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Organization

Schedule:
lecture 9:00-10:30, 11:00-12:30 (Mon-Fri)

9:30-11:00, 11:15-12:45?

exercises 14:00-14:45, 15:15-16:00 (Mon-Thu)

14:00-15:30?

Exam on Monday, 10 March 2014, 14:00, b-it

Please ask questions!
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Overview of Week 3

1 Regular Languages

2 Context-Free Languages

3 Processes and Concurrency
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Literature

J.E. Hopcroft, R. Motwani, J.D. Ullmann: Introduction to Automata
Theory, Languages, and Computation, 2nd ed., Addison-Wesley, 2001

A. Asteroth, C. Baier: Theoretische Informatik, Pearson Studium,
2002 [in German]

http://www.jflap.org/

(software for experimenting with formal languages and automata)
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Outline of Part A

1 Formal Languages

2 Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

3 Regular Expressions

4 Minimization of DFA

5 The Pumping Lemma

6 Outlook
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Words and Languages

Computer systems transform data

Data encoded as (binary) words

=⇒ Data sets = sets of words = formal languages,
data transformations = functions on words

Example A.1

Java = {all valid Java programs},
Compiler : Java→ Bytecode
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Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols (“letters”).

Σ, Γ, . . . denote alphabets

a, b, . . . denote letters

Example A.3

1 Boolean alphabet B := {0, 1}
2 Latin alphabet Σlatin := {a, b, c , . . . , z}
3 Keyboard alphabet Σkey

4 Morse alphabet Σmorse := {·,−,  }
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Words

Definition A.4

A word is a finite sequence of letters from a given alphabet Σ.

Σ∗ is the set of all words over Σ.

|w | denotes the length of a word w ∈ Σ∗, i.e., |a1 . . . an| := n.

The empty word is denoted by ε, i.e., |ε| = 0.

The concatenation of two words v = a1 . . . am (m ∈ N) and
w = b1 . . . bn (n ∈ N) is the word

v · w := a1 . . . amb1 . . . bn

(often written as vw).

Thus: w · ε = ε · w = w .

A prefix/suffix v of a word w is an initial/trailing part of w , i.e.,
w = vv ′/w = v ′v for some v ′ ∈ Σ∗.

If w = a1 . . . an, then wR := an . . . a1.
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Formal Languages I

Definition A.5

A set of words L ⊆ Σ∗ is called a (formal) language over Σ.

Example A.6

1 over B = {0, 1}: set of all bit strings containing 1101

2 over Σ = {I,V,X, L,C,D,M}: set of all valid roman numbers

3 over Σkey: set of all valid Java programs
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Formal Languages II

Seen:

Basic notions: alphabets, words

Formal languages as sets of words

Open:

Description of computations on words?
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Outline of Part A

1 Formal Languages

2 Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

3 Regular Expressions

4 Minimization of DFA

5 The Pumping Lemma

6 Outlook
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Example: Pattern Matching

Example A.7 (Pattern 1101)

1 Read Boolean string bit-by-bit

2 Test whether it contains 1101

3 Idea: remember which (initial) part of 1101 has been recognized

4 Five prefixes: ε, 1, 11, 110, 1101

5 Diagram: on the board

What we used:

finitely many (storage) states

an initial state

for every current state and every input symbol: a new state

a successful state
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Deterministic Finite Automata I

Definition A.8

A deterministic finite automaton (DFA) is of the form

A = 〈Q,Σ, δ, q0,F 〉

where

Q is a finite set of states

Σ denotes the input alphabet

δ : Q × Σ→ Q is the transition function

q0 ∈ Q is the initial state

F ⊆ Q is the set of final (or: accepting) states
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Deterministic Finite Automata II

Example A.9

Pattern matching (Example A.7):

Q = {q0, . . . , q4}
Σ = B = {0, 1}
δ : Q × Σ→ Q on the board

F = {q4}

Graphical Representation of DFA:

states =⇒ nodes

δ(q, a) = q′ =⇒ q
a−→ q′

initial state: incoming edge without source state

final state(s): double circle
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Acceptance by DFA I

Definition A.10

Let 〈Q,Σ, δ, q0,F 〉 be a DFA. The extension of δ : Q × Σ→ Q,
δ∗ : Q × Σ∗ → Q,

is defined by
δ∗(q,w) := state after reading w starting from q.

Formally:

δ∗(q,w) :=

{
q if w = ε
δ∗(δ(q, a), v) if w = av

Thus: if w = a1 . . . an and q
a1−→ q1

a2−→ . . .
an−→ qn, then δ∗(q,w) = qn

Example A.11

Pattern matching (Example A.9): on the board
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Acceptance by DFA II

Definition A.12

A accepts w ∈ Σ∗ if δ∗(q0,w) ∈ F .

The language recognized (or: accepted) by A is

L(A) := {w ∈ Σ∗ | δ∗(q0,w) ∈ F}.

A language L ⊆ Σ∗ is called DFA-recognizable if there exists some
DFA A such that L(A) = L.

Two DFA A1,A2 are called equivalent if

L(A1) = L(A2).
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Acceptance by DFA III

Example A.13

1 The set of all bit strings containing 1101 is recognized by the
automaton from Example A.9.

2 Two (equivalent) automata recognizing the language

{w ∈ B∗ | w contains 1} :

on the board

3 An automaton which recognizes

{w ∈ {0, . . . , 9}∗ | value of w divisible by 3}

Idea: test whether sum of digits is divisible by 3 – one state for each
residue class (on the board)

Foundations of Informatics, Part A Winter 2013/14 18
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Deterministic Finite Automata

Seen:

Deterministic finite automata as a model of simple sequential
computations

Recognizability of formal languages by automata

Open:

Composition and transformation of automata?

Which languages are recognizable, which are not (alternative
characterization)?

Language definition 7→ automaton and vice versa?
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Outline of Part A

1 Formal Languages

2 Finite Automata
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6 Outlook
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Operations on Languages

Simplest case: Boolean operations (complement, intersection, union)

Question

Let A1, A2 be two DFA with L(A1) = L1 and L(A2) = L2.
Can we construct automata which recognize

L1 (:= Σ∗ \ L1),

L1 ∩ L2, and

L1 ∪ L2?
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Language Complement

Theorem A.14

If L ⊆ Σ∗ is DFA-recognizable, then so is L.

Proof.

Let A = 〈Q,Σ, δ, q0,F 〉 be a DFA such that L(A) = L. Then:

w ∈ L ⇐⇒ w /∈ L ⇐⇒ δ∗(q0,w) /∈ F ⇐⇒ δ∗(q0,w) ∈ Q \ F .

Thus, L is recognized by the DFA 〈Q,Σ, δ, q0,Q \ F 〉.

Example A.15

on the board
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Language Intersection I

Theorem A.16

If L1, L2 ⊆ Σ∗ are DFA-recognizable, then so is L1 ∩ L2.

Proof.

Let Ai = 〈Qi ,Σ, δi , q
i
0,Fi 〉 be DFA such that L(Ai ) = Li (i = 1, 2). The

new automaton A has to accept w iff A1 and A2 accept w

Idea: let A1 and A2 run in parallel

use pairs of states (q1, q2) ∈ Q1 × Q2

start with both components in initial state

a transition updates both components independently

for acceptance both components need to be in a final state

Foundations of Informatics, Part A Winter 2013/14 23
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Language Intersection II

Proof (continued).

Formally: let the product automaton
A := 〈Q1 × Q2,Σ, δ, (q

1
0 , q

2
0),F1 × F2〉

be defined by
δ((q1, q2), a) := (δ1(q1, a), δ2(q2, a)) for every a ∈ Σ.

This definition yields
δ∗((q1, q2),w) = (δ∗1(q1,w), δ∗2(q2,w)) (∗)

for every w ∈ Σ∗.
Thus we have: A accepts w

⇐⇒ δ∗((q1
0 , q

2
0),w) ∈ F1 × F2

(∗)⇐⇒ (δ∗1(q1
0 ,w), δ∗2(q2

0 ,w)) ∈ F1 × F2

⇐⇒ δ∗1(q1
0 ,w) ∈ F1 and δ∗2(q2

0 ,w) ∈ F2

⇐⇒ A1 accepts w and A2 accepts w

Example A.17

on the board
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Language Union

Theorem A.18

If L1, L2 ⊆ Σ∗ are DFA-recognizable, then so is L1 ∪ L2.

Proof.

Let Ai = 〈Qi ,Σ, δi , q
i
0,Fi 〉 be DFA such that L(Ai ) = Li (i = 1, 2). The

new automaton A has to accept w iff A1 or A2 accepts w .

Idea: reuse product construction
Construct A as before but choose as final states those pairs
(q1, q2) ∈ Q1 × Q2 with q1 ∈ F1 or q2 ∈ F2. Thus the set of final states is
given by

F := (F1 × Q2) ∪ (Q1 × F2).

Foundations of Informatics, Part A Winter 2013/14 25
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Idea: reuse product construction
Construct A as before but choose as final states those pairs
(q1, q2) ∈ Q1 × Q2 with q1 ∈ F1 or q2 ∈ F2. Thus the set of final states is
given by

F := (F1 × Q2) ∪ (Q1 × F2).
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Language Concatenation

Definition A.19

The concatenation of two languages L1, L2 ⊆ Σ∗ is given by

L1 · L2 := {v · w ∈ Σ∗ | v ∈ L1,w ∈ L2}.

Abbreviations: w · L := {w} · L, L · w := L · {w}

Example A.20

1 If L1 = {101, 1} and L2 = {011, 1}, then
L1 · L2 = {101011, 1011, 11}.

2 If L1 = 00 · B∗ and L2 = 11 · B∗, then
L1 · L2 = {w ∈ B∗ | w has prefix 00 and contains 11}.
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DFA-Recognizability of Concatenation

Conjecture

If L1, L2 ⊆ Σ∗ are DFA-recognizable, then so is L1 · L2.

Proof (attempt).

Let Ai = 〈Qi ,Σ, δi , q
i
0,Fi 〉 be DFA such that L(Ai ) = Li (i = 1, 2). The

new automaton A has to accept w iff a prefix of w is recognized by A1,
and if A2 accepts the remaining suffix.
Idea: choose Q := Q1 ∪ Q2 where each q ∈ F1 is identified with q2

0

But: on the board

Conclusion

Required: automata model where the successor state (for a given state
and input symbol) is not unique
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Language Iteration

Definition A.21

The nth power of a language L ⊆ Σ∗ is the n-fold concatenation of L
with itself (n ∈ N):

Ln := L · . . . · L︸ ︷︷ ︸
n times

= {w1 . . .wn | ∀i ∈ {1, . . . , n} : wi ∈ L}.

Inductively: L0 := {ε}, Ln+1 := Ln · L
The iteration (or: Kleene star) of L is

L∗ :=
⋃

n∈N Ln = {w1 . . .wn | n ∈ N,∀i ∈ {1, . . . , n} : wi ∈ L}.

Remarks:

we always have ε ∈ L∗ (since L0 ⊆ L∗ and L0 = {ε})
w ∈ L∗ iff w = ε or if w can be decomposed into n ≥ 1 subwords
v1, . . . , vn (i.e., w = v1 · . . . · vn) such that vi ∈ L for every 1 ≤ i ≤ n

again we would suspect that the iteration of a DFA-recognizable
language is DFA-recognizable, but there is no simple (deterministic)
construction
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Operations on Languages and Automata

Seen:

Operations on languages:

complement
intersection
union
concatenation
iteration

DFA constructions for:

complement
intersection
union

Open:

Automata model for (direct implementation of) concatenation and
iteration?
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Outline of Part A

1 Formal Languages

2 Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

3 Regular Expressions

4 Minimization of DFA

5 The Pumping Lemma

6 Outlook
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Nondeterministic Finite Automata I

Idea:

for a given state and a given input symbol, several transitions (or
none at all) are possible

an input word generally induces several state sequences (“runs”)

the word is accepted if at least one accepting run exists

Advantages:

simplifies representation of languages
(example: B∗ · 1101 · B∗; on the board)

yields direct constructions for concatenation and iteration of
languages

more adequate modeling of systems with nondeterministic behaviour
(communication protocols, multi-agent systems, ...)
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Nondeterministic Finite Automata II

Definition A.22

A nondeterministic finite automaton (NFA) is of the form

A = 〈Q,Σ,∆, q0,F 〉

where

Q is a finite set of states

Σ denotes the input alphabet

∆ ⊆ Q × Σ× Q is the transition relation

q0 ∈ Q is the initial state

F ⊆ Q is the set of final states

Remarks:

(q, a, q′) ∈ ∆ usually written as q
a−→ q′

every DFA can be considered as an NFA
((q, a, q′) ∈ ∆ ⇐⇒ δ(q, a) = q′)
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Acceptance by NFA

Definition A.23

Let w = a1 . . . an ∈ Σ∗.

A w -labeled A-run from q1 to q2 is a sequence

p0
a1−→ p1

a2−→ . . . pn−1
an−→ pn

such that p0 = q1, pn = q2, and (pi−1, ai , pi ) ∈ ∆ for every 1 ≤ i ≤ n
(we also write: q1

w−→ q2).

A accepts w if there is a w -labeled A-run from q0 to some q ∈ F

The language recognized by A is
L(A) := {w ∈ Σ∗ | A accepts w}.

A language L ⊆ Σ∗ is called NFA-recognizable if there exists a NFA A
such that L(A) = L.

Two NFA A1,A2 are called equivalent if L(A1) = L(A2).

Foundations of Informatics, Part A Winter 2013/14 33



Acceptance Test for NFA

Algorithm A.24 (Acceptance Test for NFA)

Input: NFA A = 〈Q,Σ,∆, q0,F 〉, w ∈ Σ∗

Question: w ∈ L(A)?
Procedure: Computation of the reachability set

RA(w) := {q ∈ Q | q0
w−→ q}

Iterative procedure for w = a1 . . . an:

1 let RA(ε) := {q0}
2 for i := 1, . . . , n: let

RA(a1 . . . ai ) := {q ∈ Q | ∃p ∈ RA(a1 . . . ai−1) : p
ai−→ q}

Output: “yes” if RA(w) ∩ F 6= ∅, otherwise “no”

Remark: this algorithm solves the word problem for NFA

Example A.25

on the board
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NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)

Solution: admit empty word ε as transition label
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ε-NFA

Definition A.26

A nondeterministic finite automaton with ε-transitions (ε-NFA) is of the
form A = 〈Q,Σ,∆, q0,F 〉 where

Q is a finite set of states

Σ denotes the input alphabet

∆ ⊆ Q × Σε × Q is the transition relation where Σε := Σ ∪ {ε}
q0 ∈ Q is the initial state

F ⊆ Q is the set of final states

Remarks:

every NFA is an ε-NFA

definitions of runs and acceptance: in analogy to NFA

Example A.27

on the board
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Concatenation and Iteration via ε-NFA

Theorem A.28

If L1, L2 ⊆ Σ∗ are ε-NFA-recognizable, then so is L1 · L2.

Proof (idea).

on the board

Theorem A.29

If L ⊆ Σ∗ is ε-NFA-recognizable, then so is L∗.

Proof.

see Theorem A.47
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Syntax Diagrams as ε-NFA

Syntax diagrams (without recursive calls) can be interpreted as ε-NFA

Example A.30

decimal numbers (on the board)
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Types of Finite Automata

1 DFA (Definition A.8)

2 NFA (Definition A.22)

3 ε-NFA (Definition A.26)

From the definitions we immediately obtain:

Corollary A.31

1 Every DFA-recognizable language is NFA-recognizable.

2 Every NFA-recognizable language is ε-NFA-recognizable.

Goal: establish reverse inclusions
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From NFA to DFA I

Theorem A.32

Every NFA can be transformed into an equivalent DFA.

Proof.

Idea: let the DFA operate on sets of states (“powerset construction”)

Initial state of DFA := {initial state of NFA}
P

a−→ P ′ in DFA iff there exist q ∈ P, q′ ∈ P ′ such that q
a−→ q′ in

NFA

P final state in DFA iff it contains some final state of NFA
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From NFA to DFA II

Proof (continued).

Let A = 〈Q,Σ,∆, q0,F 〉 be a NFA.
Powerset construction of A′ = 〈Q ′,Σ, δ′, q′0,F ′〉:

Q ′ := 2Q := {P | P ⊆ Q}
δ′ : Q ′ × Σ→ Q ′ with

q ∈ δ′(P, a) ⇐⇒ there exists p ∈ P such that (p, a, q) ∈ ∆
q′0 := {q0}
F ′ := {P ⊆ Q | P ∩ F 6= ∅}

This yields
q0

w−→ q in A ⇐⇒ q ∈ δ′∗({q0},w) in A′

and thus
A accepts w ⇐⇒ A′ accepts w

Example A.33

on the board
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From NFA to DFA II

Proof (continued).

Let A = 〈Q,Σ,∆, q0,F 〉 be a NFA.
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From ε-NFA to NFA

Theorem A.34

Every ε-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let A = 〈Q,Σ,∆, q0,F 〉 be a ε-NFA. We construct the NFA A′ by
eliminating all ε-transitions, adding appropriate direct transitions: if
p

ε−→
∗
q, q

a−→ q′, and q′
ε−→
∗
r in A, then p

a−→ r in A′. Moreover
F ′ := F ∪ {q0} if q0

ε−→
∗
q ∈ F in A, and F ′ := F otherwise.

Example A.35

on the board

Corollary A.36

All types of finite automata recognize the same class of languages.
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Nondeterministic Finite Automata

Seen:

Definition of ε-NFA

Determinization of (ε-)NFA

Open:

More decidablity results
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The Word Problem Revisited

Definition A.37

The word problem for DFA is specified as follows:

Given a DFA A and a word w ∈ Σ∗, decide whether

w ∈ L(A).

As we have seen (Def. A.10, Alg. A.24, Thm. A.34):

Theorem A.38

The word problem for DFA (NFA, ε-NFA) is decidable.
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The Emptiness Problem

Definition A.39

The emptiness problem for DFA is specified as follows:

Given a DFA A, decide whether L(A) = ∅.

Theorem A.40

The emptiness problem for DFA (NFA, ε-NFA) is decidable.

Proof.

It holds that L(A) 6= ∅ iff in A some final state is reachable from the initial
state (simple graph-theoretic problem).

Remark: important result for formal verification
(unreachability of bad [= final] states)
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The Equivalence Problem

Definition A.41
The equivalence problem for DFA is specified as follows:

Given two DFA A1,A2, decide whether
L(A1) = L(A2).

Theorem A.42

The equivalence problem for DFA (NFA, ε-NFA) is decidable.

Proof.

L(A1) = L(A2)
⇐⇒ L(A1) ⊆ L(A2) and L(A2) ⊆ L(A1)
⇐⇒ (L(A1) \ L(A2)) ∪ (L(A2) \ L(A1)) = ∅
⇐⇒ (L(A1) ∩ L(A2)︸ ︷︷ ︸

DFA-recognizable (Thm. A.14)

)

︸ ︷︷ ︸
DFA-recognizable (Thm. A.16)

∪ (L(A2) ∩ L(A1)︸ ︷︷ ︸
DFA-recognizable (Thm. A.14)

)

︸ ︷︷ ︸
DFA-recognizable (Thm. A.16)︸ ︷︷ ︸

DFA-recognizable (Thm. A.18)

= ∅

︸ ︷︷ ︸
decidable (Thm. A.40)
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Finite Automata

Seen:

Decidability of word problem

Decidability of emptiness problem

Decidability of equivalence problem

Open:

Non-algorithmic description of languages
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An Example

Example A.43

Consider the set of all words over Σ := {a, b} which

1 start with one or three a symbols

2 continue with a (potentially empty) sequence of blocks, each
containing at least one b and exactly two a’s

3 conclude with a (potentially empty) sequence of b’s

Corresponding regular expression:

(a + aaa)(bb∗ab∗ab∗︸ ︷︷ ︸
b before a’s

+ b∗abb∗ab∗︸ ︷︷ ︸
b between a’s

+ b∗ab∗abb∗︸ ︷︷ ︸
b after a’s

)∗b∗
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Syntax of Regular Expressions

Definition A.44

The set of regular expressions over Σ is inductively defined by:

∅ and ε are regular expressions

every a ∈ Σ is a regular expression

if α and β are regular expressions, then so are

α + β
α · β
α∗

Notation:

· can be omitted
∗ binds stronger than ·, · binds stronger than +

α+ abbreviates α · α∗
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Semantics of Regular Expressions

Definition A.45

Every regular expression α defines a language L(α):

L(∅) := ∅
L(ε) := {ε}
L(a) := {a}

L(α + β) := L(α) ∪ L(β)

L(α · β) := L(α) · L(β)

L(α∗) := (L(α))∗

A language L is called regular if it is definable by a regular expression, i.e.,
if L = L(α) for some regular expression α.
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Regular Languages

Example A.46

1 {aa} is regular since

L(a · a) = L(a) · L(a) = {a} · {a} = {aa}

2 {a, b}∗ is regular since

L((a + b)∗) = (L(a + b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = {a, b}∗

3 The set of all words over {a, b} containing abb is regular since

L((a + b)∗ · a · b · b · (a + b)∗) = {a, b}∗ · {abb} · {a, b}∗

Foundations of Informatics, Part A Winter 2013/14 53



Regular Languages

Example A.46

1 {aa} is regular since

L(a · a) = L(a) · L(a) = {a} · {a} = {aa}

2 {a, b}∗ is regular since

L((a + b)∗) = (L(a + b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = {a, b}∗

3 The set of all words over {a, b} containing abb is regular since

L((a + b)∗ · a · b · b · (a + b)∗) = {a, b}∗ · {abb} · {a, b}∗

Foundations of Informatics, Part A Winter 2013/14 53



Regular Languages

Example A.46

1 {aa} is regular since

L(a · a) = L(a) · L(a) = {a} · {a} = {aa}

2 {a, b}∗ is regular since

L((a + b)∗) = (L(a + b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = {a, b}∗

3 The set of all words over {a, b} containing abb is regular since

L((a + b)∗ · a · b · b · (a + b)∗) = {a, b}∗ · {abb} · {a, b}∗

Foundations of Informatics, Part A Winter 2013/14 53



Regular Languages and Finite Automata I

Theorem A.47 (Kleene’s Theorem)

To each regular expression there corresponds an ε-NFA, and vice versa.

Proof.

=⇒ using induction over the given regular expression α, we
construct an ε-NFA Aα

with exactly one final state qf
without transitions into the initial state
without transitions leaving the final state

(on the board)

⇐= by solving a regular equation system (details omitted)
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Regular Languages and Finite Automata II

Corollary A.48

The following properties are equivalent:

L is regular

L is DFA-recognizable

L is NFA-recognizable

L is ε-NFA-recognizable
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Implementation of Pattern Matching

Algorithm A.49 (Pattern Matching)

Input: regular expression α and w ∈ Σ∗

Question: does w contain some v ∈ L(α)?

Procedure: 1 let β := (a1 + . . .+ an)∗ · α (for Σ = {a1, . . . , an})
2 determine ε-NFA Aβ for β
3 eliminate ε-transitions
4 apply powerset construction to obtain DFA A
5 let A run on w

Output: “yes” if A passes through some final state, otherwise “no”

Remark: in UNIX/LINUX implemented by grep and lex
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Regular Expressions in UNIX (grep, flex, ...)

Syntax Meaning

printable character this character
\n, \t, \123, etc. newline, tab, octal representation, etc.
. any character except \n
[Chars] one of Chars; ranges possible (“0-9”)
[^Chars] none of Chars
\\, \., \[, etc. \, ., [, etc.
"Text" Text without interpretation of ., [, \, etc.
^α α at beginning of line
α$ α at end of line
α? zero or one α
α* zero or more α
α+ one or more α
α{n,m} between n and m times α (“,m” optional)
(α) α
α1α2 concatenation
α1|α2 alternative
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Regular Expressions

Seen:

Definition of regular expressions

Equivalence of regular and DFA-recognizable languages
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Motivation

Goal: space-efficient implementation of regular languages

Given: DFA A = 〈Q,Σ, δ, q0,F 〉
Wanted: DFA Amin = 〈Q ′,Σ, δ′, q′0,F ′〉 such that L(Amin) = L(A) and

|Q ′| minimal
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State Equivalence

Example A.50

NFA for accepting (a + b)∗ab(a + b)∗:

q0 q1 q2

a, b

a b

a, b

Powerset construction yields DFA A:

{q0} {q0, q1} {q0, q2} {q0, q1, q2}

b

a

a

b

b
a

a

b

Observation: {q0, q2} and {q0, q1, q2} are equivalent

Definition A.51

Given DFA A = 〈Q,Σ, δ, q0,F 〉, states p, q ∈ Q are equivalent if
∀w ∈ Σ∗ : δ∗(p,w) ∈ F ⇐⇒ δ∗(q,w) ∈ F .
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Minimization

Minimization: merging of equivalent states

Example A.52 (cf. Example A.50)

DFA after state merging:

· · ·

b

a

a

b

a, b

Problem: identification of equivalent states

Approach: iterative computation of inequivalent states by refinement

Corollary A.53

p, q ∈ Q are inequivalent if there exists w ∈ Σ∗ such that
δ∗(p,w) ∈ F and δ∗(q,w) /∈ F

(or vice versa, i.e., p and q can be distinguished by w)
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Computing State (In-)Equivalence

Lemma A.54

Inductive characterization of state inequivalence:

w = ε: p ∈ F , q /∈ F =⇒ p, q inequivalent (by ε)

w = av: p′, q′ inequivalent (by v), p
a−→ p′, q

a−→ q′

=⇒ p, q inequivalent (by w)

Algorithm A.55 (State Equivalence for DFA)

Input: DFA A = 〈Q,Σ,∆, q0,F 〉
Procedure: Computation of “equivalence matrix” over Q × Q

1 mark every pair (p, q) with p ∈ F , q /∈ F by ε
2 for every unmarked pair (p, q) and every a ∈ Σ:

if (δ(p, a), δ(q, a)) marked by v, then mark (p, q) by av
3 repeat until no change

Output: all equivalent (= unmarked) pairs of states
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Minimization Example

Example A.56

Given DFA:

q0 q1 q2

q3 q4 q5

a

b

a

b

a

b

a
b

a

b
a, b

Equivalence matrix: on the board

Resulting minimal DFA:

{q0} {q1, q3} {q2, q4} {q5}
a, b

b
a

a

b

a, b
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Correctness of Minimization

Theorem A.57

For every DFA A,
L(A) = L(Amin)

Remark: the minimal DFA is unique, in the following sense:

∀DFA A,B : L(A) = L(B) =⇒ Amin ≈ Bmin

where ≈ refers to automata isomorphism (= identity up to naming of
states)
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Motivation

Observation: a language L is DFA-recognizable (and thus regular) if the
membership of a word w can be tested by symbol-wise reading of w , using
a bounded memory

Conjecture: languages of the form {anbn | n ∈ N} are not regular since
the test for membership requires the capability of comparing the number
of a symbols to the number of b symbols (which can grow arbitrarily large)
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The Pumping Lemma I

Theorem A.58 (Pumping Lemma for Regular Languages)

If L is regular, then there exists n ≥ 1 (called pumping index) such that any
w ∈ L with |w | ≥ n can be decomposed as w = xyz where

y 6= ε and

for every i ≥ 0, xy iz ∈ L

Proof (idea).

Let A = 〈Q,Σ, δ, q0,F 〉 be a DFA such that L(A) = L. Choose n := |Q|, and let
w ∈ L.
Then: w = a1 . . . ak with k ≥ n

=⇒ the accepting run visits k + 1 ≥ n + 1 states:

q0
a1−→ q1

a2−→ . . .
ak−→ qk

=⇒ some state in Q occurs (at least) twice:
there exist 1 ≤ i < j ≤ k such that qi = qj

Choose y := ai+1 . . . aj to be the substring which is read between the two visits of
q. Clearly, y 6= ε. Moreover the cycle can be omitted or repeated such that
xz ∈ L, xyz ∈ L, xy2z ∈ L, ...
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The Pumping Lemma II

Remark: Pumping Lemma states a necessary condition for regularity
=⇒ can only be used to show the non-regularity of a language

Example A.59

1 L := {akbk | k ∈ N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := anbn. Since |w | ≥ n, it can be decomposed as w = xyz with
y 6= ε. The following cases are possible:

y ∈ L(a+): then xy2z /∈ L (more as than bs)
y ∈ L(b+): then xy2z /∈ L (less as than bs)
y ∈ L(a+b+): then xy2z /∈ L (a follows b)

2 Similarly: the set of all arithmetic expressions is not regular

Conclusion

Finite automata are too weak for defining the syntax of programming
languages (consider a = ”(”, b = ”)”)!
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languages (consider a = ”(”, b = ”)”)!

Foundations of Informatics, Part A Winter 2013/14 69



The Pumping Lemma IV

Seen:

Necessary condition for regularity of languages

Counterexamples

Open:

More expressive formalisms for describing languages?
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Seen:

Necessary condition for regularity of languages

Counterexamples
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More expressive formalisms for describing languages?
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Outline of Part A

1 Formal Languages

2 Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

3 Regular Expressions

4 Minimization of DFA

5 The Pumping Lemma

6 Outlook
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Outlook

More language operations (homomorphisms, ...)

Construction of scanners for compilers
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