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präsentiert von Prof. Joost-Pieter Katoen

6. Januar 2009
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Wiederholung

Definition (Komplexitätsklasse P)

P ist die Klasse der Probleme, für die es einen Polynomialzeit-
algorithmus gibt.

Definition (Komplexitätsklasse NP)

NP ist die Klasse der Entscheidungsprobleme, die durch eine NTM
M erkannt werden, deren worst case Laufzeit tM(n) polynomiell
beschränkt ist.
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Laufzeit einer NTM

Definition (Laufzeit der NTM)

Sei M eine NTM. Die Laufzeit von M auf einer Eingabe x ∈ L(M)
ist definiert als

TM(x) := Länge des kürzesten akzeptierenden Rechenweges

von M auf x .

Für x 6∈ L(M) definieren wir TM(x) = 0.

Die worst case Laufzeit tM(n) für M auf Eingaben der Länge
n ∈ N ist definiert durch

tM(n) := max{TM(x) | x ∈ Σn} .
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Alternative Charakterisierung der Klasse NP

Satz

Eine Sprache L ⊆ Σ∗ ist genau dann in NP, wenn es einen
Polynomialzeitalgorithmus V (einen sogenannten Verifizierer) und
ein Polynom p mit der folgenden Eigenschaft gibt:

x ∈ L ⇔ ∃y ∈ {0, 1}∗, |y | ≤ p(|x |) : V akzeptiert y#x.
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Die große offene Frage der Informatik lautet

P = NP?

Hierbei ist P natürlich auf Entscheidungsprobleme eingeschränkt. Das

machen wir implizit immer dann, wenn P zu NP in Bezug gesetzt wird.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität



Polynomielle Komplexitätsklassen
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Offensichtlich gilt

P ⊆ NP.

Klar: Denn eine (deterministische) TM ist eine spezielle NTM.

Arbeitshypothese: P 6= NP
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Exponentielle Laufzeitschranke für Probleme aus NP

Satz

Für jedes Entscheidungsproblem L ∈ NP gibt es einen Algorithmus
A, der L entscheidet, und dessen worst case Laufzeit durch 2q(n)

nach oben beschränkt ist, wobei q ein geeignetes Polynom ist.

Fazit: P ⊆ NP ⊆ EXPTIME
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Exponentielle Laufzeitschranke für Probleme aus NP

Beweis:

Um die Eingabe x ∈ {0, 1}n zu entscheiden,

starte Verifiz. V mit y#x für jedes Zertifikat y ∈ {0, 1}p(n);

akzeptiere, falls V eines der generierten Zertifikate akzeptiert.

Laufzeitanalyse:

Sei p′ eine polynomielle Laufzeitschranke für V .

Die Laufzeit unseres Algorithmus ist dann höchstens

2p(n) · p′(p(n) + 1 + n) ≤ 2p(n) · 2p′(p(n)+1+n)

≤ 2p(n)+p′(p(n)+1+n) = 2q(n) .

für das Polynom q(n) = p(n) + p′(p(n) + 1 + n). �
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Optimierungsprobleme und ihre Entscheidungsvariante

Beim Rucksackproblem (KP) suchen wir eine Teilmenge K von N
gegebenen Objekten mit Gewichten w1, . . . ,wN und Nutzenwerten
p1, . . . , pN , so dass die Objekte aus K in einen Rucksack mit
Gewichtsschranke b passen und dabei der Nutzen maximiert wird.

Problem (Rucksackproblem, Knapsack Problem – KP)

Eingabe: b ∈ N, w1, . . . ,wN ∈ {1, . . . , b}, p1, . . . , pN ∈ N

zulässige Lösungen: K ⊆ {1, . . . ,N}, so dass
∑

i∈K wi ≤ b

Zielfunktion: Maximiere
∑

i∈K pi

Entscheidungsvariante: p ∈ N sei gegeben. Gibt es eine zulässige
Lösung mit Nutzen mindestens p?
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Optimierungsprobleme und ihre Entscheidungsvariante

Beim Bin Packing Problem suchen wir eine Verteilung von N
Objekten mit Gewichten w1, . . . ,wN auf eine möglichst kleine
Anzahl von Behältern mit Gewichtskapazität jeweils b.

Problem (Bin Packing Problem – BPP)

Eingabe: b ∈ N, w1, . . . ,wN ∈ {1, . . . , b}

zulässige Lösungen: k ∈ N und Fkt f : {1, . . . ,N} → {1, . . . , k},

so dass ∀i ∈ {1, . . . , k} :
∑

j∈f −1(i)

wj ≤ b

Zielfunktion: Minimiere k (= Anzahl Behälter)

Entscheidungsvariante: k ∈ N ist gegeben. Passen die Objekte in
k Behälter?
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Optimierungsprobleme und ihre Entscheidungsvariante

Beim TSP ist ein vollständiger Graph aus N Knoten (Orten) mit
Kantengewichten (Kosten) gegeben. Gesucht ist eine Rundreise
(ein Hamiltonkreis, eine Tour) mit kleinstmöglichen Kosten.

