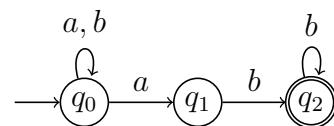


Exercise 1 (Regular Languages). (13 points)(i) Give a regular expression that describes the language 3

$L := \{w \in \{a, b\}^* \mid \text{each occurrence of } b \text{ is followed by at least two } as\}.$

(ii) Give a nondeterministic finite automaton \mathfrak{A}_L , possibly with ϵ -transitions (ϵ -NFA), that recognizes the same language L . (You can either construct it directly or by translation from the previous regular expression.) 3(iii) Show that \mathfrak{A}_L accepts the word $abaa \in L$. 1(iv) Apply the powerset construction to turn the following nondeterministic finite automaton (NFA) \mathfrak{A} into a deterministic finite automaton (DFA) \mathfrak{A}' . 3(v) Is \mathfrak{A}' minimal? Please justify your answer in the following way: 3

“yes”: give a distinguishing word for each pair of states;

“no”: give two equivalent states and explain why they are equivalent.

Exercise 2 (Context-Free Languages). (12 points)(i) Give a context-free grammar G_1 which generates the language

[5]

$$L := \{a^k b^l c^{k+l} \mid k, l \geq 1\}.$$

(ii) Give a derivation of the word $aabccc \in L$ from the start symbol of G_1 .

[2]

(iii) Let G_2 be the following context-free grammar:

[5]

$$\begin{array}{lcl} S & \rightarrow & AB \mid BC \\ A & \rightarrow & BA \mid a \\ B & \rightarrow & CC \mid b \\ C & \rightarrow & AB \mid a \end{array}$$

and let $w := aaaaa$. Employing the CYK-Algorithm, show that $w \in L(G_2)$. Use the following table to compute the sets

$$N_{i,j} := \{A \in N \mid A \Rightarrow^* w[i,j]\} \quad (1 \leq i \leq j \leq 5)$$

where $w[i,j] := a^{j-i+1}$.

$i \setminus j$	1	2	3	4	5
1					
2	X				
3	X	X			
4	X	X	X		
5	X	X	X	X	