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Definition von 3SAT

Problem (3SAT)

Eingabe: Aussagenlogische Formel φ in 3KNF

Frage: Gibt es eine erfüllende Belegung für φ?

3SAT ist ein Spezialfall von SAT und deshalb wie SAT in NP.

Um zu zeigen, dass 3SAT ebenfalls NP-vollständig ist, müssen
wir also nur noch die NP-Härte von 3SAT nachweisen.

Dazu zeigen wir SAT ≤p 3SAT.

Dann gilt: SAT ist NP-Hart und SAT ≤p 3SAT, also 3SAT ist
NP-Hart
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SAT ≤p 3SAT

Lemma

SAT ≤p 3SAT.

Beweis:

Gegeben sei eine Formel φ in KNF.

Wir transformieren φ in eine erfüllbarkeitsäquivalente Formel
φ′ in 3KNF, d.h.

φ ist erfüllbar ⇔ φ′ ist erfüllbar .
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SAT ≤p 3SAT

Eine k-Klausel sei eine Klausel mit k Literalen.

Aus einer 1- bzw 2-Klausel können wir leicht eine äquivalente
3-Klausel machen, indem wir ein Literal wiederholen.

Was machen wir mit k-Klauseln für k > 3?
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SAT ≤p 3SAT

Sei C beispielsweise eine 4-Klausel der Form

C = ℓ1 ∨ ℓ2 ∨ ℓ3 ∨ ℓ4 .

In einer Klauseltransformation ersetzen wir C durch die
Teilformel

C ′ = (ℓ1 ∨ ℓ2 ∨ h) ∧ (h̄ ∨ ℓ3 ∨ ℓ4) ,

wobei h eine zusätzlich eingeführte Hilfvariable bezeichnet.
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Nachweis der Erfüllbarkeitsäquivalenz

Nachweis der Erfüllbarkeitsäquivalenz:

φ′ sei aus φ entstanden durch Ersetzen von C durch C ′.

zz: φ erfüllbar ⇒ φ′ erfüllbar

Sei B eine erfüllende Belegung für φ.

B weist mindestens einem Literal aus C den Wert 1 zu.

Wir unterscheiden zwei Fälle:

1) Falls ℓ1 oder ℓ2 den Wert 1 haben, so ist φ′ für h = 0 erfüllt.
2) Falls ℓ3 oder ℓ4 den Wert 1 haben, so ist φ′ für h = 1 erfüllt.

Also ist φ′ in beiden Fällen erfüllbar.
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Nachweis der Erfüllbarkeitsäquivalenz

zz: φ′ erfüllbar ⇒ φ erfüllbar

Sei B nun eine erfüllende Belegung für φ′.

Wir unterscheiden zwei Fälle:

Falls B der Variable h den Wert 0 zuweist, so muss B einem
der beiden Literale ℓ1 oder ℓ2 den Wert 1 zugewiesen haben.
Falls B der Variable h den Wert 1 zuweist, so muss B einem
der beiden Literale ℓ3 oder ℓ4 den Wert 1 zugewiesen haben.

In beiden Fällen erfüllt B somit auch φ.
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SAT ≤p 3SAT

Wir verallgemeinern die Klauseltransformation für k ≥ 4:

Jede Klausel der Form

ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓk−1 ∨ ℓk

wird durch eine Formel der Form

(ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓk−2 ∨ h) ∧ (h̄ ∨ ℓk−1 ∨ ℓk)

ersetzt.

Die Erfüllbarkeitsäquivalenz folgt analog zum Fall k = 4.
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SAT ≤p 3SAT

Eine Klausel der Länge k > 3 erzeugt somit eine Klausel der
Länge k − 1 und eine Klausel der Länge 3.

Dieses Prinzip wenden wir solange auf alle Klauseln der Länge
größer 3 an (wobei jedesmal eine zusätzliche Hilfvariable
erzeugt wird) bis nur noch Klauseln der Länge 3 übrig sind.
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SAT ≤p 3SAT

Beispiel für die Klauseltransformation:

Aus der 5 Klausel
x1 ∨ x̄2 ∨ x3 ∨ x4 ∨ x̄5

wird in einem ersten Transformationsschritt die Teilformel

(x1 ∨ x̄2 ∨ x3 ∨ h1) ∧ (h̄1 ∨ x4 ∨ x̄5) ,

also eine 4- und eine 3-Klausel. Auf die 4-Klausel wird die
Transformation erneut angewandt. Wir erhalten die Teilformel

(x1 ∨ x̄2 ∨ h2) ∧ (h̄2 ∨ x3 ∨ h1) ∧ (h̄1 ∨ x4 ∨ x̄5) ,

die nur noch 3 Klauseln erhält.
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SAT ≤p 3SAT

Eine Klausel der Länge k > 3 erzeugt somit eine Klausel der
Länge k − 1 und eine Klausel der Länge 3.

Dieses Prinzip wenden wir solange auf alle Klauseln der Länge
größer 3 an (wobei jedesmal eine zusätzliche Hilfvariable
erzeugt wird) bis nur noch Klauseln der Länge 3 übrig sind.

