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P versus NP

Definition von Polynomialzeitalgorithmus

Definition (worst case Laufzeit eines Algorithmus)

Die worst case Laufzeit ta(n), n € IN, eines Algorithmus A
entspricht den maximalen Laufzeitkosten auf Eingaben der Linge n
beziiglich des logarithmischen KostenmaBes der RAM.

Definition (Polynomialzeitalgorithmus)

Wir sagen, die worst case Laufzeit ta(n) eines Algorithmus A ist
polynomiell beschrankt, falls gilt

Ja € IN : ta(n) = O(n®) .

Einen Algorithmus mit polynomiell beschrankter worst case
Laufzeit bezeichnen wir als Polynomialzeitalgorithmus.
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Definition der Klasse P

Definition (Komplexitatsklasse P)

P ist die Klasse der Probleme, fiir die es einen Polynomialzeit-
algorithmus gibt.

Anmerkungen:

@ Alternativ kann man sich auch auf die Laufzeit einer TM
beziehen, da sich RAM und TM gegenseitig mit polynomiellen
Zeitverlust simulieren kdnnen.

@ Polynomialzeitalgorithmen werden haufig auch als , effiziente
Algorithmen® bezeichnet.

@ P ist in diesem Sinne die Klasse derjenigen Probleme, die
effizient gelost werden konnen.
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Beispiele fiir Probleme in P

]
]
]
]
]
]
]
]
]

Sortieren

Kiirzeste Wege

Minimaler Spannbaum
Graphzusammenhang
Maximaler Fluss

Maximum Matching
Lineare Programmierung
GroBter Gemeinsamer Teiler
Primzahltest
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Warum ist Sortieren in P?

Problem (Sortieren)

Eingabe: N Zahlen a1, ..., ay € IN
Ausgabe: aufsteigend sortierte Folge der Eingabezahlen

Anmerkung: Soweit wir nichts anderes sagen, nehmen wir an,
dass Zahlen binar kodiert sind.
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Warum ist Sortieren in P?

Sortieren € P.

Beweis:

@ Wir lésen das Problem beispielsweise mit Mergesort.

o Laufzeit im uniformen KostenmaB: O(N log N).

@ Laufzeit im logarithmischen KostenmaB: O(¢/N log N), wobei
¢ = maxi<j<p log(a;).

@ Sei n die Eingabeldnge. Es gilt / < nund logN < N < n.

@ Somit ist die Laufzeit beschriankt durch ¢Nlog N < n3.
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Warum ist Graphzusammenhang in P?

Problem (Graphzusammenhang)

Eingabe: Graph G = (V,E)
Frage: Ist G zusammenhingend?

Anmerkung: Bei Graphproblemen gehen wir grundsatzlich davon
aus, dass der Graph in Form einer Adjazenzmatrix eingegeben wird.
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Warum ist Graphzusammenhang in P?

Graphzusammenhang € P.

Beweis

@ Wir I6sen das Problem mit einer Tiefensuche.
@ Laufzeit im uniformen KostenmaB: O(|V|+ |E|)

@ Laufzeit im logarithmischen KostenmaB:
O((IVI+ [EJ) - log | V)

Die Eingabeldnge ist n = |V|?> > |E]|.
Die Gesamtlaufzeit ist somit

®

O((|VI+ E)log |V]) = O(nlogn) = O(n?) .
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Definition von NTM

Definition (Nichtdeterministische Turingmaschine — NTM)

Eine nichtdeterministische Turingmaschine (NTM) ist definiert wie
eine deterministische Turingmaschine (TM), nur die Zustandsiiber-
flihrungsfunktion wird zu einer Relation

6 C ((Q\{q}) xT) x (@ xT x{L,R,N}) .
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Erlauterung der Rechnung einer NTM

@ Eine Konfiguration K’ ist direkter Nachfolger einer Konfi-
guration K, falls K’ durch einen der in ¢ beschriebenen
iiberginge aus K hervorgeht.

@ Rechenweg = Konfigurationsfolge, die mit Startkonfiguration
beginnt und mit Nachfolgekonfigurationen fortgesetzt wird bis
sie eine Endkonfiguration im Zustand g erreicht.