Problem (Traveling Salesperson Problem – TSP)

Eingabe: c(i , j) ∈ N für i , j ∈ {1, . . . ,N} mit c(j , i) = c(i , j)

zulässige Lösungen: Permutationen π auf {1, . . . ,N}

Zielfunktion: Minimiere
N−1∑

i=1

c(π(i), π(i + 1)) + c(π(N), π(1))

Entscheidungsvariante: b ∈ N ist gegeben. Gibt es eine Tour der
Länge höchstens b?
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Die Komplexitätsklasse P
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Zertifikat & Verifizierer für Optimierungsprobleme

Satz

Die Entscheidungsvarianten von KP, BPP und TSP sind in NP.

Beweis:

Entscheidungsvarianten von Opt.problemen haben einen natür-
lichen Kandidaten für ein Zertifikat, nämlich zulässige Lösungen.

Es muss allerdings gezeigt werden, dass

diese Lösungen eine polynomiell in der Eingabelänge
beschränkte Kodierungslänge haben, und

ihre Zulässigkeit durch einen Polynomialzeitalgorithmus
überprüft werden kann.
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Zertifikat & Verifizierer für Optimierungsprobleme

KP: Die Teilmenge K ⊆ {1, . . . ,N} kann mit N Bits kodiert
werden. Gegeben K kann die Einhaltung von Gewichts- und
Nutzenwertschranke in polynomieller Zeit überprüft werden.

BPP: Die Abbildung f : {1, . . . ,N} → {1, . . . , k} kann mit
O(N log k) Bits kodiert werden. Gegeben f kann die
Einhaltung der Gewichtsschranken in polynomieller Zeit
überprüft werden.

TSP: Für die Kodierung einer Permutation π werden
O(N log N) Bits benötigt. Es kann in polynomieller Zeit
überprüft werden, ob die durch π beschriebene Rundreise die
vorgegebene Kostenschranke b einhält.

�
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Optimierungsproblem versus Entscheidungsproblem

Mit Hilfe eines Algorithmus, der ein Optimierungsproblem
löst, kann man offensichtlich auch die Entscheidungsvariante
lösen. (Wie?)

Häufig funktioniert auch der umgekehrte Weg. Wir illustrieren
dies am Beispiel von KP.

In den Übungen zeigen wir dasselbe für TSP und BPP.

Satz

Wenn die Entscheidungsvariante von KP in polynomieller Zeit
lösbar ist, dann auch die Optimierungsvariante.
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Beweis: Entscheidungsvariante A → Zwischenvariante B

Zwischenvariante: Gesucht ist nicht eine optimale Lösung
sondern nur der optimale Zielfunktionswert.

Polynomialzeitalgorithmus B für die Zwischenvariante

Wir verwenden eine Binärsuche mit folgenden Parametern:

Der minimale Profit ist 0. Der maximale Profit ist P :=
N∑

i=1

pi .

Wir finden den optimalen Zielfunktionswert durch Binärsuche
auf dem Wertebereich {0,P}.

Sei A ein Polynomialzeitalgorithmus für die Entscheidungs-
variante von KP .

In jeder Iteration verwenden wir Algorithmus A, der uns sagt
in welche Richtung wir weitersuchen müssen.
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Beweis: Entscheidungsvariante A → Zwischenvariante B

Die Anzahl der Iterationen der Binärsuche ist ⌈log(P + 1)⌉.

Diese Anzahl müssen wir in Beziehung zur Eingabelänge n setzen.

Untere Schranke für die Eingabelänge:

Die Kodierungslänge von a ∈ N ist κ(a) := ⌈log(a + 1)⌉.

Die Funktion κ ist subadditiv, d.h. für alle a, b ∈ N gilt
κ(a + b) ≤ κ(a) + κ(b).

Die Eingabelänge n ist somit mindestens

N∑

i=1

κ(pi ) ≥ κ

(
N∑

i=1

pi

)

= κ(P) = ⌈log(P + 1)⌉ .

Also reichen n Aufrufe von A um den optimalen Zielfunktionswert
zu bestimmen.
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Beweis: Zwischenvariante B → Optimierungsvariante C

Aus einem Algorithmus B für die Zwischenvariante konstruieren
wir jetzt einen Algorithmus C für die Optimierungsvariante.

Algorithmus C

1 K := {1, . . . ,N};

2 p := B(K );

3 for i := 1 to N do

if B(K \ {i}) = p then K := K − {i};

4 Ausgabe K .

Laufzeit: N + 1 Aufrufe von Algorithmus B , also polynomiell
beschränkt, falls die Laufzeit von B polynomiell beschränkt ist.
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Polynomielle Reduktion

Definition (Polynomielle Reduktion)

L1 und L2 seien zwei Sprachen über Σ1 bzw. Σ2. L1 ist polynomiell
reduzierbar auf L2, wenn es eine Reduktion von L1 nach L2 gibt,
die in polynomieller Zeit berechenbar ist. Wir schreiben L1 ≤p L2.

