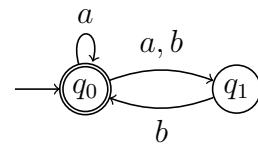


Exercise 1 (Regular Languages). (12 points)(i) Give a regular expression that describes the language

3


$$L := \{w \in \{a, b\}^* \mid w \text{ contains } ab \text{ and ends with } b\}.$$

(ii) Give a nondeterministic finite automaton, possibly with ϵ -transitions (ϵ -NFA), that recognizes the same language L . (You can either construct it directly or by translation from the previous regular expression.)

3

(iii) Apply the powerset construction to turn the following nondeterministic finite automaton (NFA) \mathfrak{A} into a deterministic finite automaton (DFA) \mathfrak{A}' .

3

(iv) Is \mathfrak{A}' minimal? Please justify your answer in the following way:

3

“yes”: give a distinguishing word for each pair of states;

“no”: give two equivalent states and explain why they are equivalent.

Exercise 2 (Context-Free Languages). (13 points)(i) Give a context-free grammar G which generates the language

5

$$L := \{a^k b^l \mid k, l \geq 1, k \neq l\}.$$

(ii) Give a derivation of the word $aaabb \in L$ from the start symbol of G .

2

(iii) Let G' be the following context-free grammar:

6

$$\begin{array}{lcl} S & \rightarrow & AB \mid AC \\ A & \rightarrow & a \\ B & \rightarrow & b \\ C & \rightarrow & SB \end{array}$$

and let $w := aaabbb$. Employ the CYK-Algorithm to show that $w \in L(G')$. Use the following table to compute the sets

$$N_{i,j} := \{A \in N \mid A \Rightarrow^* w[i, j]\} \quad (1 \leq i \leq j \leq 6)$$

where $w[i, j] := a_i \dots a_j$ for $w = a_1 a_2 a_3 a_4 a_5 a_6$.

$i \setminus j$	1	2	3	4	5	6
1						
2	X					
3	X	X				
4	X	X	X			
5	X	X	X	X		
6	X	X	X	X	X	