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@ Schedule:
o lecture 9:00-10:30, 11:00-12:30 (Mon-Fri)
e 9:30-11:00, 11:15-12:457
o exercises 14:00-14:45, 15:15-16:00 (Mon-Thu)
e 14:00-15:307
e Examination at end of week 4 (16 March)

@ Please ask questions!
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Overview of Week 3

© Regular Languages
@ Context-Free Languages

© Processes and Concurrency
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@ J.E. Hopcroft, R. Motwani, J.D. Ullmann: Introduction to Automata
Theory, Languages, and Computation, 2nd ed., Addison-Wesley, 2001

@ A. Asteroth, C. Baier: Theoretische Informatik, Pearson Studium,
2002 [in German]

@ http://www.jflap.org/
(software for experimenting with formal languages and automata)
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http://www.jflap.org/

Outline of Part A

0 Formal Languages
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Words and Languages

@ Computer systems transform data
e Data encoded as (binary) words

— Data sets = sets of words = formal languages,
data transformations = functions on words
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Words and Languages

@ Computer systems transform data
e Data encoded as (binary) words

— Data sets = sets of words = formal languages,
data transformations = functions on words

Example A.1

Java = {all valid Java programs},

Compiler : Java — Bytecode
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Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols (“letters”).

2, I,... denote alphabets

a, b, ... denote letters
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Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols (“letters”).

2, I,... denote alphabets

a, b, ... denote letters

Example A.3
@ Boolean alphabet B := {0,1}
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Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols (“letters”).

2, I,... denote alphabets

a, b, ... denote letters

Example A.3
@ Boolean alphabet B := {0,1}
@ Latin alphabet ¥4, := {a, b,c,...,z}
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Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols (“letters”).

2, I,... denote alphabets

a, b, ... denote letters

Example A.3
@ Boolean alphabet B := {0,1}
@ Latin alphabet ¥4, := {a, b,c,...,z}
© Keyboard alphabet ¥y
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Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols (“letters”).

2, I,... denote alphabets

a, b, ... denote letters

Example A.3
@ Boolean alphabet B := {0,1}
@ Latin alphabet ¥4, := {a, b,c,...,z}
© Keyboard alphabet ¥y
© Morse alphabet Y050 := {, —, 1}
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Words
Definition A.4

@ A word is a finite sequence of letters from a given alphabet .

@ > * is the set of all words over %.
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Words
Definition A.4

@ A word is a finite sequence of letters from a given alphabet .

> * is the set of all words over 2.

w| denotes the length of a word w € >* i.e., |a1...a,] == n.
g

The empty word is denoted by ¢, i.e., || = 0.
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Words
Definition A.4

@ A word is a finite sequence of letters from a given alphabet .

> * is the set of all words over X.
|w| denotes the length of a word w € ¥*, i.e., |a1...ap| := n.

The empty word is denoted by ¢, i.e., || = 0.

The concatenation of two words v = a3 ... a, (m € N) and
w = by ...b, (n € N) is the word

V-W:=aj...ambi...b,

(often written as vw).

@ Thus: w-e=¢-w=w.
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Words
Definition A.4

@ A word is a finite sequence of letters from a given alphabet .
@ > is the set of all words over X.
@ |w| denotes the length of a word w € X*, i.e., |a1...a,| :=n.
@ The empty word is denoted by ¢, i.e., |¢| = 0.
@ The concatenation of two words v = a3 ... a,, (m € N) and
w = by ...b, (n € N) is the word
V-W:=aj...ambi...b,
(often written as vw).
@ Thus: w-e=¢-w=w.
@ A prefix/suffix v of a word w is an initial /trailing part of w, i.e.,
w = w'/w = V'v for some v/ € T*.
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Words
Definition A.4

@ A word is a finite sequence of letters from a given alphabet .
@ > is the set of all words over X.
@ |w| denotes the length of a word w € X*, i.e., |a1...a,| :=n.
@ The empty word is denoted by ¢, i.e., |¢| = 0.
@ The concatenation of two words v = a3 ... a,, (m € N) and
w = by ...b, (n € N) is the word
V-W:=aj...ambi...b,
(often written as vw).
@ Thus: w-e=¢-w=w.
@ A prefix/suffix v of a word w is an initial /trailing part of w, i.e.,
w = w'/w = V'v for some v/ € T*.
o Ifw=a;...ap then wf:=a,...a;.
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Formal Languages |

Definition A.5

A set of words L C X* is called a (formal) language over ¥.
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Formal Languages |

Definition A.5

A set of words L C X* is called a (formal) language over ¥.

Example A.6
Q over B = {0,1}: set of all bit strings containing 1101
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Formal Languages |

Definition A.5

A set of words L C X* is called a (formal) language over ¥.

Example A.6
Q over B = {0,1}: set of all bit strings containing 1101
@ over ¥ = {I,V,X,L,C,D,M}: set of all valid roman numbers
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Formal Languages |

Definition A.5

A set of words L C X* is called a (formal) language over ¥.

Example A.6
Q over B = {0,1}: set of all bit strings containing 1101
@ over ¥ = {I,V,X,L,C,D,M}: set of all valid roman numbers

© over Yy.y: set of all valid Java programs
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Formal Languages ||

Seen:
@ Basic notions: alphabets, words

@ Formal languages as sets of words
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Formal Languages ||

Seen:
@ Basic notions: alphabets, words

@ Formal languages as sets of words

Open:
@ Description of computations on words?
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Outline of Part A

© Finite Automata
@ Deterministic Finite Automata
@ Operations on Languages and Automata
@ Nondeterministic Finite Automata
@ More Decidability Results
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Outline of Part A

© Finite Automata
@ Deterministic Finite Automata
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Example: Pattern Matching

Example A.7 (Pattern 1101)
© Read Boolean string bit-by-bit
@ Test whether it contains 1101
© Idea: remember which (initial) part of 1101 has been recognized
© Five prefixes: ¢, 1, 11, 110, 1101
© Diagram: on the board
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Example: Pattern Matching

Example A.7 (Pattern 1101)
© Read Boolean string bit-by-bit
@ Test whether it contains 1101
© Idea: remember which (initial) part of 1101 has been recognized
© Five prefixes: ¢, 1, 11, 110, 1101
© Diagram: on the board

What we used:
o finitely many (storage) states
@ an initial state
o for every current state and every input symbol: a new state

@ a successful state
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Deterministic Finite Automata |

Definition A.8

A deterministic finite automaton (DFA) is of the form
Q[: <Qaza(5)q07F>

where
@ Q is a finite set of states
> denotes the input alphabet
0: Q x X — Q is the transition function
go € Q is the initial state

F C Q is the set of final (or: accepting) states
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Deterministic Finite Automata ||

Example A.9

Pattern matching (Example A.7):
°© Q={qo,...,qa}
o X =B={01}
@ 0:QxX — Q on the board
o F={q}

Winter 2011/12 15
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Deterministic Finite Automata ||

Example A.9

Pattern matching (Example A.7):
°© Q={qo,...,qa}
o X =B={01}
@ 0:QxX — Q on the board
o F={q}

Graphical Representation of DFA:
@ states = nodes
a
e i(g,a)=qg = qg—d
@ initial state: incoming edge without source state

o final state(s): double circle
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Acceptance by DFA |

Definition A.10

Let (Q,X, 0, qo, F) be a DFA. The extension of § : @ X ¥ — Q,
QXX — Q,

is defined by
0*(q, w) := state after reading w starting from gq.

Formally:
ifw=e

0°(q,w) := {g*((s(q,a), 9 Brr=ey

Thus: if w=a1...a, and ¢ =5 g1 =2 ... 2% g, then §*(q, w) = g,
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Acceptance by DFA |

Let (Q,X, 0, qo, F) be a DFA. The extension of § : @ X ¥ — Q,
QXX — Q,
is defined by
0*(q, w) := state after reading w starting from gq.
Formally:
ifw=c¢

0°(q,w) := {g*((s(q,a), 9 Brr=ey

Thus: if w=a1...a, and ¢ =5 g1 =2 ... 2% g, then §*(q, w) = g,

Example A.11
Pattern matching (Example A.9): on the board
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Acceptance by DFA I

@ 2 accepts w € X* if 6*(qo,w) € F.
@ The language recognized (or: accepted) by 2 is

L(A) == {w € T* | 6*(qo, w) € F}.

o A language L C ¥* is called DFA-recognizable if there exists some
DFA 2( such that L(2) = L.

@ Two DFA 201,%2(> are called equivalent if

L(21) = L(2y).
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Acceptance by DFA Il

@ The set of all bit strings containing 1101 is recognized by the
automaton from Example A.9.
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Acceptance by DFA Il

@ The set of all bit strings containing 1101 is recognized by the
automaton from Example A.9.

@ Two (equivalent) automata recognizing the language
{w € B* | w contains 1} :

on the board
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Acceptance by DFA Il

@ The set of all bit strings containing 1101 is recognized by the
automaton from Example A.9.

@ Two (equivalent) automata recognizing the language
{w € B* | w contains 1} :

on the board

© An automaton which recognizes
{w € {0,...,9}" | value of w divisible by 3}

Idea: test whether sum of digits is divisible by 3 — one state for each
residue class (on the board)
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Deterministic Finite Automata

Seen:

@ Deterministic finite automata as a model of simple sequential
computations

@ Recognizability of formal languages by automata
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Deterministic Finite Automata

Seen:
@ Deterministic finite automata as a model of simple sequential
computations
@ Recognizability of formal languages by automata

Open:
@ Composition and transformation of automata?
@ Which languages are recognizable, which are not (alternative
characterization)?
@ Language definition — automaton and vice versa?
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Outline of Part A

© Finite Automata

@ Operations on Languages and Automata
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Operations on Languages

Simplest case: Boolean operations (complement, intersection, union)

Question

Let 21, Ao be two DFA with L(2(;) = L; and L(2l2) = Ly.
Can we construct automata which recognize

o [; ((=X*\ L),
e [1NLy and
e [ ULy?
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Language Complement

Theorem A.14
If L C X* is DFA-recognizable, then so is L.
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Language Complement

Theorem A.14
If L C X* is DFA-recognizable, then so is L.

Let A = (Q, X, 6, qo, F) be a DFA such that L(2) = L. Then:

wel < wé¢lL < §(qo,w) ¢ F < §(qo,w) € Q\ F.

Thus, L is recognized by the DFA (Q, X, 6, qo, Q \ F). O
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Language Complement

Theorem A.14
If L C X* is DFA-recognizable, then so is L.

Let A = (Q, X, 6, qo, F) be a DFA such that L(2) = L. Then:

wel < wé¢lL < §(qo,w) ¢ F < §(qo,w) € Q\ F.

