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Definition von 3SAT

Problem (3SAT)

Eingabe: Aussagenlogische Formel ¢ in 3KNF
Frage: Gibt es eine erfiillende Belegung fiir ¢?

@ 3SAT ist ein Spezialfall von SAT und deshalb wie SAT in NP.

@ Um zu zeigen, dass 3SAT ebenfalls NP-vollstiandig ist, miissen
wir also nur noch die NP-Harte von 3SAT nachweisen.

@ Dazu zeigen wir | SAT <, 35AT.

@ Dann gilt: SAT ist NP-Hart und SAT <, 3SAT, also 3SAT ist
NP-Hart
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SAT <, 3SAT

SAT <, 35AT.

Beweis:

o Gegeben sei eine Formel ¢ in KNF.

@ Wir transformieren ¢ in eine erfiillbarkeitsdquivalente Formel
¢' in 3KNF, d.h.

¢ ist erfiillbar < ¢’ ist erfiillbar .
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SAT <, 3SAT

@ Eine k-Klausel sei eine Klausel mit k Literalen.

@ Aus einer 1- bzw 2-Klausel konnen wir leicht eine dquivalente
3-Klausel machen, indem wir ein Literal wiederholen.

@ Was machen wir mit k-Klauseln fiir k > 37
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SAT <, 3SAT

@ Sei C beispielsweise eine 4-Klausel der Form
C = 1Vl Vi3V, .

@ In einer Klauseltransformation ersetzen wir C durch die
Teilformel

C' = (L Vel Vh)A(hV I3V L),

wobei h eine zusatzlich eingefiihrte Hilfvariable bezeichnet.
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Nachweis der Erfiillbarkeitsaquivalenz

Nachweis der Erfiillbarkeitsdquivalenz:

¢’ sei aus ¢ entstanden durch Ersetzen von C durch C'.

zz: ¢ erfiillbar = ¢’ erfiillbar

@ Sei B eine erfiillende Belegung fiir ¢.

@ B weist mindestens einem Literal aus C den Wert 1 zu.
@ Wir unterscheiden zwei Fille:

1) Falls ¢1 oder £; den Wert 1 haben, so ist ¢’ fiir h = 0 erfiillt.
2) Falls ¢5 oder ¢4 den Wert 1 haben, so ist ¢’ fiir h = 1 erfiillt.

Also ist ¢’ in beiden Fallen erfiillbar.
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Nachweis der Erfiillbarkeitsaquivalenz

zz: ¢ erfiillbar = ¢ erfiillbar

@ Sei B nun eine erfiillende Belegung fiir ¢'.
@ Wir unterscheiden zwei Falle:

o Falls B der Variable h den Wert 0 zuweist, so muss B einem
der beiden Literale ¢; oder ¢, den Wert 1 zugewiesen haben.
o Falls B der Variable h den Wert 1 zuweist, so muss B einem
der beiden Literale /3 oder ¢, den Wert 1 zugewiesen haben.

In beiden Fillen erfiillt B somit auch ¢.
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SAT <, 3SAT

Wir verallgemeinern die Klauseltransformation fiir k > 4:

@ Jede Klausel der Form
NN NVl Vg
wird durch eine Formel der Form
(rV LoV ... NV LoV h)A(hV L1V £y)

ersetzt.

@ Die Erfiillbarkeitsaquivalenz folgt analog zum Fall kK = 4.
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SAT <, 3SAT

@ Eine Klausel der Lange k > 3 erzeugt somit eine Klausel der
Lange k — 1 und eine Klausel der Lange 3.

