and PDA (“L(X1) = L(X2)?”)
(generally undecidable, decidable for DPDA)

Pumping Lemma for CFL

Greibach Normal Form for CFG

Construction of parsers for compilers

Non-context-free grammars and languages (context-sensitive and
recursively enumerable languages, Turing machines—see Week 4)
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