@ Beachte: Zu einer Konfiguration kann es mehrere direkte
Nachfolgekonfigurationen geben.Der Verlauf der Rechnung ist
also nicht eindeutig bestimmt (nicht deterministisch).
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Definition des Akzeptanzverhaltens

Definition (Akzeptanzverhalten der NTM)

Eine NTM M akzeptiert die Eingabe x € X*, falls es mindestens
einen Rechenweg von M gibt, der in eine akzeptierende End-
konfiguration fiihrt.

Die von M erkannte Sprache L(M) besteht aus allen von M
akzeptierten Woértern.
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Definition der Laufzeit

Definition (Laufzeit der NTM)

Sei M eine NTM. Die Laufzeit von M auf einer Eingabe x € L(M)
ist definiert als

Tm(x) := Lange des kiirzesten akzeptierenden Rechenweges

von M auf x .

fiir x ¢ L(M) definieren wir Tp(x) = 0.

Die worst case Laufzeit tp(n) fiir M auf Eingaben der Linge
n € IN ist definiert durch

tm(n) .= max{Tu(x) | xe X"} .
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Definition der Klasse NP

Definition (Komplexitatsklasse NP)

NP ist die Klasse der Entscheidungsprobleme, die durch eine NTM
M erkannt werden, deren worst case Laufzeit tp;(n) polynomiell
beschrinkt ist.

NP steht dabei fiir nichtdeterministisch polynomiell.
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Beispiel fiir ein Problem aus NP

Problem (Cliquenproblem — CLIQUE)

Eingabe: Graph G = (V,E), ke {1,...,|V|}
Frage: Gibt es eine k-Clique?

@ fiir das Cliquenproblem kennen wir keinen
Polynomialzeitalgorithmus.

@ Die besten bekannten Algorithmen haben eine exponentielle
Laufzeit.
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Beispiel fiir ein Problem aus NP

CLIQUE € NP.

Beweis: Wir beschreiben eine NTM M mit L(M) = CLIQUE:

© Syntaktisch inkorrekte Eingaben werden verworfen.

Q@ M ,rt" einen 0-1-String y der Lange |V/|.

QSeiC={icV]|y=1}CV.

@ M akzeptiert, falls C aus k Knoten besteht und jedes
Knotenpaar aus C durch eine Kante verbunden ist.

Korrektheit: Es gibt genau dann einen akzeptierenden Rechenweg,
wenn G eine k-Clique enthilt.

Laufzeit: Alle Schritte haben polynomielle Laufzeit. O
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Alternative Charakterisierung der Klasse NP

Eine Sprache L C X* ist genau dann in NP, wenn es einen
Polynomialzeitalgorithmus V' (einen sogenannten Verifizierer) und
ein Polynom p mit der folgenden Eigenschaft gibt:

xel & 3Fye{0,1}",|y] <p(x|): V akzeptiert y+x.
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Beweis: Von der NTM zu Zertifikat & Verifizierer

Gegeben:
@ Sei M eine NTM, die L € NP in polynomieller Zeit erkennt.
@ M'’s Laufzeit sei beschrankt durch ein Polynom gq.

e O.B.d.A. sehe die Uberfiihrungsrelation von § immer genau
zwei Uberginge vor, die wir mit 0 und 1 bezeichnen.

Konstruktion von Zertifikat und Verifizierer:

o fiir die Eingabe x € L beschreibe y € {0,1}9(") den Pfad von
M auf einem akzeptierenden Rechenweg.

@ Wir verwenden y als Zertifikat.

@ Der Verifizierer V erhilt als Eingabe y#x und simuliert einen
Rechenweg der NTM M fiir die Eingabe x.
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Beweis: Von der NTM zu Zertifikat & Verifizierer

Korrektheit der Konstruktion:
@ GemiB Konstruktion gilt

x €L < M akzeptiert x
< dy € {0, l}q(”) . V akzeptiert y#x.

@ Der Verifizierer kann die durch das Zertifikat y beschriebene
Rechnung mit polynomiellem Zeitverlust simulieren.

@ Somit erfiillen y und V die im Satz geforderten Eigenschaften.
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Beweis: Von Zertifikat & Verifizierer zur NTM

Gegeben:

Verifizierer V' mit polynomieller Laufzeitschranke und Polynom p
mit der Eigenschaft:

xel & 3Fye{0,1}"|y] < p(|]x]): V akzeptiert y#x.

Konstruktion der NTM:
Q M rit das Zertifikat y € {0,1}*, |y| < p(n).
© M fiihrt V auf y#x aus und akzeptiert, falls V akzeptiert.
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Beweis: Von Zertifikat & Verifizierer zur NTM

Korrektheit der Konstruktion:
@ M erkennt die Sprache L, weil gilt

xel < Fye{0,1}",|y| < p(n): V akzeptiert y#x
< Es gibt einen akzeptierenden Rechenweg fiir M
< M akzeptiert x.

@ Die Laufzeit von M ist polynomiell beschrankt, denn
@ die Laufzeit von Schritt 1 entspricht der Lange des Zertifikats,
und
o die Laufzeit von Schritt 2 entspricht der Laufzeit des
Verifizierers.
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Optimierungsprobleme und ihre Entscheidungsvariante

Beim Rucksackproblem (KP) suchen wir eine Teilmenge K von N
gegebenen Objekten mit Gewichten wy, ..., wy und Nutzenwerten
pi,--., PN, so dass die Objekte aus K in einen Rucksack mit

Gewichtsschranke b passen und dabei der Nutzen maximiert wird.

Problem (Rucksackproblem, Knapsack Problem — KP)
Eingabe: be N, wy,...,wy € {1,...,b}, p1,...,pn € N
zulssige Lsungen: K C {1,..., N}, sodass ) ;. w; < b

Zielfunktion: Maximiere . pi

Entscheidungsvariante: p € IN sei gegeben. Gibt es eine zulassige
Losung mit Nutzen mindestens p?
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Optimierungsprobleme und ihre Entscheidungsvariante

Beim Bin Packing Problem suchen wir eine Verteilung von N
Objekten mit Gewichten wy, ..., wy auf eine moglichst kleine
Anzahl von Behaltern mit Gewichtskapazitat jeweils b.

Problem (Bin Packing Problem — BPP)
Eingabe: b€ N, wy,...,wy € {1,...,b}
zuldssige Losungen: k € N und Fkt f: {1,...,N} — {1,... Kk},

sodassVie€{l,... k}: Z w; < b
jef=1(i)
Zielfunktion: Minimiere k (= Anzahl Behilter)

Entscheidungsvariante: k € IN ist gegeben. Passen die Objekte in
k Behilter?
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Optimierungsprobleme und ihre Entscheidungsvariante

Beim TSP ist ein vollstandiger Graph aus N Knoten (Orten) mit
Kantengewichten (Kosten) gegeben. Gesucht ist eine Rundreise
(ein Hamiltonkreis, eine Tour) mit kleinstméoglichen Kosten.

Problem (Traveling Salesperson Problem — TSP)
Eingabe: c(i,j) € N fiiri,j € {1,..., N} mit c(j,i) = c(i,))

zuldssige Losungen: Permutationen w auf {1,... N}
N—1

Zielfunktion: Minimiere Z c(m(i), (i + 1)) + c(m(N), (1))
i=1

Entscheidungsvariante: b € IN ist gegeben. Gibt es eine Tour der
Lange hochstens b?
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Zertifikat & Verifizierer fiir Optimierungsprobleme

Die Entscheidungsvarianten von KP, BPP und TSP sind in NP.

Beweis:

Entscheidungsvarianten von Opt.problemen haben einen natiir-
lichen Kandidaten fiir ein Zertifikat, ndmlich zuldssige Losungen.

Es muss allerdings gezeigt werden, dass

@ diese Ldsungen eine polynomiell in der Eingabelange
beschrankte Kodierungslange haben, und

@ ihre Zulassigkeit durch einen Polynomialzeitalgorithmus
berpriift werden kann.
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Zertifikat & Verifizierer fiir Optimierungsprobleme

@ KP: Die Teilmenge K C {1,..., N} kann mit N Bits kodiert
werden. Gegeben K kann die Einhaltung von Gewichts- und
Nutzenwertschranke in polynomieller Zeit {iberpriift werden.

@ BPP: Die Abbildung f : {1,...,N} — {1,..., k} kann mit
O(N log k) Bits kodiert werden. Gegeben f kann die
Einhaltung der Gewichtsschranken in polynomieller Zeit
iiberpriift werden.