@ Dieses Prinzip wenden wir solange auf alle Klauseln der Lange
groBer 3 an (wobei jedesmal eine zusatzliche Hilfvariable
erzeugt wird) bis nur noch Klauseln der Lange 3 iibrig sind.
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SAT <, 3SAT

Beispiel fiir die Klauseltransformation:
Aus der 5 Klausel
x1VXoVx3VxgVXs

wird in einem ersten Transformationsschritt die Teilformel
(X1 V Xo \/X3\/h1) VAN (;71 \/X4\/)_<5) ,

also eine 4- und eine 3-Klausel. Auf die 4-Klausel wird die
Transformation erneut angewandt. Wir erhalten die Teilformel

(X]_\/)_(2\/h2) VAN (772\/X3\/h1) VAN (h_l\/X4\/)_(5) R

die nur noch 3 Klauseln erhalt.
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SAT <, 3SAT

@ Eine Klausel der Lange k > 3 erzeugt somit eine Klausel der
Lange k — 1 und eine Klausel der Lange 3.

@ Dieses Prinzip wenden wir solange auf alle Klauseln der Lange
groBer 3 an (wobei jedesmal eine zusatzliche Hilfvariable
erzeugt wird) bis nur noch Klauseln der Lange 3 iibrig sind.

@ Die Gesamtlaufzeit dieser Transformation ist polynomiell
beschrankt, da die maximale Klausellange pro Iteration um
eins sinkt.
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NP-Vollstandigkeit von 3SAT

Aus 3SAT € NP und, SAT ist NP-hart, und SAT <, 3SAT folgt

3SAT ist NP-vollstindig.

Ubrigens 2SAT € P.
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NP-Vollstandigkeit von CLIQUE

Wie erinnern uns an das Cliquenproblem.

Problem (CLIQUE)

Eingabe: Graph G = (V,E), ke {1,...,|V|}
Frage: Hat G eine k-Clique?

CLIQUE ist NP-vollstindig.
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Beweis der NP-Vollstandigkeit von CLIQUE

Da wir schon wissen, dass CLIQUE € NP, miissen wir zum
Nachweis der NP-Vollstandigkeit nur noch die NP-Harte
nachweisen.

Dazu zeigen wir ‘ 3SAT <, CLIQUE. ‘

Wir beschreiben eine polynomiell berechenbare Funktion f, die eine
3KNF-Formel ¢ in einen Graphen G = (V/, E) und eine Zahl k € N
transformiert, so dass gilt:

¢ ist erfiillbar < G hat eine k-Clique .
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Beweis der NP-Vollstandigkeit von CLIQUE

Beschreibung der Funktion f:

o Seien (1,..., C,, die Klauseln von ¢.
@ Seien l; 1,/;2,¢; 3 die Literale in Klausel C;.

@ l|dentifiziere Literale und Knoten, d.h. setze
vV = {E;,j|1§i§m,1§j§3} .

@ Jedes Knotenpaar wird durch eine Kante verbunden, auBer

1) die assoziierten Literale gehdren zur selben Klausel oder
2) eines der beiden Literale ist die Negierung des anderen Literals.

@ Setze k = m.
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Beweis der NP-Vollstandigkeit von CLIQUE

Beispiel: ¢ = (X1 V X V X3) AN (X2 V x3 V )_<4) AN ()_<1 V xo V X4)

Erfiillende Belegung:
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Beweis der NP-Vollstandigkeit von CLIQUE

Korrektheit der Transformation:

zz: ¢ erfiillbar = G hat eine m-Clique

Jede erfiillende Belegung erfiillt in jeder Klausel mindestens ein Li-
teral. Pro Klausel wahle eines dieser erfiillten Literale beliebig aus.
Wir behaupten, die m ausgewdahlten Literale bilden eine m-Clique in

G.
Begriindung:
@ Alle selektierten Literale gehoren zu verschiedenen Klauseln.
Es kann also keine Kante aufgrund von Regel 1) fehlen.

@ Alle selektierten Literale werden gleichzeitig erfiillt,
widersprechen sich also nicht. Es kann somit auch keine Kante
wegen Regel 2) fehlen.
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Beweis der NP-Vollstandigkeit von CLIQUE

zz: G hat m-Clique = ¢ erfiillbar

@ Wenn G eine k-Clique hat, so miissen, aufgrund von Regel 1),
die Knoten in dieser Clique zu verschiedenen Klauseln gehoren.