Die Gesamtlaufzeit dieser Transformation ist polynomiell
beschränkt, da die maximale Klausellänge pro Iteration um
eins sinkt.

�
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NP-Vollständigkeit von 3SAT

Aus 3SAT ∈ NP und, SAT ist NP-hart, und SAT ≤p 3SAT folgt

Korollar

3SAT ist NP-vollständig.

Übrigens 2SAT ∈ P.
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NP-Vollständigkeit von CLIQUE

Wie erinnern uns an das Cliquenproblem.

Problem (CLIQUE)

Eingabe: Graph G = (V ,E ), k ∈ {1, . . . , |V |}
Frage: Hat G eine k-Clique?

Satz

CLIQUE ist NP-vollständig.
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Beweis der NP-Vollständigkeit von CLIQUE

Da wir schon wissen, dass CLIQUE ∈ NP, müssen wir zum
Nachweis der NP-Vollständigkeit nur noch die NP-Härte
nachweisen.

Dazu zeigen wir 3SAT ≤p CLIQUE.

Wir beschreiben eine polynomiell berechenbare Funktion f , die eine
3KNF-Formel φ in einen Graphen G = (V ,E ) und eine Zahl k ∈ N

transformiert, so dass gilt:

φ ist erfüllbar ⇔ G hat eine k-Clique .
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Beweis der NP-Vollständigkeit von CLIQUE

Beschreibung der Funktion f :

Seien C1, . . . ,Cm die Klauseln von φ.

Seien ℓi ,1, ℓi ,2, ℓi ,3 die Literale in Klausel Ci .

Identifiziere Literale und Knoten, d.h. setze

V = {ℓi ,j | 1 ≤ i ≤ m, 1 ≤ j ≤ 3} .

Jedes Knotenpaar wird durch eine Kante verbunden, außer

1) die assoziierten Literale gehören zur selben Klausel oder
2) eines der beiden Literale ist die Negierung des anderen Literals.

Setze k = m.
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Beweis der NP-Vollständigkeit von CLIQUE

Beispiel: φ = (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x3 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x4)

Erfüllende Belegung:
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Beweis der NP-Vollständigkeit von CLIQUE

Korrektheit der Transformation:

zz: φ erfüllbar ⇒ G hat eine m-Clique

Jede erfüllende Belegung erfüllt in jeder Klausel mindestens ein Li-
teral. Pro Klausel wähle eines dieser erfüllten Literale beliebig aus.
Wir behaupten, die m ausgewählten Literale bilden eine m-Clique in
G .

Begründung:

Alle selektierten Literale gehören zu verschiedenen Klauseln.
Es kann also keine Kante aufgrund von Regel 1) fehlen.

Alle selektierten Literale werden gleichzeitig erfüllt,
widersprechen sich also nicht. Es kann somit auch keine Kante
wegen Regel 2) fehlen.
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Beweis der NP-Vollständigkeit von CLIQUE

zz: G hat m-Clique ⇒ φ erfüllbar

Wenn G eine k-Clique hat, so müssen, aufgrund von Regel 1),
die Knoten in dieser Clique zu verschiedenen Klauseln gehören.

Aus k = m folgt somit, dass die k-Clique genau ein Literal pro
Klausel selektiert.

Diese Literale können alle gleichzeitig erfüllt werden, da sie
sich wegen Regel 2) nicht widersprechen.

Also ist φ erfüllbar.

Die polynomielle Laufzeit von f ist offensichtlich. �
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Hamiltonkreisprobleme

Problem (Hamiltonkreis – Hamiltonian Circuit – HC)

Eingabe: Graph G = (V ,E )

Frage: Gibt es einen Hamiltonkreis in G?

Problem (Gerichteter Hamiltonkreis – Directed HC – DHC)

Eingabe: gerichteter Graph G = (V ,E )

Frage: Gibt es einen Hamiltonkreis in G?
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HC ≤p DHC

Lemma

HC ≤p DHC.

Beweis:

Reduktion: Für HC liege ein ungerichteter Graph G vor. Wir
transformieren G in einen gerichteten Graphen G ′, indem wir jede
ungerichtete Kante durch zwei entgegengesetzte gerichtete Kanten
ersetzen. Diese lokale Ersetzung ist offensichtlich in polynomieller
Zeit möglich.

Korrektheit: G hat genau dann einen Hamiltonkreis, wenn auch G ′

einen Hamiltonkreis hat. �
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DHC ≤p HC

Lemma

DHC ≤p HC.

Beweis:

Reduktion: Gegeben sei nun ein gerichteter Graph G = (V ,E ).
Aus G konstruieren wir wieder mittels lokaler Ersetzung einen
ungerichteten Graphen G ′:

... ... ... ...

G’

v voutvin

G

v

Interpretation: v ist Zimmer, vin und vout sind Ein- bzw.
Ausgangstüren.
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DHC ≤p HC – Fortsetzung Beweis

Korrektheit:

Wir müssen zeigen, G hat genau dann einen Hamiltonkreis, wenn
auch G ′ einen Hamiltonkreis hat.

Jede Rundreise in G kann offensichtlich in eine Rundreise in G ′

transformiert werden.