D.h. L1 ≤p L2, genau dann, wenn es eine Funktion f : Σ∗
1 → Σ∗

2

mit folgenden Eigenschaften gibt:

f ist in polynomieller Zeit berechenbar

∀x ∈ Σ∗
1 : x ∈ L1 ⇔ f (x) ∈ L2
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Polynomielle Reduktion

Lemma

L1 ≤p L2, L2 ∈ P ⇒ L1 ∈ P.

Beweis: Die Reduktion f habe die polyn. Laufzeitschranke p(·).
Sei B ein Algorithmus für L2 mit polyn. Laufzeitschranke q(·).

Algorithmus A für L1:

1 Berechne f (x).

2 Starte Algorithmus B für L2 auf f (x).

Schritt 1 hat Laufzeit höchstens p(|x |). Schritt 2 hat Laufzeit
höchstens q(|f (x)|) ≤ q(p(|x |) + |x |). �
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Beispiel einer polyn. Reduktion: COLORING ≤p SAT

Die eigentliche Stärke des Reduktionsprinzips ist es, dass man
Probleme unterschiedlichster Art aufeinander reduzieren kann.

Problem (Knotenfärbung – COLORING)

Eingabe: Graph G = (V ,E ), Zahl k ∈ {1, . . . , |V |}
Frage: Gibt es eine Färbung c : V → {1, . . . , k} der Knoten von G
mit k Farben, so dass benachbarte Knoten verschiedene Farben
haben, d.h. ∀{u, v} ∈ E : c(u) 6= c(v).

Problem (Erfüllbarkeitsproblem / Satisfiability — SAT)

Eingabe: Aussagenlogische Formel φ in KNF
Frage: Gibt es eine erfüllende Belegung für φ?
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Beispiel einer polyn. Reduktion: COLORING ≤p SAT

Satz

COLORING ≤p SAT.

Beweis:

Wir beschreiben eine polynomiell berechenbare Funktion f , die eine
Eingabe (G , k) für das COLORING-Problem auf eine Formel φ für
das SAT-Problem abbildet, mit der Eigenschaft

G hat eine k-Färbung ⇔ φ ist erfüllbar .
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Beispiel einer polyn. Reduktion: COLORING ≤p SAT

Beschreibung der Funktion f :

Die Formel φ hat für jede Knoten-Farb-Kombination (v , i), v ∈ V ,
i ∈ {1, . . . , k}, eine Variable x i

v . Die Formel für (G , k) lautet

φ =
∧

v∈V

(x1
v ∨ x2

v ∨ . . . ∨ xk
v )

︸ ︷︷ ︸

Knotenbedingung

∧
∧

{u,v}∈E

∧

i∈{1,...,k}

(x̄ i
u ∨ x̄ i

v)
︸ ︷︷ ︸

Kantenbedingung

.

Anzahl der Literale = O(k · |V | + k · |E |) = O(|V |3).

Die Länge der Formel ist somit polynomiell beschränkt und die
Formel kann in polynomieller Zeit konstruiert werden.

Aber ist die Konstruktion auch korrekt?
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Beispiel einer polyn. Reduktion: COLORING ≤p SAT

Korrektheit:

zz: G hat eine k Färbung ⇒ φ ist erfüllbar

Sei c eine k-Färbung für G .

Für jeden Knoten v mit c(v) = i setzen wir x i
v = 1 und alle

anderen Variablen auf 0.

Knotenbedingung: Offensichtlich erfüllt.

Kantenbedingung: Für jede Farbe i und jede Kante {u, v} gilt
x̄ i
u ∨ x̄ i

v , denn sonst hätten u und v beide die Farbe i .

Damit erfüllt diese Belegung die Formel φ.
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Beispiel einer polyn. Reduktion: COLORING ≤p SAT

zz: φ ist erfüllbar ⇒ G hat eine k Färbung

Fixiere eine beliebige erfüllende Belegung für φ.

Wegen der Knotenbedingung gibt es für jeden Knoten v
mindestens eine Farbe mit x i

v = 1.

Für jeden Knoten wähle eine beliebige derartige Farbe aus.

Sei {u, v} ∈ E . Wir behaupten c(u) 6= c(v).

Zum Widerspruch nehmen wir an, c(u) = c(v) = i . Dann
wäre x i

u = x i
v = 1 und die Kantenbedingung x̄ i

u ∨ x̄ i
v wäre

verletzt.

�
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Beispiel einer polyn. Reduktion: COLORING ≤p SAT

COLORING ≤p SAT impliziert die folgenden beiden Aussagen.

Korollar

Wenn SAT einen Polynomialzeitalgorithmus hat, so hat auch
COLORING einen Polynomialzeitalgorithmus.

Korollar

Wenn COLORING keinen Polynomialzeitalgorithmus hat, so hat
auch SAT keinen Polynomialzeitalgorithmus.
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