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Hilberts zehntes Problem

Im Jahr 1900 präsentierte der Mathematiker David Hilbert 23
mathematische Probleme auf einem Kongress in Paris.

Hilberts zehntes Problem (im Originalwortlaut)

Eine diophantische Gleichung mit irgendwelchen Unbekannten und
mit ganzen rationalen Zahlenkoeffizienten sei vorgelegt: Man soll

ein Verfahren angeben, nach welchem sich mittels einer endlichen

Anzahl von Operationen entscheiden läßt, ob die Gleichung in den

ganzen rationalen Zahlen lösbar ist.

Die
”
ganzen rationalen Zahlen“, von denen in diesem Problem die

Rede ist, sind die ganzen Zahlen aus Z, wie wir sie kennen.

”
Diophantische Gleichungen“ bezeichnen Gleichungen über

Polynomen in mehreren Variablen.
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Diophantische Gleichungen

Ein Term ist ein Produkt aus Variablen mit einem konstanten
Koeffizienten, z.B. ist

6 · x · x · x · y · z · z bzw. 6x3yz2

ein Term über den Variablen x , y , z mit dem Koeffizienten 6.

Ein Polynom ist eine Summe von Termen, z.B.

6x3yz2 + 3xy2 − x3 − 10 .

Eine diophantische Gleichung setzt ein Polynom gleich Null.
Die Lösungen der Gleichung entsprechen also den Nullstellen
des Polynoms. Obiges Polynom hat beispielsweise die
Nullstelle

(x , y , z) = (5, 3, 0) .
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Formulierung als Entscheidungsproblem

Hilberts zehntes Problem (in unseren Worten)

Beschreibe einen Algorithmus, der entscheidet, ob ein gegebenes
Polynom mit ganzzahligen Koeffizienten eine ganzzahlige Nullstelle
hat.

Die diesem Entscheidungsproblem zugrundeliegende Sprache ist

N = { p | p ist ein Polynom mit einer ganzzahligen Nullstelle} .
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Rekursive Aufzählbarkeit von N

Gegeben sei ein Polynom p mit ℓ Variablen.

Der Wertebereich von p entspricht der abzählbar unendlichen
Menge Z

ℓ.

Der folgende Algorithmus erkennt N:

Zähle die ℓ-Tupel aus Z
ℓ in kanonischer Reihenfolge auf und

werte p für jedes dieser Tupel aus.

Akzeptiere sobald eine der Auswertungen den Wert Null

ergibt.

Fazit: N ist rekursiv aufzählbar.
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Ist N entscheidbar? – Diskussion

Falls wir eine obere Schranke für die Absolutwerte der
Nullstellen hätten, so bräuchten wir nur eine endliche Menge
von ℓ-Tupeln aufzählen, und N wäre somit entscheidbar.

Für Polynome über nur einer Variable gibt es tatsächlich eine
derartige obere Schranke: Für ein Polynom der Form

p(x) = akxk + ak−1x
k−1 + · · · + a1x + a0

mit ganzzahligen Koeffizienten gilt

p(x) = 0, x ∈ Z ⇒ x teilt a0. (Warum?)

Also gibt es keine Nullstelle mit Absolutwert größer als |a0|.

Eingeschränkt auf Polynome mit nur einer Variable ist das
Nullstellenproblem damit entscheidbar.
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Ist N entscheidbar? – Diskussion

Für Polynome mit mehreren Variablen gibt es leider keine
obere Schranke für die Absolutwerte der Nullstellen. Um das
einzusehen, betrachte beispielsweise das Polynom x + y .

Aber vielleicht, gibt es ja eine obere Schranke für die
Nullstelle mit den kleinsten Absolutwerten?

Oder vielleicht gibt es ganz andere Möglichkeiten einem
Polynom anzusehen, ob es eine ganzzahlige Nullstelle hat?

Erst knapp siebzig Jahre nachdem Hilbert sein Problem
präsentiert hat, konnte Yuri Matijasevič, all’ diese Fragen
beantworten, und zwar negativ!
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Unentscheidbarkeit des Nullstellenproblems

Hilbert hat die folgende Antwort nicht erwartet.

Satz von Matijasevič (1970)

Das Problem, ob ein ganzzahliges Polynom eine ganzzahlige Null-
stelle hat, ist unentscheidbar.

Damit ist Hilberts zehntes Problem unlösbar.
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Unentscheidbarkeit des Nullstellenproblems

Der Beweis des Satzes von Matijasevič beruht auf einer Kette von
Reduktionen durch die letztendlich das Halteproblem H auf das
Nullstellenproblem N reduziert wird. Yuri Matijasevič hat

”
lediglich“ das letzte Glied dieser Kette geschlossen. Andere

wichtige Beiträge zu diesem Ergebnis wurden zuvor von Martin
Davis, Julia Robinson und Hilary Putnan erbracht.

Leider ist der Beweis zu komplex, um ihn im Rahmen dieser
Vorlesung präsentieren zu können. Wir schauen uns nun eine
anderes klassisches Problem an, für das wir hier beweisen können,
dass es nicht entscheidbar ist.
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Das Postsche Korrespondenzproblem – Einführung

Das Postsche Korrespondenzproblem ist eine Art von Puzzle aus
Dominos. Jedes Domino ist mit zwei Wörtern über einem Alphabet
Σ beschrieben, ein Wort in der oberen Hälfte und eines in der
unteren. Gegeben sei eine Menge K von Dominos z.B.

K =

{[

b

ca

]

,
[ a

ab

]

,
[ca

a

]

,

[

abc

c

]}

.

Die Aufgabe besteht darin, eine Folge von Dominos aus K zu
ermitteln, so dass sich oben und unten dasselbe Wort ergibt. Die
Folge soll aus mindestens einem Domino bestehen.
Wiederholungen von Dominos sind erlaubt. Ein Beispiel für eine
derartige korrespondierende Folge über K ist

[ a

ab

]

[

b

ca

]

[ca

a

] [ a

ab

]

[

abc

c

]

.
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Das Postsche Korrespondenzproblem – Einführung

Nicht für jede Menge K ist dies möglich, z.B. gibt es keine
korrespondierende Folge für die Menge

K =

{[

abc

ca

]

,

[

abca

abc

]

,

[

abc

bc

]}

,

weil für jede Folge die sich aus diesen Dominos bilden lässt, das
obere Wort länger als das untere ist.
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Definition des Postschen Korrespondenzproblem

Definition: Postsches Korrespondenzproblem (PKP)

Eine Instanz des PKP besteht aus einer Menge

K =

{[

x1

y1

]

, . . . ,

[

xk

yk

]}

,

wobei xi und yi nichtleere Wörter über einem endlichen Alphabet
Σ sind. Es soll entschieden werden, ob es eine korrespondierende

Folge von Indizes i1, . . . , in ∈ {1, . . . , k}, n ≥ 1 gibt, so dass gilt
xi1xi2 . . . xin = yi1yi2 . . . yin .

Die Elemente der Menge K bezeichnen wir als Dominos.

Wir werden die Unentscheidbarkeit des PKP durch eine kurze
Reduktionskette nachweisen, die einen Umweg über eine Variante
des PKP nimmt.
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Definition des Modifizierten PKP

Definition: Modifiziertes PKP (MPKP)

Eine Instanz des MPKP besteht aus einer geordneten Menge

K =

([

x1

y1

]

, . . . ,

[

xk

yk

])

.

wobei xi und yi nichtleere Wörter über einem endlichen Alphabet
Σ sind. Es soll entschieden werden, ob es eine korrespondierende

Folge von Indizes i2, . . . , in ∈ {1, . . . , k}, n ≥ 1 gibt, so dass gilt
x1, xi2 . . . xin = y1, yi2 . . . yin .

Die Modifizierung liegt darin, dass wir einen Startdomino bestimmt
haben, mit dem die korrespondierende Folge beginnen muss.
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Reduktionskette

Wir werden die folgenden zwei Aussagen beweisen.

Lemma A

MPKP ≤ PKP .

Lemma B

H ≤ MPKP .

Aus der Transitivität der Reduktion (Übungsaufgabe) folgt
H ≤ PKP .
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Die Unentscheidbarkeit des PKP

Nach dem Reduktionsprinzip folgt nun

H ≤ PKP und PKP rekursiv ⇒ H rekursiv.

Aus der Nichtentscheidbarkeit des Halteproblems ergibt sich somit
der folgende Satz.

Satz

Das PKP ist nicht rekursiv.

Wir müssen
”
nur“ noch Lemma A und Lemma B beweisen.
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Beweis von Lemma A (MPKP ≤ PKP)

Beschreibung der Funktion f :

# und $ seien zwei Symbole, die nicht im Alphabet Σ des MPKP
enthalten sind.

Wir bilden K =

([

x1

y1

]

, . . . ,

[

xk

yk

])

auf

f (K ) =

{

[

x ′

0

y ′

0

]

,

[

x ′

1

y ′

1

]

, . . . ,

[

x ′

k

y ′

k

]

,

[

x ′

k+1

y ′

k+1

]}

ab, wobei

x ′

i aus xi (für 1 ≤ i ≤ k) entsteht, indem wir hinter jedem
Zeichen ein # einfügen, und .

y ′

i aus yi (für 1 ≤ i ≤ k) entsteht, indem wir vor jedem
Zeichen ein # einfügen, y ′

0 = y ′

1 und y ′

k+1 = #$.

Ferner setzen wir x ′

0 = #x ′

1, x ′

k+1 = $, y ′

0 = y ′

1 und y ′

k+1 = #$.
Für syntaktisch inkorrekte Eingaben sei f die Identität.

Offensichtlich ist f berechenbar.
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Beweis von Lemma A (MPKP ≤ PKP)

Beispiel:

K =

([

ab

a

]

,
[ c

abc

]

,
[a

b

]

)

wird abgebildet auf

f (K ) =

{[

#a#b#

#a

]

,

[

a#b#

#a

]

,

[

c#

#a#b#c

]

,

[

a#

#b

]

,

[

$

#$

]}

.

Lösung des MPKP:

[

ab

a

]

[a

b

]

[

ab

a

]

[ c

abc

]

Lösung des PKP:

[

#a#b#

#a

] [

a#

#b

] [

a#b#

#a

] [

c#

#a#b#c

] [

$

#$

]
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Beweis von Lemma A (MPKP ≤ PKP)

zu zeigen: K ∈ MPKP ⇒ f (K ) ∈ PKP

Sei (1, i2, . . . , in) eine Lösung für K , d.h.

x1xi2 . . . xin = y1yi2 . . . yin = a1a2 . . . as

für geeignet gewählte Symbole a1, . . . , as aus Σ.

Dann ist (0, i2, . . . , in, k + 1) eine Lösung für f (K ), denn

x ′

0x
′

i2
. . . x ′

in
$ = #a1#a2# . . . #as#$ = y ′

0y
′

i2
. . . y ′

in
#$

Gibt es also eine Lösung für K bzgl. MPKP, so gibt es auch eine
Lösung für f (K ) bzgl. PKP.

Somit haben wir gezeigt K ∈ MPKP ⇒ f (K ) ∈ PKP .
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Beweis von Lemma A (MPKP ≤ PKP)

zu zeigen: f (K ) ∈ PKP ⇒ K ∈ MPKP

Sei nun (i1, i2, . . . , in) eine Lösung minimaler Länge für f (K ).

Beobachtung 1: Es gilt i1 = 0 und in = k + 1, weil nur x ′

0 und
y ′

0 mit demselben Zeichen beginnen und nur x ′

k+1 und y ′

k+1

mit demselben Zeichen enden.

Beobachtung 2: Es gilt ij 6= 0 für 2 ≤ j ≤ n, weil sonst zwei
#-Zeichen im oberen Wort direkt aufeinander folgen würden,
was im unteren Wort unmöglich ist.

Beobachtung 3: Es gilt ij 6= k + 1 für 1 ≤ j < n, denn würde
das $-Zeichen vorher auftreten, könnten wir die vorliegende
minimale korrespondierende Folge nach dem ersten
Vorkommen des $-Zeichens abschneiden und hätten eine noch
kürzere Lösung gefunden.
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Beweis von Lemma A (MPKP ≤ PKP)

Aus den Beobachtungen folgt, unsere PKP-Lösung für f (K ) hat
die Struktur

x ′

0x
′

i2
. . . x ′

in
= #a1#a2# . . . #as#$ = y ′

0y
′

i2
. . . y ′

in

für geeignet gewählte Symbole a1, . . . , as aus Σ.

Daraus ergibt sich die folgende MPKP-Lösung für K :

x1xi2 . . . xin−1
= a1a2 . . . as = y1yi2 . . . yin−1

.

Somit gilt f (K ) ∈ PKP ⇒ K ∈ MPKP . �
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Simulation einer TM durch Dominos – ein Beispiel

Scheinbar haben Dominos wenig mit Turingmaschinen zu tun. In
Lemma B wird dennoch behauptet, dass man mit Hilfe eines
Puzzles aus Dominos das Halteproblem für Turingmaschinen
entscheiden kann. Bevor wir in den Beweis des Lemmas einsteigen,
möchten wir auf der Basis eines umfangreichen Beispiels
illustrieren, wie die Rechnung einer Turingmaschine durch ein
Puzzle aus Dominos

”
simuliert“ werden kann.
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Simulation einer TM durch Dominos – ein Beispiel

Betrachte die folgende TM M:

Σ = {0, 1}, Γ = {0, 1,B}, Q = {q0, q1, q2, q̄}.

Die Überführungsfunktion δ sei gegeben durch

δ 0 1 B

q0 (q0, 0,R) (q1, 1,R) (q̄, 1,N)

q1 (q2, 0,R) (q1, 1,R) (q̄, 1,N)

q2 (q2, 0,R) (q2, 1,R) (q2,B ,R)

Die TM M erkennt, ob das Eingabewort von der Form 0i1j ,
i , j ≥ 0, ist. Bei Eingabe eines Wortes dieser Form terminiert (und
akzeptiert) die Rechnung im Zustand q̄, ansonsten läuft der Kopf
im Zustand q2 weiter und weiter nach rechts.
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Simulation einer TM durch Dominos – ein Beispiel

Die Rechnung der TM auf einer gegebenen Eingabe kann durch
eine Konfigurationsfolge beschrieben werden.

Konfigurationsfolge von M auf Eingabe w = 0011

q00011 ⊢ 0q0011 ⊢ 00q011 ⊢ 001q11 ⊢ 0011q1B ⊢ 0011q̄1

Wir möchten die Rechnung einer TM auf einer Eingabe durch ein
Puzzle aus Dominos

”
simulieren“. Dieses Puzzle entspricht dem

MPKP. Als Startdomino für das MPKP wählen wir ein Domino bei
dem das untere Wort aus der Anfangskonfiguration mit ein paar
zusätzlichen Trennsymbolen besteht.

[

#

##q00011#

]

.
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Simulation einer TM durch Dominos – ein Beispiel

Das Puzzle für unsere Beispielrechnung (M,w) enthält unter
anderem jeweils ein Domino für jedes Zeichen aus Γ ∪ {#}.

[

0

0

]

,

[

1

1

]

,

[

B

B

]

,

[

#

#

]

Wir erweitern diese Liste erlaubter Dominos um je ein Domino für
jeden Eintrag in der Tabelle der Überführungsfunktion δ, der den
jeweiligen Übergang inklusive der Kopfbewegung beschreibt.

[

q00

0q0

]

,

[

q01

1q1

]

,

[

q0B

q̄1

]

,

[

q10

0q2

]

,

[

q11

1q1

]

,

[

q1B

q̄1

]

,

[

q20

0q2

]

,

[

q21

1q2

]

,

[

q2B

Bq2

]

Wir werden später noch weitere Steine zur Liste erlaubter Dominos
hinzufügen.
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Simulation einer TM durch Dominos – ein Beispiel

Beobachtung:

Wenn wir das Startdomino mit einer Folge von Dominos aus der
Liste der erlaubten Dominos derart ergänzen, dass der obere String
ein Prefix des unteren Strings ist, so

rekonstruieren wir im unteren String die Konfigurationsfolge
von M auf w , und

der obere String folgt dem unteren mit einer Konfiguration im
Rückstand.
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Simulation einer TM durch Dominos – ein Beispiel

Rekonstruktion der Konfigurationsfolge

Die ersten Dominos in der Lösung des Puzzles sind

[

#

##q00011#

] [

#

#

] [

q00

0q0

] [

0

0

] [

1

1

] [

1

1

] [

#

#

]

[

#

#

] [

0

0

] [

q00

0q0

] [

1

1

] [

1

1

] [

#

#

]

[

#

#

] [

0

0

] [

0

0

] [

q01

1q1

] [

1

1

] [

#

#

]

[

#

#

] [

0

0

] [

0

0

] [

1

1

] [

q11

1q1

] [

#

#

]

[

#

#

] [

0

0

] [

0

0

] [

1

1

] [

1

1

] [

q1#

q̄1#

]

. . .
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Simulation einer TM durch Dominos – ein Beispiel

Vielleicht ist es jemandem aufgefallen, im letzten Schritt haben wir
ein wenig gemogelt. Wir haben ein Domino verwendet, das nicht in
der zuvor spezifizierten Liste erlaubter Dominos enthalten ist.
Tatsächlich ergänzen wir die Liste erlauber Dominos um die
folgenden Elemente.

[

q0#

q̄1#

]

,

[

q1#

q̄1#

]

Die Aufgabe dieser Dominos ist es Überführungen zu realisieren,
die auf ein implizites Blank-Symbol am Ende der Konfiguration
zurückgreifen.
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Simulation einer TM durch Dominos – ein Beispiel

Wie können wir es schaffen, dass der obere String seinen Rückstand
am Ende der Rechnung aufholt? –Zu diesem Zweck ergänzen wir
die Liste der erlaubten Dominos um die folgenden Elemente.

[

q̄0

q̄

]

,

[

q̄1

q̄

]

,

[

q̄B

q̄

]

,

[

0q̄

q̄

]

,

[

1q̄

q̄

]

,

[

Bq̄

q̄

]

Desweiteren fügen wir noch ein Abschlussdomino hinzu.

[

#q̄##

#

]

Beachte, diese Dominos können nur dann zum Einsatz kommen,
wenn der Endzustand q̄ erreicht ist, also nur wenn die Rechnung
der TM terminiert.
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Simulation einer TM durch Dominos – ein Beispiel

Rekonstruktion der Konfigurationsfolge – Fortsetzung

...

[

#

#

] [

0

0

] [

0

0

] [

1

1

] [

1

1

] [

q1#

q̄1#

]

[

#

#

] [

0

0

] [

0

0

] [

1

1

] [

1

1

] [

q̄1

q̄

] [

#

#

]

[

#

#

] [

0

0

] [

0

0

] [

1

1

] [

1q̄

q̄

] [

#

#

]

[

#

#

] [

0

0

] [

0

0

] [

1q̄

q̄

] [

#

#

]

[

#

#

] [

0

0

] [

0q̄

q̄

] [

#

#

]

[

#

#

] [

0q̄

q̄

] [

#

#

] [

#q̄##

#

]

.
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Simulation einer TM durch Dominos – ein Beispiel

Jetzt stimmt der obere mit dem unteren String überein.
(Skeptiker vergleichen jeweils den unteren String in einer Zeile mit
dem oberen String in der darunter liegenden Zeile.)

Die Idee hinter der obigen Konstruktion ist es, eine Eingabe für das
Halteproblem in ein MPKP-Puzzle zu transformieren, so dass das
Puzzle genau dann eine Lösung hat, wenn die im Halteproblem
betrachtete TM auf ihrer Eingabe hält. Unser Beipiel hat erläutert,
wie eine derartige Transformation für eine bestimmte Eingabe des
Halteproblems aussehen könnte. Der folgende Beweis für Lemma B
verallgemeinert und formalisiert das Vorgehen aus unserem
Beispiel.
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Beweis von Lemma B (H ≤ MPKP)

Wir beschreiben eine berechenbare Funktion f , die eine syntaktisch
korrekte Eingabe für H der Form (〈M〉,w) auf eine syntaktisch
korrekte Instanz K = f ((〈M〉,w)) für das MPKP abbildet, so dass
gilt

M hält auf w ⇔ K hat eine Lösung .

Syntaktisch nicht korrekte Eingaben für H werden auf syntaktisch
nicht korrekte Eingaben für MPKP abgebildet.

Das Alphabet, das wir für die MPKP-Instanz verwenden ist
Γ ∪ Q ∪ {#}, wobei gelte # 6∈ Γ ∪ Q.
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Beweis von Lemma B (H ≤ MPKP)

Konstruktion der Funktion f

Gegeben sei das Tupel (〈M〉,w). Wir beschreiben, welche Dominos
die Menge K = f ((〈M〉,w)) enthält.

Das Startdomino ist von der Form
[

#

##q0w#

]

.

Desweiteren enthalte K die folgenden Arten von Dominos.

Kopierdominos:
[a

a

]

für alle a ∈ Γ ∪ {#}
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Beweis von Lemma B (H ≤ MPKP)

Überführungsdominos:

[

qa

q′c

]

falls δ(q, a) = (q′, c ,N), für q ∈ Q \ {q̄}, a ∈ Γ

[

qa

cq′

]

falls δ(q, a) = (q′, c ,R), für q ∈ Q \ {q̄}, a ∈ Γ

[

bqa

q′bc

]

falls δ(q, a) = (q′, c ,L), für q ∈ Q \ {q̄}, a, b ∈ Γ
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Beweis von Lemma B (H ≤ MPKP)

Spezielle Überführungsdominos, die implizite Blanks
berücksichtigen:

[

#qa

#q′Bc

]

falls δ(q, a) = (q′, c ,L), für q ∈ Q \ {q̄}, a ∈ Γ

[

q#

q′c#

]

falls δ(q,B) = (q′, c ,N), für q ∈ Q \ {q̄}

[

q#

cq′#

]

falls δ(q,B) = (q′, c ,R), für q ∈ Q \ {q̄}

[

bq#

q′bc#

]

falls δ(q,B) = (q′, c ,L), für q ∈ Q \ {q̄}, b ∈ Γ

[

#q#

#q′Bc#

]

falls δ(q,B) = (q′, c ,L), für q ∈ Q \ {q̄}
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Beweis von Lemma B (H ≤ MPKP)

Löschdominos:
[

aq̄

q̄

]

und

[

q̄a

q̄

]

für a ∈ Γ

Abschlussdominos:
[

#q̄##

#

]

Dies sind alle Dominos in der MPKP Instanz. Die Beschreibung der
Funktion f ist somit abgeschlossen.
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Beweis von Lemma B (H ≤ MPKP)

Wir beweisen nun die Korrektheit der Konstruktion:

zu zeigen: f ist berechenbar. Gilt offensichtlich.

zu zeigen: M hält auf w ⇒ K ∈ MPKP

Wenn M auf w hält, so entspricht die Rechnung von M auf w

einer endlichen Konfigurationsfolge der Form

k0 ⊢ k1 ⊢ · · · ⊢ kt−1 ⊢ kt ,

wobei k0 die Startkonfiguration und kt die Endkonfiguration im
Zustand q̄.
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In diesem Fall können wir beginnend mit dem Startdomino nach
und nach Kopier- und Überführungsdominos hinzulegen, so dass

der untere String die vollständige Konfigurationsfolge von M

auf w in der folgenden Form darstellt

## k0 ## k1 ## · · ·## kt−1 ## kt # ,

und

der obere String ein Prefix des unteren Strings ist, nämlich

## k0 ## k1 ## · · ·## kt−1 # .
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Durch Hinzufügen von Löschdominos kann jetzt der Rückstand des
oberen Strings fast ausgeglichen werden. Danach sind beide Strings
identisch bis auf ein Suffix der Form

#q̄# .

Dieses Suffix fehlt im oberen String.

Nach Hinzufügen des Abschlussdominos

[

#q̄##

#

]

sind beide Strings somit identisch.

Wenn M auf w hält, gilt somit K ∈ MPKP .
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zu zeigen: M hält nicht auf w ⇒ K 6∈ MPKP

Zum Zweck des Widerspruchs nehmen wir an, dass M nicht auf w

hält, aber K ∈ MPKP .

Beobachtung:

Jede korrespondierende Folge enthält zumindest einen Lösch- oder
Abschlussdomino, denn sonst wäre der untere String länger als der
obere, weil beim Startdomino der obere String kürzer als der untere
ist, und bei den Kopier- und Überführungsdominos der obere String
niemals länger als der untere ist.

Sei nun 1, i2, . . . , in eine korrespondierende Folge für K .
Die Teilfolge 1, i2, . . . , is−1 bestehe nur aus dem Startdomino sowie
folgenden Kopier- und Überführungsdominos. Der Domino is sei
der erste Lösch- oder Abschlussdomino in der Folge.
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Zunächst betrachten wir die Teilfolge 1, i2, . . . , is−1.

Die Kopier- und Überführungsdominos sind derart definiert,
dass bei Einhaltung der Übereinstimmung zwischen dem
oberem und dem unterem String die Konfigurationsfolge der
Rechnung von M auf w entsteht.

Der obere String folgt dabei dem unterem String mit
Rückstand einer Konfiguration.

Da die Rechnung von M auf w nicht terminiert, kann in der
Konfigurationsfolge der Zustand q̄ nicht auftauchen.

Der Lösch- oder Abschlussdomino is enthält jedoch im oberen
Wort den Zustand q̄. Das Hinzufügen dieses Dominos verletzt
somit die Übereinstimmung zwischen den beiden Strings.

Dies steht jedoch im Widerspruch zur Annahme, dass eine
korrespondierende Folge vorliegt. �
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