Thus, L is recognized by the DFA (Q, X, 6, qo, Q \ F). O

Example A.15
on the board
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Language Intersection |

Theorem A.16
If L1, Ly C ¥* are DFA-recognizable, then so is L1 N L.
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Language Intersection |

Theorem A.16
If L1, Ly C ¥* are DFA-recognizable, then so is L1 N L.

Proof.
Let 2; = (Qi, ., 6, g}, Fj) be DFA such that L(;) = L; (i = 1,2). The
new automaton 2l has to accept w iff 2; and 2, accept w
Idea: let 2; and (> run in parallel

@ use pairs of states (q1,q2) € Q1 X @

@ start with both components in initial state

@ a transition updates both components independently

o for acceptance both components need to be in a final state
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Language Intersection |l

Proof (continued).

Formally: let the product automaton
A:=(Q1 x Q,%,6,(q8,93), F1 x )
be defined by
3((q1, g2), a) := (91(q1, a), 02(qg2, a)) for every a € X.
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Language Intersection |l

Proof (continued).

Formally: let the product automaton
A= <Q1 X 0272757((7(:)[7(7(2))7 Fi x F2>
be defined by
3((q1, g2), a) := (91(q1, a), 02(qg2, a)) for every a € X.
This definition yields
6*((q1, g2), w) = (61(q1, w), 53(q2, W)~ (¥)
for every w € X*.
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Language Intersection |l

Proof (continued).

Formally: let the product automaton
A= <Q1 X 0272757((7(:)[7(7(2))7 Fi x F2>
be defined by
3((q1, g2), a) := (91(q1, a), 02(qg2, a)) for every a € X.
This definition yields
6" ((q1, q2), w) = (61(q1, w), 05(q2, w)) (%)

for every w € X*.
Thus we have:

2 accepts w

—  6((q5,95),w) € FL X F

L (61t w), 53(c3, W) € A x P
= 5f(qé, w) € F; and 6§(q3, w) € F
<= %Ay accepts w and 2, accepts w
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Language Intersection ll|

Example A.17
on the board
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Language Union

Theorem A.18

If L1, Ly C ¥* are DFA-recognizable, then so is L1 U L.
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Language Union

Theorem A.18
If L1, Ly C ¥* are DFA-recognizable, then so is L1 U L.

Proof.

Let 2; = (Q;, Z, 6;, g, Fi) be DFA such that L(;) = L; (i = 1,2). The
new automaton 2l has to accept w iff 2; or 2> accepts w.
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Language Union

Theorem A.18
If L1, Ly C ¥* are DFA-recognizable, then so is L1 U L.

Proof.

Let 2; = (Q;, Z, 6;, g, Fi) be DFA such that L(;) = L; (i = 1,2). The
new automaton 2l has to accept w iff 2; or 2> accepts w.

Idea: reuse product construction
Construct 2( as before but choose as final states those pairs
(g1,92) € @1 X @ with g1 € F1 or g2 € F>. Thus the set of final states is
given by
[F = (Fl X Qg) U (Ql X F2).
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Language Concatenation

Definition A.19

The concatenation of two languages L1, Ly C X is given by

L1-L2::{V-W€z*‘VELl,WELQ}.

Abbreviations: w - L :={w} L, L-w:=L-{w}
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Language Concatenation

Definition A.19

The concatenation of two languages L1, Ly C X is given by

L1-L2::{V-W€z*‘VELl,WELQ}.

Abbreviations: w - L :={w} L, L-w:=L-{w}

Example A.20

Q If L; ={101,1} and Ly, = {011,1}, then
L; - L, ={101011,1011,11}.
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Language Concatenation

Definition A.19

The concatenation of two languages L1, Ly C X is given by

L1-L2::{V-W€z*‘VELl,WELQ}.

Abbreviations: w - L :={w} L, L-w:=L-{w}

Example A.20

Q If L; ={101,1} and Ly, = {011,1}, then
L; - L, ={101011,1011,11}.
Q If [{ =00-B* and L, = 11 - B*, then
Ly - Ly = {w € B* | w has prefix 00 and contains 11}.
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DFA-Recognizability of Concatenation

If L1, L, C ¥* are DFA-recognizable, then so is L; - L. \
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DFA-Recognizability of Concatenation

If L1, L, C ¥* are DFA-recognizable, then so is L; - L.

Proof (attempt).

Let 2A; = (Q;, %, 6;, b, F;) be DFA such that L(;) = L; (i = 1,2). The
new automaton 2l has to accept w iff a prefix of w is recognized by 21,
and if 20> accepts the remaining suffix.

Idea: choose @ := Q1 U Q> where each g € F; is identified with qg

But: on the board [
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DFA-Recognizability of Concatenation

If L1, L, C ¥* are DFA-recognizable, then so is L; - L.

Proof (attempt).

Let 2A; = (Q;, %, 6;, b, F;) be DFA such that L(;) = L; (i = 1,2). The
new automaton 2l has to accept w iff a prefix of w is recognized by 21,
and if 20> accepts the remaining suffix.