@ TSP: fiir die Kodierung einer Permutation 7 werden
O(N log N) Bits benétigt. Es kann in polynomieller Zeit
iiberpriift werden, ob die durch 7 beschriebene Rundreise die
vorgegebene Kostenschranke b einhilt.

0
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Optimierungsproblem versus Entscheidungsproblem

@ Mit Hilfe eines Algorithmus, der ein Optimierungsproblem Ist,
kann man offensichtlich auch die Entscheidungsvariante Isen.
(Wie?)

@ Haufig funktioniert auch der umgekehrte Weg. Wir illustrieren
dies am Beispiel von KP.

@ In den Ubungen zeigen wir dasselbe auch fiir TSP und BPP.

Wenn die Entscheidungsvariante von KP in polynomieller Zeit
Iésbar ist, dann auch die Optimierungsvariante.
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Beweis: Entscheidungsvariante — Zwischenvariante

Zwischenvariante: Gesucht ist nicht eine optimale Lsung
sondern nur der optimale Zielfunktionswert.

Polynomialzeitalgorithmus B fiir die Zwischenvariante

Wir verwenden eine Bindrsuche mit folgenden Parametern:

N
@ Der minimale Profit ist 0. Der maximale Profit ist P := Zp,-.
i=1
@ Wir finden den optimalen Zielfunktionswert durch Binarsuche
auf dem Wertebereich {0, P}.

@ Sei A ein Polynomialzeitalgorithmus fiir die Entscheidungs-
variante von KP.

@ In jeder lteration verwenden wir Algorithmus A, der uns sagt
in welche Richtung wir weitersuchen mssen.
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Beweis: Entscheidungsvariante — Zwischenvariante

Die Anzahl der Iterationen der Binarsuche ist [log(P + 1)].

Diese Anzahl miissen wir in Beziehung zur Eingabelange n setzen.

Untere Schranke fiir die Eingabeldnge:

@ Die Kodierungsliange von a € IN ist x(a) := [log(a+1)].

@ Die Funktion k ist subadditiv, d.h. fiir alle a, b € IN gilt
k(a+ b) < k(a) + k(b).
@ Die Eingabelange n ist somit mindestens

N N
Z%(Pi) > /@(Zp;) = r(P) = Jlog(P+1)] .

Also reichen n Aufrufe von A um den optimalen Zielfunktionswert
zu bestimmen.
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Beweis: Zwischenvariante — Optimierungsvariante

Aus einem Algorithmus B fiir die Zwischenvariante konstruieren
wir jetzt einen Algorithmus C fiir die Optimierungsvariante.

QO K:={1,...,N};
Q p:= B(K);
Q fori:=1to N do
if B(K\{i})=pthen K:= K —{i};
© Ausgabe K.

Laufzeit: N + 1 Aufrufe von Algorithmus B, also polynomiell
beschrinkt, falls die Laufzeit von B polynomiell beschrankt ist.
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Die groBe offene Frage der Informatik lautet

P = NP?

Hierbei ist P natiirlich auf Entscheidungsprobleme eingeschrankt. Das
machen wir implizit immer dann, wenn P zu NP in Bezug gesetzt wird.
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Offensichtlich gilt

Klar: Denn eine (deterministische) TM ist eine spezielle NTM.
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Exponentielle Laufzeitschranke fiir Probleme aus NP

fiir jedes Entscheidungsproblem L € NP gibt es einen Algorithmus
A, der L entscheidet, und dessen worst case Laufzeit durch 29(")
nach oben beschrankt ist, wobei q ein geeignetes Polynom ist.
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Exponentielle Laufzeitschranke fiir Probleme aus NP

Beweis:

Um die Eingabe x € {0,1}" zu entscheiden,
@ starte Verifiz. V mit y#x fiir jedes Zertifikat y € {0, 1}”(”);

@ akzeptiere, falls V eines der generierten Zertifikate akzeptiert.

Laufzeitanalyse:
@ Sei p’ eine polynomielle Laufzeitschranke fiir V.

@ Die Laufzeit unseres Algorithmus ist dann hochstens

op(n) pp(n)+1+n) < op(n) . op'(p(n)+1+n)
< p(M+p'(p(n)+1+n)  _  9q(n)
fir das Polynom q(n) = p(n) + p'(p(n) + 1 + n). O
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