Aber wie sieht es mit der Umkehrrichtung aus?

Eine Rundreise in G ′, die ein Zimmer durch die Eingangstür
betritt, betritt alle Zimmer durch die Eingangstür.

Eine Rundreise in G ′, die ein Zimmer durch die Ausgangstür
betritt, betritt alle Zimmer durch die Ausgangstür. Aber diese
Rundreise können wir rückwärts ablaufen.

Also kann auch jeder Hamiltonkreis in G ′ in einen Hamiltonkreis in
G transformiert werden. �
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NP-Vollständigkeit von HC und DHC

Satz

HC und DHC sind NP-vollständig.

Beweis:

Beide Probleme sind offensichtlich in NP, da man die Kodierung
eines Hamiltonkreises in polynomieller Zeit auf ihre Korrektheit
überprüfen kann.

Da HC und DHC beidseitig aufeinander polynomiell reduzierbar
sind, genügt es die NP-Härte eines der beiden Probleme
nachzuweisen.

Wir zeigen: SAT ≤p DHC.
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NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

Reduktion:

Wir präsentieren eine polynomiell berechenbare Funktion f die eine
KNF-Formel φ mit Variablen

x1, . . . , xN

und Klauseln
c1, . . . , cM

in einen gerichteten Graphen G = (V ,E ) transformiert, sodaß:

φ ist erfüllbar ⇔ G hat einen Hamiltonkreis .
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NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

Für jede Variable xi enthalte der Graph G die folgende Struktur Gi .

...

...

s

l r

t

i

i

i i

Diese Struktur heißt Diamantengadget.
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NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

Diese N Gadgets werden miteinander verbunden, indem wir die
Knoten ti und si+1 (1 ≤ i ≤ N − 1) sowie tN und s1 miteinander
identifizieren. (Bild Tafel)

In dem so entstehenden Graphen besucht jede Rundreise, die beim
Knoten s1 startet, die Gadgets in der Reihenfolge G1,G2, . . . ,GN .

Die Rundreise hat dabei für jedes Gadget Gi die Freiheit das
Gadget von links nach rechts, also von li nach ri , oder von rechts

nach links, also von ri nach li , zu durchlaufen.

Die erste Variante interpretieren wir als Variablenbelegung xi = 1,
die zweite als Variablenbelegung xi = 0.
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NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

Jetzt fügen wir einen weiteren Knoten für jede Klausel cj ein.

Falls das Literal xi in Klausel cj enthalten ist, so verbinden wir das
Gadget Gi wie folgt mit dem Klauselknoten cj :

l ri i

jc

bijaij

...

... ......
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NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

Falls das Literal x̄i in Klausel cj enthalten ist, so verbinden wir das
Gadget Gi wie folgt mit dem Klauselknoten cj :

l ri i

jc

bijaij

...

... ......

Ist es nach Hinzunahme der Klauselknoten möglich, dass eine
Rundreise zwischen den Gadgets hin- und herspringt statt sie in der
vorgesehenen Reihenfolge zu besuchen? - Nein, weil ...
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NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

Korrektheit:

zu zeigen: G hat einen Hamiltonkreis ⇒ φ ist erfüllbar

Wird ein Klauselknoten cj aus einem Gadget Gi heraus von
links nach rechts durchlaufen, so muss gemäß unserer
Konstruktion, die Klausel cj das Literal xi enthalten.

Also wird diese Klausel durch die mit der Laufrichtung von
links nach rechts assoziierten Belegung xi = 1 erfüllt.

Bei einer Laufrichtung von rechts nach links, die mit der
Belegung xi = 0 assoziiert ist, wird die Klausel ebenso erfüllt,
weil sie in diesem Fall das Literal x̄i enthält.

Also erfüllt die mit der Rundreise assoziierte Belegung alle
Klauseln.
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NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

zu zeigen: φ ist erfüllbar ⇒ G hat einen Hamiltonkreis

Eine Belegung beschreibt in welcher Richtung die Gadgets
G1, . . . ,GN jeweils durchlaufen werden.

Klauselknoten cj können wir in die Rundreise einbauen, indem
wir eine der Variablen xi auswählen, die cj erfüllt, und cj vom
Gadget Gi aus besuchen.

Sollte cj für xi = 1 erfüllt sein, so ist xi unnegiert in cj

enthalten, und somit ist ein Besuch von cj beim Durchlaufen
des Gadgets Gi von links nach rechts möglich.

Sollte cj hingegen für xi = 0 erfüllt sein, so ist xi negiert in
der Klausel enthalten, und der Besuch von cj kann beim
Durchlaufen des Gadgets Gi von rechts nach links erfolgen.

Also können alle Klauselknoten in die Rundreise eingebunden
werden. �
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NP-Vollständigkeit von TSP

{1, 2}-TSP ist eine eingeschränkte Variante des TSP-Problems, bei
der wir nur die Gewichtswerte 1 und 2 erlauben.

Korollar

Die Entscheidungsvariante von {1, 2}-TSP ist NP-hart.

Beweis: Zeige HC ≤p {1, 2}-TSP. Wie? ...

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität


