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Hilberts zehntes Problem

Im Jahr 1900 prasentierte der Mathematiker David Hilbert 23
mathematische Probleme auf einem Kongress in Paris.

Hilberts zehntes Problem (im Originalwortlaut)

Eine diophantische Gleichung mit irgendwelchen Unbekannten und
mit ganzen rationalen Zahlenkoeffizienten sei vorgelegt: Man soll
ein Verfahren angeben, nach welchem sich mittels einer endlichen
Anzahl von Operationen entscheiden 13Bt, ob die Gleichung in den
ganzen rationalen Zahlen losbar ist.

Die ,,ganzen rationalen Zahlen“, von denen in diesem Problem die
Rede ist, sind die ganzen Zahlen aus Z, wie wir sie kennen.

» Diophantische Gleichungen* bezeichnen Gleichungen iiber
Polynomen in mehreren Variablen.
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Diophantische Gleichungen

@ Ein Term ist ein Produkt aus Variablen mit einem konstanten
Koeffizienten, z.B. ist

6-x-x-X-y-z-z bzw. 6x3yz?

ein Term liber den Variablen x, y,z mit dem Koeffizienten 6.

@ Ein Polynom ist eine Summe von Termen, z.B.

6x3yz% + 3xy? — x> — 10 .

@ Eine diophantische Gleichung setzt ein Polynom gleich Null.
Die Losungen der Gleichung entsprechen also den Nullstellen
des Polynoms. Obiges Polynom hat beispielsweise die
Nullstelle

(x,y,z) =(5,3,0) .
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Formulierung als Entscheidungsproblem

Hilberts zehntes Problem (in unseren Worten)

Beschreibe einen Algorithmus, der entscheidet, ob ein gegebenes
Polynom mit ganzzahligen Koeffizienten eine ganzzahlige Nullstelle
hat.

Die diesem Entscheidungsproblem zugrundeliegende Sprache ist

N = {p]|p ist ein Polynom mit einer ganzzahligen Nullstelle} .
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Rekursive Aufzahlbarkeit von N

Gegeben sei ein Polynom p mit ¢ Variablen.

Der Wertebereich von p entspricht der abzidhlbar unendlichen
Menge Z*.

Der folgende Algorithmus erkennt N:

o Zihle die ¢-Tupel aus Z¢ in kanonischer Reihenfolge auf und
werte p fiir jedes dieser Tupel aus.

@ Akzeptiere sobald eine der Auswertungen den Wert Null
ergibt.

Fazit: N ist rekursiv aufzahlbar.
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Ist N entscheidbar? — Diskussion

@ Falls wir eine obere Schranke fiir die Absolutwerte der
Nullstellen hatten, so brauchten wir nur eine endliche Menge
von /-Tupeln aufzidhlen, und N wéare somit entscheidbar.

@ Fiir Polynome {iber nur einer Variable gibt es tatsachlich eine
derartige obere Schranke: Fiir ein Polynom der Form

litaxta

p(X) = aka + ak—1X
mit ganzzahligen Koeffizienten gilt

p(x) = 0,x € Z = x teilt a9. (Warum?)

Also gibt es keine Nullstelle mit Absolutwert gréBer als |ap.

@ Eingeschrankt auf Polynome mit nur einer Variable ist das
Nullstellenproblem damit entscheidbar.
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Ist N entscheidbar? — Diskussion

@ Fiir Polynome mit mehreren Variablen gibt es leider keine
obere Schranke fiir die Absolutwerte der Nullstellen. Um das
einzusehen, betrachte beispielsweise das Polynom x + y.

@ Aber vielleicht, gibt es ja eine obere Schranke fiir die
Nullstelle mit den kleinsten Absolutwerten?

@ Oder vielleicht gibt es ganz andere Mdglichkeiten einem
Polynom anzusehen, ob es eine ganzzahlige Nullstelle hat?

@ Erst knapp siebzig Jahre nachdem Hilbert sein Problem
prasentiert hat, konnte Yuri Matijasevi¢, all’ diese Fragen
beantworten, und zwar negativ!
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Unentscheidbarkeit des Nullstellenproblems

Hilbert hat die folgende Antwort nicht erwartet.

Satz von Matijasevi¢ (1970)

Das Problem, ob ein ganzzahliges Polynom eine ganzzahlige Null-
stelle hat, ist unentscheidbar.

Damit ist Hilberts zehntes Problem unldsbar.
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Unentscheidbarkeit des Nullstellenproblems

Der Beweis des Satzes von Matijasevi¢ beruht auf einer Kette von
Reduktionen durch die letztendlich das Halteproblem H auf das
Nullstellenproblem N reduziert wird. Yuri Matijasevi¢ hat
»lediglich” das letzte Glied dieser Kette geschlossen. Andere
wichtige Beitrage zu diesem Ergebnis wurden zuvor von Martin
Davis, Julia Robinson und Hilary Putnan erbracht.

Leider ist der Beweis zu komplex, um ihn im Rahmen dieser
Vorlesung prasentieren zu konnen. Wir schauen uns nun eine
anderes klassisches Problem an, fiir das wir hier beweisen kdnnen,
dass es nicht entscheidbar ist.
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Das Postsche Korrespondenzproblem — Einfiihrung

Das Postsche Korrespondenzproblem ist eine Art von Puzzle aus
Dominos. Jedes Domino ist mit zwei Wortern iiber einem Alphabet
Y beschrieben, ein Wort in der oberen Halfte und eines in der
unteren. Gegeben sei eine Menge K von Dominos z.B.

{12 BB )

ca ab a c

Die Aufgabe besteht darin, eine Folge von Dominos aus K zu
ermitteln, so dass sich oben und unten dasselbe Wort ergibt. Die
Folge soll aus mindestens einem Domino bestehen.

Wiederholungen von Dominos sind erlaubt. Ein Beispiel fiir eine
derartige korrespondierende Folge liber K ist

211212 2] 2]
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Das Postsche Korrespondenzproblem — Einfiihrung

Nicht fiir jede Menge K ist dies moglich, z.B. gibt es keine
korrespondierende Folge fiir die Menge

k _ [[2bc] [abea] [abe
N ca |’ | abc | | bc ’
weil fiir jede Folge die sich aus diesen Dominos bilden l3sst, das
obere Wort langer als das untere ist.
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Definition des Postschen Korrespondenzproblem

Definition: Postsches Korrespondenzproblem (PKP)

Eine Instanz des PKP besteht aus einer Menge

{2

wobei x; und y; nichtleere Worter liber einem endlichen Alphabet
2 sind. Es soll entschieden werden, ob es eine korrespondierende
Folge von Indizes i,...,i, € {1,...,k}, n > 1 gibt, so dass gilt
XiyXiy « - Xiy = YirYip - - Yiy-

Die Elemente der Menge K bezeichnen wir als Dominos.
Wir werden die Unentscheidbarkeit des PKP durch eine kurze

Reduktionskette nachweisen, die einen Umweg iiber eine Variante
des PKP nimmt.
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Definition des Modifizierten PKP

Definition: Modifiziertes PKP (MPKP)

Eine Instanz des MPKP besteht aus einer geordneten Menge

- ()

wobei x; und y; nichtleere Worter iiber einem endlichen Alphabet
2 sind. Es soll entschieden werden, ob es eine korrespondierende
Folge von Indizes iy, ..., i, € {1,...,k}, n > 1 gibt, so dass gilt
X1, Xiy o« Xiy = Y1, Yio - - - Yiy-

Die Modifizierung liegt darin, dass wir einen Startdomino bestimmt
haben, mit dem die korrespondierende Folge beginnen muss.
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Reduktionskette

Wir werden die folgenden zwei Aussagen beweisen.

MPKP < PKP.

Lemma B
H < MPKP.

Aus der Transitivitit der Reduktion (Ubungsaufgabe) folgt
H < PKP.
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Die Unentscheidbarkeit des PKP

Nach dem Reduktionsprinzip folgt nun

H < PKP und PKP rekursiv = H rekursiv.

Aus der Nichtentscheidbarkeit des Halteproblems ergibt sich somit
der folgende Satz.

Satz
Das PKP ist nicht rekursiv.

Wir missen ,,nur” noch Lemma A und Lemma B beweisen.
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Beweis von Lemma A (MPKP < PKP)

Beschreibung der Funktion f:

# und $ seien zwei Symbole, die nicht im Alphabet ¥ des MPKP
enthalten sind.

Wir bilden K = <[ﬁ] [ﬁD auf
1 Yk
XA x! x! X
) = 1 2] (5] || e
Yo n Y Yi+1
ab, wobei

@ x/ aus x; (fir 1 </ < k) entsteht, indem wir hinter jedem
Zeichen ein # einfiigen, und .
@ y/ aus y; (fir 1 < i < k) entsteht, indem wir vor jedem
Zeichen ein # einfiigen, y5 = y; und y; ; = #$.
Ferner setzen wir xy = #x1, X, =$, ¥y = y; und y; ; = #8$.
Fiir syntaktisch inkorrekte Eingaben sei f die Identitét.

Offensichtlich ist f berechenbar.
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Beweis von Lemma A (MPKP < PKP)
<= (%] &1 3))
~ \|a] Llabcl'lb

wird abgebildet auf

o= {2 52 ) [ [

Lésung des MPKP:

EHEED

Lésung des PKP:

150 7 U] v [
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Beweis von Lemma A (MPKP < PKP)

zu zeigen: K € MPKP = f(K) € PKP
Sei (1,i2,...,I) eine Losung fiir K, d.h.
X1X,'2 .. .X,'n = yly,-2 .. .y,-n = ad1d2...ds

fiir geeignet gewdhlte Symbole a;, ..., a5 aus X.

Dann ist (0,2, ..., i, k + 1) eine Losung fiir f(K), denn

xXoXt . x; 8 = Har#a# ... HasH#S = yoy, ...y, #9
Gibt es also eine Losung fiir K bzgl. MPKP, so gibt es auch eine
Losung fiir f(K) bzgl. PKP.

Somit haben wir gezeigt K € MPKP = f(K) € PKP.
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Beweis von Lemma A (MPKP < PKP)

zu zeigen: f(K) € PKP = K € MPKP

Sei nun (i1, i, ..., ip) eine Loésung minimaler Lange fiir f(K).

® Beobachtung 1: Es gilt i1 = 0 und i, = k + 1, weil nur x} und
Yo mit demselben Zeichen beginnen und nur x; , und y;
mit demselben Zeichen enden.

® Beobachtung 2: Es gilt i; # 0 fiir 2 < j < n, weil sonst zwei
#-Zeichen im oberen Wort direkt aufeinander folgen wiirden,
was im unteren Wort unmoglich ist.

@ Beobachtung 3: Es gilt i; # k 4 1 fiir 1 < j < n, denn wiirde
das $-Zeichen vorher auftreten, kénnten wir die vorliegende
minimale korrespondierende Folge nach dem ersten
Vorkommen des $-Zeichens abschneiden und hatten eine noch
kiirzere Losung gefunden.
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Beweis von Lemma A (MPKP < PKP)

Aus den Beobachtungen folgt, unsere PKP-Losung fiir f(K) hat
die Struktur

X(Sx,{2 X = #HarH#HaH .. H#Has#S = y(')y,{2 Y
fiir geeignet gewahlte Symbole ay, ..., as aus X.

Daraus ergibt sich die folgende MPKP-Losung fiir K:

X1Xjy « oo Xjp_y = a1ad2...ds = Y1VYip---Yip_1 -

Somit gilt f(K) € PKP = K € MPKP. 0
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Simulation einer TM durch Dominos — ein Beispiel

Scheinbar haben Dominos wenig mit Turingmaschinen zu tun. In
Lemma B wird dennoch behauptet, dass man mit Hilfe eines
Puzzles aus Dominos das Halteproblem fiir Turingmaschinen
entscheiden kann. Bevor wir in den Beweis des Lemmas einsteigen,
mochten wir auf der Basis eines umfangreichen Beispiels
illustrieren, wie die Rechnung einer Turingmaschine durch ein
Puzzle aus Dominos ,,simuliert" werden kann.
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Simulation einer TM durch Dominos — ein Beispiel

Betrachte die folgende TM M:
2 = {07 1}1 = {07 ]-7 B}v Q = {q0> g1, q2, C_I}
Die Uberfiihrungsfunktion & sei gegeben durch

(o] o [ 1 | B |
90 (q0707 R) (q1717R) ( 1 N)
q1 (q2707 R) (q1717R) ( N)
92 (q2707 R) (q2717R) (q27B R)

Die TM M erkennt, ob das Eingabewort von der Form 01/,

i,j >0, ist. Bei Eingabe eines Wortes dieser Form terminiert (und
akzeptiert) die Rechnung im Zustand g, ansonsten l3uft der Kopf
im Zustand g weiter und weiter nach rechts.
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Simulation einer TM durch Dominos — ein Beispiel

Die Rechnung der TM auf einer gegebenen Eingabe kann durch
eine Konfigurationsfolge beschrieben werden.

Konfigurationsfolge von M auf Eingabe w = 0011

00011 + 0go011 - 00goll - 001q:1 - 0011lgy B + 001131

Wir mochten die Rechnung einer TM auf einer Eingabe durch ein
Puzzle aus Dominos ,,simulieren”. Dieses Puzzle entspricht dem
MPKP. Als Startdomino fiir das MPKP wé&hlen wir ein Domino bei
dem das untere Wort aus der Anfangskonfiguration mit ein paar
zusatzlichen Trennsymbolen besteht.

[Frmonz
##qo00114# | -
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Simulation einer TM durch Dominos — ein Beispiel

Das Puzzle fiir unsere Beispielrechnung (M, w) enthilt unter
anderem jeweils ein Domino fiir jedes Zeichen aus ' U {#}.

HRHAHEH

Wir erweitern diese Liste erlaubter Dominos um je ein Domino fiir
jeden Eintrag in der Tabelle der Uberfiihrungsfunktion 4, der den
Jjeweiligen Ubergang inklusive der Kopfbewegung beschreibt.

Oqo) " [1q1] " [ 1]’ [0g2) " [1q1] [ 1] |0g2] " |1g2] " |Bgo
Wir werden spater noch weitere Steine zur Liste erlaubter Dominos
hinzufiigen.
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Simulation einer TM durch Dominos — ein Beispiel

Beobachtung:
Wenn wir das Startdomino mit einer Folge von Dominos aus der
Liste der erlaubten Dominos derart ergdnzen, dass der obere String
ein Prefix des unteren Strings ist, so
@ rekonstruieren wir im unteren String die Konfigurationsfolge
von M auf w, und
@ der obere String folgt dem unteren mit einer Konfiguration im
Riickstand.
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Simulation einer TM durch Dominos — ein Beispiel

Rekonstruktion der Konfigurationsfolge

Die ersten Dominos in der Losung des Puzzles sind

[ o ] z [qoo] [9] H [1- [ﬁ]

H#qo0011# (#] [0go] (0] [1] [T1] [#
(#7107 [q00] [17 [1] [#]
#] |0] _OCIO] H [T_ #]
[#7 707 [07 [qol] [1] [#]
|#] (0] 0] _1q1] [I_ #]
[#7 701707 [1] [qul] [#]
(#] 0] [0 _i] qu_ #]
(#1701 707 [1] [1] [ #
1#] [0] [0] _T] H [al#]
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Simulation einer TM durch Dominos — ein Beispiel

Vielleicht ist es jemandem aufgefallen, im letzten Schritt haben wir
ein wenig gemogelt. Wir haben ein Domino verwendet, das nicht in
der zuvor spezifizierten Liste erlaubter Dominos enthalten ist.
Tatsachlich erganzen wir die Liste erlauber Dominos um die

folgenden Elemente.
[qo#] [ql#}
qlat ] Laler

Die Aufgabe dieser Dominos ist es Uberfiihrungen zu realisieren,
die auf ein implizites Blank-Symbol am Ende der Konfiguration
zuriickgreifen.
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Simulation einer TM durch Dominos — ein Beispiel

Wie kénnen wir es schaffen, dass der obere String seinen Riickstand
am Ende der Rechnung aufholt? —Zu diesem Zweck ergdnzen wir
die Liste der erlaubten Dominos um die folgenden Elemente.

5555 G

Desweiteren fligen wir noch ein Abschlussdomino hinzu.

{#a##}
#

Beachte, diese Dominos kdnnen nur dann zum Einsatz kommen,

wenn der Endzustand g erreicht ist, also nur wenn die Rechnung
der TM terminiert.
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Simulation einer TM durch Dominos — ein Beispiel

Rekonstruktion der Konfigurationsfolge — Fortsetzung

Fe13k FR[3k I3k IRk IR[FF FH([3k

r 1T 1T 1T 1
Ol Ol Ol Oo|lo
L L L

al§ oo

O Ol Oolo olo olo
1L 1L 1L

QI

<l

SR

| I

el e = A e =
I L L )

| —

|3

| S

g
| I

r
| —

SYR

1T 1T 1

‘Q||Q| I S
[

SR

%)
ql#

5] [

Prof. Berthold Vécking prasentiert durch Prof. Joost-Pieter Kato  Berechenbarkeit und Komplexitat



Simulation einer TM durch Dominos — ein Beispiel

Jetzt stimmt der obere mit dem unteren String iiberein.
(Skeptiker vergleichen jeweils den unteren String in einer Zeile mit
dem oberen String in der darunter liegenden Zeile.)

Die Idee hinter der obigen Konstruktion ist es, eine Eingabe fiir das
Halteproblem in ein MPKP-Puzzle zu transformieren, so dass das
Puzzle genau dann eine Lésung hat, wenn die im Halteproblem
betrachtete TM auf ihrer Eingabe hilt. Unser Beipiel hat erldutert,
wie eine derartige Transformation fiir eine bestimmte Eingabe des
Halteproblems aussehen kénnte. Der folgende Beweis fiir Lemma B
verallgemeinert und formalisiert das Vorgehen aus unserem
Beispiel.
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Beweis von Lemma B (H < MPKP)

Wir beschreiben eine berechenbare Funktion f, die eine syntaktisch
korrekte Eingabe fiir H der Form ((M), w) auf eine syntaktisch
korrekte Instanz K = f(((M), w)) fiir das MPKP abbildet, so dass
gilt

M hiélt auf w < K hat eine Lésung .
Syntaktisch nicht korrekte Eingaben fiir H werden auf syntaktisch
nicht korrekte Eingaben fiir MPKP abgebildet.

Das Alphabet, das wir fiir die MPKP-Instanz verwenden ist
MU QU {#}, wobei gelte # ¢ T U Q.
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Beweis von Lemma B (H < MPKP)

Konstruktion der Funktion

Gegeben sei das Tupel ((M), w). Wir beschreiben, welche Dominos
die Menge K = f(({(M), w)) enthilt.

Das Startdomino ist von der Form
Eeerd
#HqowH

Desweiteren enthalte K die folgenden Arten von Dominos.

Kopierdominos:

F} fir alle a € T U {#}
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Beweis von Lemma B (H < MPKP)

Uberfiihrungsdominos:

[% falls 5(g,a) = (¢, c, N), fir g € Q\{g}, aeT

[g_:, falls 5(g,a) = (¢, ¢, R), fir g € @\ {g}, a€T

[c[;’ct]i falls 6(q,a) = (¢',c, L), fir ge Q\{g}, a,beT

Prof. Berthold Vécking prasentiert durch Prof. Joost-Pieter Kato  Berechenbarkeit und Komplexitat



Beweis von Lemma B (H < MPKP)

Spezielle Uberfiihrungsdominos, die implizite Blanks
beriicksichtigen:

[##;f’éc: falls §(q,a) = (¢’ ¢, L), fir g € Q\ {g}, ae T
[q‘/’f#: falls 6(q, B) = (¢', c, N), fiir g € Q\ {g}
[cﬁ#: falls 6(q, B) = (¢, ¢, R), fiir g € Q\ {g}
{q’/’;’f#: falls 6(q, B) = (¢',c, L), fir g€ Q\ {g}, beT

[%i falls 5(q, B) = (¢, c, L), fiir g € @\ {3}
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Beweis von Lemma B (H < MPKP)

Léschdominos: _ _
[a__q} und [@] firael
q q
Abschlussdominos: ~
{#q##}
=

Dies sind alle Dominos in der MPKP Instanz. Die Beschreibung der
Funktion f ist somit abgeschlossen.
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Beweis von Lemma B (H < MPKP)

Wir beweisen nun die Korrektheit der Konstruktion:
zu zeigen: f ist berechenbar. Gilt offensichtlich.
zu zeigen: M hilt auf w = K € MPKP

Wenn M auf w halt, so entspricht die Rechnung von M auf w
einer endlichen Konfigurationsfolge der Form

ko ki b oo b keer okt

wobei kg die Startkonfiguration und k; die Endkonfiguration im
Zustand g.
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Beweis von Lemma B (H < MPKP)

In diesem Fall kdnnen wir beginnend mit dem Startdomino nach
und nach Kopier- und Uberfiihrungsdominos hinzulegen, so dass

@ der untere String die vollstdndige Konfigurationsfolge von M
auf w in der folgenden Form darstellt

7 Ko #7F ki #4F -+ #H ke #H ke 3

und

@ der obere String ein Prefix des unteren Strings ist, ndmlich

T Ko #9F ko #4F - - #H Ke-1 7
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Beweis von Lemma B (H < MPKP)

Durch Hinzufiigen von Loschdominos kann jetzt der Riickstand des
oberen Strings fast ausgeglichen werden. Danach sind beide Strings
identisch bis auf ein Suffix der Form

#a# .
Dieses Suffix fehlt im oberen String.

Nach Hinzufiigen des Abschlussdominos

&

sind beide Strings somit identisch.

Wenn M auf w hilt, gilt somit K € MPKP.
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Beweis von Lemma B (H < MPKP)

zu zeigen: M hilt nicht auf w = K & MPKP

Zum Zweck des Widerspruchs nehmen wir an, dass M nicht auf w
hilt, aber K € MPKP.

Beobachtung:

Jede korrespondierende Folge enthalt zumindest einen Losch- oder
Abschlussdomino, denn sonst ware der untere String langer als der
obere, weil beim Startdomino der obere String kiirzer als der untere
ist, und bei den Kopier- und Uberfiihrungsdominos der obere String
niemals langer als der untere ist.

Sei nun 1, /ip,..., i, eine korrespondierende Folge fiir K.

Die Teilfolge 1,1/, ...,is_1 bestehe nur aus dem Startdomino sowie
folgenden Kopier- und Uberfiihrungsdominos. Der Domino is sei
der erste Losch- oder Abschlussdomino in der Folge.
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Beweis von Lemma B (H < MPKP)

Zunichst betrachten wir die Teilfolge 1, i, ..., is_1.

o Die Kopier- und Uberfiihrungsdominos sind derart definiert,
dass bei Einhaltung der Ubereinstimmung zwischen dem
oberem und dem unterem String die Konfigurationsfolge der
Rechnung von M auf w entsteht.

@ Der obere String folgt dabei dem unterem String mit
Riickstand einer Konfiguration.

@ Da die Rechnung von M auf w nicht terminiert, kann in der
Konfigurationsfolge der Zustand g nicht auftauchen.

Der Losch- oder Abschlussdomino is enthilt jedoch im oberen
Wort den Zustand g. Das Hinzufiigen dieses Dominos verletzt
somit die Ubereinstimmung zwischen den beiden Strings.

Dies steht jedoch im Widerspruch zur Annahme, dass eine
korrespondierende Folge vorliegt. O
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