Idea: choose @ := Q1 U Q> where each g € F; is identified with qg

But: on the board (1)
Required: automata model where the successor state (for a given state
and input symbol) is not unique
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Language lteration

Definition A.21

@ The nth power of a language L C ¥* is the n-fold concatenation of L
with itself (n € N):

L":=L-...-L={wr...w, |Vie{l,....,n} :w; € L}.

n times

Inductively: L0 := {e}, L"*1:=[".L
@ The iteration (or: Kleene star) of L is
L*:=UpenL"={w1...w, | neNVie{l,...,n} :w; € L}
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Language lteration

Definition A.21

@ The nth power of a language L C ¥* is the n-fold concatenation of L
with itself (n € N):
L":=L-...-L={wr...w, |Vie{l,....,n} :w; € L}.
n times

Inductively: L0 := {e}, L"*1:=[".L
@ The iteration (or: Kleene star) of L is
L*:=UpenL"={w1...w, | neNVie{l,...,n} :w; € L}

Remarks:
e we always have £ € L* (since L% C L* and L0 = {¢})
o w e L*iff w=¢ orif wcan be decomposed into n > 1 subwords
Vi,...,Vp (i.e., w = vy ... v,)such that v; € L forevery 1 <i<n

@ again we would suspect that the iteration of a DFA-recognizable

language is DFA-recognizable, but there is no simple (deterministic)
construction
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Operations on Languages and Automata

Seen:
@ Operations on languages:

complement
@ intersection
@ union

e concatenation
e iteration

@ DFA constructions for:

e complement
e intersection
@ union
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Operations on Languages and Automata

Seen:
@ Operations on languages:

e complement

@ intersection

@ union

e concatenation

e iteration

@ DFA constructions for:

e complement
e intersection
@ union

Open:

@ Automata model for (direct implementation of) concatenation and
iteration?
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Outline of Part A

© Finite Automata

@ Nondeterministic Finite Automata
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Nondeterministic Finite Automata |

Idea:

e for a given state and a given input symbol, several transitions (or
none at all) are possible

@ an input word generally induces several state sequences (“runs”)

@ the word is accepted if at least one accepting run exists

RWTHAACHEN Foundations of Informatics, Part A Winter 2011/12
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Nondeterministic Finite Automata |

Idea:
e for a given state and a given input symbol, several transitions (or
none at all) are possible
@ an input word generally induces several state sequences (“runs”)

@ the word is accepted if at least one accepting run exists

Advantages:
@ simplifies representation of languages
(example: B* - 1101 - B*; on the board)
@ yields direct constructions for concatenation and iteration of
languages
@ more adequate modeling of systems with nondeterministic behaviour
(communication protocols, multi-agent systems, ...)

Foundations of Informatics, Part A Winter 2011/12
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Nondeterministic Finite Automata ||

Definition A.22

A nondeterministic finite automaton (NFA) is of the form

9’[:<Q7Z7A7q0al:>

where

Q is a finite set of states

> denotes the input alphabet

A C QX X x Q is the transition relation
go € Q is the initial state

F C Q is the set of final states

ml“ A } : Foundations of Informatics, Part A

Winter 2011/12
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Nondeterministic Finite Automata ||

Definition A.22

A nondeterministic finite automaton (NFA) is of the form

9’[:<Q7Z7A7q0al:>

where
@ @ is a finite set of states
> denotes the input alphabet
A C QX X x Q is the transition relation
go € Q is the initial state

°
°
°
o F C @ is the set of final states

Remarks:
e (g,a,q") € A usually written as ¢ - ¢’
@ every DFA can be considered as an NFA
((q.a.¢) e A < i(q,a) = 1)
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Acceptance by NFA

o letw=2ay...2,€X".

@ A w-labeled 20-run from g; to g, is a sequence
ai an an
Po—=>P1L—>---Pn-1—7 Pn

such that pg = q1, pn = g2, and (pj_1,a;, pi) € A forevery 1 <i<n
(we also write: g1 — g2).

@ 2 accepts w if there is a w-labeled 2-run from ¢gp to some g € F

@ The language recognized by 2 is

L(A) :={w € * | A accepts w}.

@ A language L C ¥* is called NFA-recognizable if there exists a NFA 2
such that L(2() = L.

@ Two NFA 2(;,2(, are called equivalent if L(1) = L(2z).
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Acceptance Test for NFA

Algorithm A.24 (Acceptance Test for NFA)
Input: NFA A = (Q,X, A, qo,F), we X*
Question: w € L(A)?
Procedure: Computation of the reachability set
Ra(w) = {q € Q| q — q}
Iterative procedure for w = aj ... ap:
Q let Ry(e) :={qo}
Q fori:=1,...,n: let
Rgl(al...a,-) = {q €Q | dp € Rgl(al...a;,l): p i) q}
Output: ‘yes” if Ry(w) N F # (), otherwise “no”

Remark: this algorithm solves the word problem for NFA
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Acceptance Test for NFA
Algorithm A.24 (Acceptance Test for NFA)

Input: NFA A = (Q,X, A, qo,F), we X*
Question: w € L(A)?
Procedure: Computation of the reachability set
Ra(w) :=={q € Q| q — q}
Iterative procedure for w = aj ... ap:
Q let Ry(e) := {qo}
Q fori:=1,...,n: let
Rgl(al...a,-) = {q €Q | dp € Rgl(al...a;,l): p i) q}
Output: ‘yes” if Ry(w) N F # (), otherwise “no”

Remark: this algorithm solves the word problem for NFA

Example A.25

on the board

RWTH HE Foundations of Informatics, Part A Winter 2011/12 35



NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)
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NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)

Solution: admit empty word ¢ as transition label
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Definition A.26

A nondeterministic finite automaton with e-transitions (e-NFA) is of the
form 2 = (Q, X, A, qo, F) where

@ @ is a finite set of states

@ 2 denotes the input alphabet

A C Q x X x Q is the transition relation where X, := X U {¢}
go € Q is the initial state

F C Q is the set of final states

Remarks:
@ every NFA is an e-NFA

@ definitions of runs and acceptance: in analogy to NFA
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Definition A.26

A nondeterministic finite automaton with e-transitions (e-NFA) is of the
form 2 = (Q, X, A, qo, F) where

@ @ is a finite set of states

> denotes the input alphabet

A C Q x X x Q is the transition relation where X, := X U {¢}
go € Q is the initial state

F C Q is the set of final states

Remarks:
@ every NFA is an e-NFA

@ definitions of runs and acceptance: in analogy to NFA

Example A.27

on the board

RWTHAACHE! Foundations of Informatics, Part A Winter 2011/12 37




Concatenation and lteration via =-NFA

Theorem A.28
If Ly, Ly C ¥* are e-NFA-recognizable, then so is L1 - L.
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Concatenation and lteration via =-NFA

Theorem A.28
If Ly, Ly C ¥* are e-NFA-recognizable, then so is L1 - L.

Proof (idea).

on the board

RWIHAACHEN Foundations of Informatics, Part A Winter 2011/12 38



Concatenation and lteration via c-NFA

Theorem A.28
If Ly, Ly C ¥* are e-NFA-recognizable, then so is L1 - L.

Proof (idea).

on the board

Theorem A.29
If L C X* is e-NFA-recognizable, then so is L*.

see Theorem A.47
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Syntax Diagrams as c-NFA

Syntax diagrams (without recursive calls) can be interpreted as e-NFA

Example A.30

decimal numbers (on the board)
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Types of Finite Automata

@ DFA (Definition A.8)
@ NFA (Definition A.22)
© =-NFA (Definition A.26)
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Types of Finite Automata

@ DFA (Definition A.8)
@ NFA (Definition A.22)
© =-NFA (Definition A.26)

From the definitions we immediately obtain:

Corollary A.31

© Every DFA-recognizable language is NFA-recognizable.
@ Every NFA-recognizable language is e-NFA-recognizable.

RWIHAACHEN Foundations of Informatics, Part A Winter 2011/12 40



Types of Finite Automata

@ DFA (Definition A.8)
@ NFA (Definition A.22)
© =-NFA (Definition A.26)

From the definitions we immediately obtain:

Corollary A.31

© Every DFA-recognizable language is NFA-recognizable.
@ Every NFA-recognizable language is e-NFA-recognizable.

Goal: establish reverse inclusions
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From NFA to DFA |

Theorem A.32
Every NFA can be transformed into an equivalent DFA.
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From NFA to DFA |

Theorem A.32
Every NFA can be transformed into an equivalent DFA.

Idea: let the DFA operate on sets of states ( “powerset construction”)
o Initial state of DFA := {initial state of NFA}

e P -2 P’ in DFA iff there exist g € P, q' € P’ such that ¢ — ¢ in
NFA

@ P final state in DFA iff it contains some final state of NFA
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From NFA to DFA 1|l

Proof (continued).
Let A = (@, X, A, qo, F) be a NFA.
Powerset construction of A’ = (Q', X, ¥, qp, F'):
o @:=2°2={P|PCQ}
0 Q' xX— Q with
q € 0'(P,a) <= there exists p € P such that (p,a,q) € A

° qp == {qo}
o FF:={PCQ|PNF#0}
This yields

go — qin A < g€ ({q},w)in 2
and thus
2A accepts w <= A’ accepts w
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From NFA to DFA 1|l

Let A = (@, X, A, qo, F) be a NFA.
Powerset construction of A’ = (Q', X, ¥, qp, F'):
o @:=2°2={P|PCQ}
0 Q' xX— Q with
q € 0'(P,a) <= there exists p € P such that (p,a,q) € A

° qp == {qo}

o FF:={PCQ|PNF#0}
This yields

go — qin A < g€ ({q},w)in 2
and thus
2A accepts w <= A’ accepts w
|:|)

Example A.33

on the board
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From =-NFA to NFA

Theorem A.34
Every e-NFA can be transformed into an equivalent NFA.
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From =-NFA to NFA

Theorem A.34
Every e-NFA can be transformed into an equivalent NFA

Proof (idea).

Let 24 = (Q,X, A, qo, F) be a e-NFA. We construct the NFA 2" by
ellmlnatmg aII e-transitions, adgiklng appropriate direct transitions: if

p—— g, 9g—¢, andq —5 rin 2, then p -2 r in 2. Moreover
F':= FU{qo} if qo =7 ge Fin%, and F' := F otherwise. O
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From =-NFA to NFA

Theorem A.34
Every e-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let 24 = (Q,X, A, qo, F) be a e-NFA. We construct the NFA 2" by
ellmlnatmg aII e-transitions, adding appropriate direct transitions: if

p—— g, 9g—¢, and q —>*r|n91 then p — r in 2. Moreover
F':= FU{qo} if qo =7 ge Fin%, and F' := F otherwise. O

Example A.35
on the board
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From =-NFA to NFA

Theorem A.34
Every e-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let 2A = (Q,X, A, qo, F) be a e-NFA. We construct the NFA 2[" by
eliminating all e-transitions, adding appropriate direct transitions: if

g * a / y €. F a . ’
p— q,.9—4¢q, andg — rin %A, then p — r in A’". Moreover
F':= FU{qo} if go — g€ Fin %, and F' := F otherwise. O

Example A.35

on the board

Corollary A.36

All types of finite automata recognize the same class of languages.
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Nondeterministic Finite Automata

Seen:
@ Definition of e-NFA
@ Determinization of (e-)NFA
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Nondeterministic Finite Automata

Seen:
@ Definition of e-NFA
@ Determinization of (e-)NFA

Open:
@ More decidablity results
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Outline of Part A

© Finite Automata

@ More Decidability Results

RWTHAACHEN Foundations of Informatics, Part A Winter 2011/12 45



The Word Problem Reuvisited

Definition A.37

The word problem for DFA is specified as follows:

Given a DFA 21 and a word w € X*, decide whether

w e L(2A).
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The Word Problem Reuvisited

Definition A.37

The word problem for DFA is specified as follows:

Given a DFA 21 and a word w € X*, decide whether

w e L(2A).

As we have seen (Def. A.10, Alg. A.24, Thm. A.34):

Theorem A.38
The word problem for DFA (NFA, e-NFA) is decidable.
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The Emptiness Problem

Definition A.39

The emptiness problem for DFA is specified as follows:

Given a DFA 2, decide whether L(2l) = ().
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The Emptiness Problem

Definition A.39

The emptiness problem for DFA is specified as follows:

Given a DFA 2, decide whether L(2l) = ().

Theorem A.40
The emptiness problem for DFA (NFA, e-NFA) is decidable.

It holds that L(2() # () iff in 2 some final state is reachable from the initial
state (simple graph-theoretic problem). O
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The Emptiness Problem

Definition A.39

The emptiness problem for DFA is specified as follows:

Given a DFA 2, decide whether L(2l) = ().

Theorem A.40
The emptiness problem for DFA (NFA, e-NFA) is decidable.

It holds that L(2() # () iff in 2 some final state is reachable from the initial
state (simple graph-theoretic problem). O

Remark: important result for formal verification
(unreachability of bad [= final] states)
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The Equivalence Problem

Definition A.41

The equivalence problem for DFA is specified as follows:

Given two DFA 2(;,%(,, decide whether
L(2(;) = L(2L5).
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The Equivalence Problem

Definition A.41

The equivalence problem for DFA is specified as follows:

Given two DFA 21,25, decide whether
L(2(;) = L(2L5).

Theorem A.42
The equivalence problem for DFA (NFA, e-NFA) is decidable.

L(A1) = L(2A2)
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The Equivalence Problem

Definition A.41

The equivalence problem for DFA is specified as follows:

Given two DFA 21,25, decide whether
L(2(;) = L(2L5).

Theorem A.42
The equivalence problem for DFA (NFA, e-NFA) is decidable.

L(A1) = L(2A2)
< L(Qh) g L(Q{z) and L(le) g L(Qh)
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The Equivalence Problem

Definition A.41

The equivalence problem for DFA is specified as follows:

Given two DFA 21,25, decide whether
L(2(;) = L(2L5).

Theorem A.42
The equivalence problem for DFA (NFA, e-NFA) is decidable.

L(A1) = L(2A2)
< L(Qh) g L(Q{z) and L(le) g L(Qh)
= (L) \ L(A2)) U (L(A2) \ L(21)) =0
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The Equivalence Problem

Definition A.41
The equivalence problem for DFA is specified as follows:

Given two DFA 21,25, decide whether
L(2(;) = L(2L5).

Theorem A.42
The equivalence problem for DFA (NFA, e-NFA) is decidable.

L(A1) = L(2A2)
< L(Qh) g L(le) and L(le) g L(Qh)
= (L) \ L(A2)) U (L(A2) \ L(21)) =0

— (L)N L(2A2) YU (L(2A2) N L(2Az) ) =10
S—— ==
DFA-recognizable (Thm. A.14) DFA-recognizable (Thm. A.14) O
DFA-recognizable (Thm. A.16) DFA-recognizable (Thm. A.16)

DFA-recognizable (Thm. A.18)

decidable (Thm. A.40)
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Finite Automata

Seen:
@ Decidability of word problem
@ Decidability of emptiness problem

@ Decidability of equivalence problem

mllAACHEN Foundations of Informatics, Part A Winter 2011/12 49



Finite Automata

Seen:
@ Decidability of word problem
@ Decidability of emptiness problem

@ Decidability of equivalence problem

Open:

@ Non-algorithmic description of languages
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Outline of Part A

© Regular Expressions
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An Example
Example A.43

Consider the set of all words over ¥ := {a, b} which
@ start with one or three a symbols

@ continue with a (potentially empty) sequence of blocks, each
containing at least one b and exactly two a's

@ conclude with a (potentially empty) sequence of b's

Corresponding regular expression:

(a+ aaa)(pbb*ab*ab® + b*abb*ab* + b*ab*abb*)* b*

b before a's b between a's b after a's
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Syntax of Regular Expressions

Definition A.44

The set of regular expressions over ¥ is inductively defined by:
@ () and ¢ are regular expressions
@ every a € ¥ is a regular expression
e if @ and [ are regular expressions, then so are
o a+t+pf
o a-f3

o o

Foundations of Informatics, Part A Winter 2011/12 52



Syntax of Regular Expressions

Definition A.44

The set of regular expressions over ¥ is inductively defined by:
@ () and ¢ are regular expressions
@ every a € ¥ is a regular expression
e if @ and [ are regular expressions, then so are
o a+t+pf
o a-f3

o o

Notation:
@ - can be omitted

@ * binds stronger than -, - binds stronger than +
e o abbreviates o - o
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Semantics of Regular Expressions

Definition A.45

Every regular expression « defines a language L(«):

L) = 0

L(e) = {e}

L(a) = {a}
a+8) = Lia)uL(@)
La-B) = La)- L(B)

L(a®) = (L))
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Semantics of Regular Expressions

Definition A.45

Every regular expression « defines a language L(«):

L) = 0

L(e) = {e}

L(a) = {a}
a+8) = Lia)uL(@)
Lla-p) = L(a)- L)

L(a®) = (L))

A language L is called regular if it is definable by a regular expression, i.e.,
if L = L(«) for some regular expression c.
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Regular Languages
Example A.46

Q@ {aa} is regular since

L(a-a) = L(a)- L(a) = {a} - {a} = {aa}
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Regular Languages
Example A.46

Q@ {aa} is regular since

L(a-a) = L(a) - L(a) = {a} - {a} = {aa}

@ {a, b}* is regular since

L((a+b)") = (L(a + b))" = (L(a) U L(b))" = ({a} U {b})" = {a, b}"
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Regular Languages
Example A.46

Q@ {aa} is regular since

L(a-a) = L(a) - L(a) = {a} - {a} = {aa}

@ {a, b}* is regular since

L((a+b)") = (L(a + b))" = (L(a) U L(b))" = ({a} U {b})" = {a, b}"

© The set of all words over {a, b} containing abb is regular since

L((a+b)" -a-b-b-(a+ b)*)={a,b}"-{abb} - {a, b}*
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Regular Languages and Finite Automata |

Theorem A.47 (Kleene's Theorem)

To each regular expression there corresponds an e-NFA, and vice versa.

RWTHAACHEN Foundations of Informatics, Part A Winter 2011/12 55



Regular Languages and Finite Automata |

Theorem A.47 (Kleene's Theorem)

To each regular expression there corresponds an e-NFA, and vice versa.

Proof.
= using induction over the given regular expression «, we
construct an e-NFA 2(,
@ with exactly one final state gr
@ without transitions into the initial state
@ without transitions leaving the final state
(on the board)

<= by solving a regular equation system (details omitted)
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Regular Languages and Finite Automata I

Corollary A.48

The following properties are equivalent:

o L is regular
L is DFA-recognizable

o
o L is NFA-recognizable
o

L is e-NFA-recognizable
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Implementation of Pattern Matching

Algorithm A.49 (Pattern Matching)

Input: regular expression oc and w € ¥*

Question: does w contain some v € L(a)?
Procedure: @ let f:=(a1+...+an)* -« (for’ X ={a1,...,an})
@ determine e-NFA 23 for 3
© eliminate e-transitions
© apply powerset construction to obtain DFA 2
@ let run on w

Output: “yes” if 2 passes through some final state, otherwise “no”

v

Remark: in UNIX/LINUX implemented by grep and lex
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Regular Expressions in UNIX (grep, flex, ...

| Syntax | Meaning
printable character | this character
\n, \t, \123, etc. | newline, tab, octal representation, etc.
. any character except \n
[Chars] one of Chars; ranges possible (“0-9")
[~ Chars] none of Chars
\\, \., A\ ete. \, ., [ etc.
" Text" Text without interpretation of ., [, \, etc.
e « at beginning of line
a$ « at end of line
a? Zero or one «
ak Zero or more «
a+ one or more o
a{n, m} between n and m times o (“, m" optional)
(o) «
Q10 concatenation
ag las alternative
RWNTH HE Foundations of Informatics, Part A Winter 2011/12
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Regular Expressions

Seen:
@ Definition of regular expressions

@ Equivalence of regular and DFA-recognizable languages
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Outline of Part A

@ Minimization of DFA
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Goal: space-efficient implementation of regular languages
Given: DFA 2l = (Q, X%, 4, qo, F)

Wanted: DFA pin = (Q', X, ¢, qf, F') such that L(™Amin) = L(A) and
|Q'| minimal
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State Equivalence
Example A.50

NFA for accepting (a + b)*ab(a + b)*:
a,b a,

a —~ b

oy
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State Equivalence
Example A.50

NFA for accepting (a + b)*ab(a + b)*:
a,b a,b

a —~ b

Powerset construction yields DFA 2I:
b a

b a
@oD—— ey CloniD
b
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State Equivalence
Example A.50

NFA for accepting (a + b)*ab(a + b)*:
a,b a,b

a —~ b

Powerset construction yields DFA 2I:
b a

b a
(aoD——a e D——Cw.a]) o020
b

Observation: {qo, g2} and {qo, g1, g2} are equivalent
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State Equivalence
Example A.50

NFA for accepting (a + b)*ab(a + b)*:
a,b a,b

a —~ b

Powerset construction yields DFA 2I:
b a

b a
@oD—— ey CloniD
b

Observation: {qo, g2} and {qo, g1, g2} are equivalent

Definition A.51

Given DFA 20 = (Q, X, J, qo, F), states p,q € Q are equivalent if
Yw e X*: 6"(p,w) € F < §*(q,w) € F.
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Minimization

Minimization: merging of equivalent states

Example A.52 (cf. Example A.50)

DFA after state merging:

&

(©r=1Y
S
5]
O
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Minimization

Minimization: merging of equivalent states

Example A.52 (cf. Example A.50)

DFA after state merging:

b a

Problem: identification of equivalent states

Approach: iterative computation of inequivalent states by refinement

Corollary A.53

p,q € Q are inequivalent if there exists w € X* such that
0*(p,w) € F and 6*(q,w) ¢ F
(or vice versa, i.e., p and q can be distinguished by w)
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Computing State (In-)Equivalence

Lemma A.54

Inductive characterization of state inequivalence:
ew=c:peF,q¢ F = p,q inequivalent (by ¢)
0 - c 2 a / a /
o w=av: p,q inequivalent (by v), p — p',q — q
= p, q inequivalent (by w)

RWTHAACHEN Foundations of Informatics, Part A Winter 2011/12 64



Computing State (In-)Equivalence

Lemma A.54

Inductive characterization of state inequivalence:

ew=c:peF,q¢ F = p,q inequivalent (by ¢)
o w=av: p,q inequivalent (by v), p = p,q — ¢
= p, q inequivalent (by w)

Algorithm A.55 (State Equivalence for DFA)

Input: DFA A = (Q,X, A, qo, F)
Procedure: Computation of “equivalence matrix” over Q@ x @

© mark every pair (p,q) withp € F,q ¢ F by e
@ for every unmarked pair (p, q) and every a € ¥:

if ((p, a),d(q, a)) marked by v, then mark (p, q) by av
© repeat until no change

Output: all equivalent (= unmarked) pairs of states
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Minimization Example

Example A.56
Given DFA:

Equivalence matrix: on the board
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Minimization Example

Example A.56
Given DFA:

Equivalence matrix: on the board
Resulting minimal DFA:
b a,b

a
, b b
(D" ey Clanad
a
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Correctness of Minimization

Theorem A.57

For every DFA A,
L(A) = L(™Amin)

mllAACHEN Foundations of Informatics, Part A Winter 2011/12 66



Correctness of Minimization

Theorem A.57

For every DFA A,
L(A) = L(™Amin)

Remark: the minimal DFA is unique, in the following sense:
VDFA 2,8 : L(Q[) = L(%) = Amin = Bmin

where ~ refers to automata isomorphism (= identity up to naming of
states)
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Outline of Part A

© The Pumping Lemma
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Observation: a language L is DFA-recognizable (and thus regular) if the
membership of a word w can be tested by symbol-wise reading of w, using
a bounded memory
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Observation: a language L is DFA-recognizable (and thus regular) if the
membership of a word w can be tested by symbol-wise reading of w, using
a bounded memory

Conjecture: languages of the form {a"b" | n € N} are not regular since

the test for membership requires the capability of comparing the number
of a symbols to the number of b symbols (which can grow arbitrarily large)
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The Pumping Lemma |

Theorem A.58 (Pumping Lemma for Regular Languages)

If L is regular, then there exists n > 1 (called pumping index) such that any
w € L with |w| > n can be decomposed as w = xyz where

@ y#¢eand
@ forevery i >0, Xin €L

Proof (idea).

Let %A = (@, X, 0, go, F) be a DFA such that L(2) = L. Choose n:=|Q)|, and let
w e L.
Then: W=ai...ax with k> n
= the accepting run visits k +1 > n+ 1 states:
Q‘oiﬂhi%uiﬂflk
—> some state in Q occurs (at least) twice:
there exist 1 </ < j < k such that g; = q;
Choose y := aj;1 ... a; to be the substring which is read between the two visits of
q. Clearly, y # €. Moreover the cycle can be omitted or repeated such that
xz €L, xyz € L, Xy2Z el .. O
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The Pumping Lemma |l

Remark: Pumping Lemma states a necessary condition for regularity
= can only be used to show the non-regularity of a language
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The Pumping Lemma |l

Remark: Pumping Lemma states a necessary condition for regularity
= can only be used to show the non-regularity of a language

Example A.59

@ L := {a¥b" | k € N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := a"b". Since |w| > n, it can be decomposed as w = xyz with
y # &. The following cases are possible:
o y € L(a"): then xy2z ¢ L (more as than bs)
o y € L(bT): then xy?z ¢ L (less as than bs)
o y € L(ath"): then xy?z ¢ L (a follows b)
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The Pumping Lemma |l

Remark: Pumping Lemma states a necessary condition for regularity
= can only be used to show the non-regularity of a language

Example A.59

@ L := {a¥b" | k € N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := a"b". Since |w| > n, it can be decomposed as w = xyz with
y # &. The following cases are possible:
o y € L(a"): then xy2z ¢ L (more as than bs)
o y € L(bT): then xy?z ¢ L (less as than bs)
o y € L(ath"): then xy?z ¢ L (a follows b)

@ Similarly: the set of all arithmetic expressions is not regular
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The Pumping Lemma |l

Remark: Pumping Lemma states a necessary condition for regularity
= can only be used to show the non-regularity of a language

Example A.59

@ L := {a¥b" | k € N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := a"b". Since |w| > n, it can be decomposed as w = xyz with
y # €. The following cases are possible:
o y € L(a"): then xy2z ¢ L (more as than bs)
o y € L(bT): then xy?z ¢ L (less as than bs)
o y € L(ath"): then xy?z ¢ L (a follows b)

@ Similarly: the set of all arithmetic expressions is not regular

v
Conclusion

Finite automata are too weak for defining the syntax of programming
languages (consider a="(", b=")")!
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The Pumping Lemma IV

Seen:
@ Necessary condition for regularity of languages

o Counterexamples
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The Pumping Lemma IV

Seen:
@ Necessary condition for regularity of languages

o Counterexamples

Open:
@ More expressive formalisms for describing languages?
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Outline of Part A

@ Outlook
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@ More language operations (homomorphisms, ...)

@ Construction of scanners for compilers
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