@ Aus k = m folgt somit, dass die k-Clique genau ein Literal pro
Klausel selektiert.

@ Diese Literale konnen alle gleichzeitig erfiillt werden, da sie
sich wegen Regel 2) nicht widersprechen.

@ Also ist ¢ erfiillbar.

Die polynomielle Laufzeit von f ist offensichtlich. O
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Hamiltonkreisprobleme

Problem (Hamiltonkreis — Hamiltonian Circuit — HC)
Eingabe: Graph G = (V,E)

Frage: Gibt es einen Hamiltonkreis in G?

Problem (Gerichteter Hamiltonkreis — Directed HC — DHC)

Eingabe: gerichteter Graph G = (V,E)

Frage: Gibt es einen Hamiltonkreis in G 7
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HC <, DHC

HC <, DHC.

Beweis:

Reduktion: Fiir HC liege ein ungerichteter Graph G vor. Wir
transformieren G in einen gerichteten Graphen G’, indem wir jede
ungerichtete Kante durch zwei entgegengesetzte gerichtete Kanten
ersetzen. Diese lokale Ersetzung ist offensichtlich in polynomieller
Zeit moglich.

Korrektheit: G hat genau dann einen Hamiltonkreis, wenn auch G’
einen Hamiltonkreis hat. O
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DHC <, HC

DHC <, HC.

Beweis:

Reduktion: Gegeben sei nun ein gerichteter Graph G = (V, E).
Aus G konstruieren wir wieder mittels lokaler Ersetzung einen
ungerichteten Graphen G':

/
@@Q
~d

N4
/\
//

N

G

Interpretation: v ist Zimmer, vj, und vy, sind Ein- bzw.
Ausgangstiiren.
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DHC <, HC - Fortsetzung Beweis

Korrektheit:
Wir miissen zeigen, G hat genau dann einen Hamiltonkreis, wenn
auch G’ einen Hamiltonkreis hat.

Jede Rundreise in G kann offensichtlich in eine Rundreise in G’
transformiert werden.

Aber wie sieht es mit der Umkehrrichtung aus?

@ Eine Rundreise in G’, die ein Zimmer durch die Eingangstiir
betritt, betritt alle Zimmer durch die Eingangstiir.

@ Eine Rundreise in G’, die ein Zimmer durch die Ausgangstiir
betritt, betritt alle Zimmer durch die Ausgangstiir. Aber diese
Rundreise kdnnen wir riickwarts ablaufen.

Also kann auch jeder Hamiltonkreis in G’ in einen Hamiltonkreis in
G transformiert werden. ([l
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NP-Vollstandigkeit von HC und DHC

HC und DHC sind NP-vollstandig.

Beweis:

Beide Probleme sind offensichtlich in NP, da man die Kodierung
eines Hamiltonkreises in polynomieller Zeit auf ihre Korrektheit
iiberpriifen kann.

Da HC und DHC beidseitig aufeinander polynomiell reduzierbar
sind, geniigt es die NP-Harte eines der beiden Probleme
nachzuweisen.

Wir zeigen: | SAT <, DHC.
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NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

Reduktion:

Wir prasentieren eine polynomiell berechenbare Funktion f die eine
KNF-Formel ¢ mit Variablen

X1yeoo sy XN

und Klauseln
Cly---yCMm

in einen gerichteten Graphen G = (V/, E) transformiert, sodaB:

¢ ist erfiillbar < G hat einen Hamiltonkreis .
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NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

Fiir jede Variable x; enthalte der Graph G die folgende Struktur G;.

®

W"OTZTO0OZO0T 0= ®

®

Diese Struktur heit Diamantengadget.
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NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

Diese N Gadgets werden miteinander verbunden, indem wir die
Knoten t; und sj41 (1 <7 < N — 1) sowie ty und s; miteinander
identifizieren. (Bild Tafel)

In dem so entstehenden Graphen besucht jede Rundreise, die beim
Knoten s; startet, die Gadgets in der Reihenfolge Gy, Go, ..., Gy.

Die Rundreise hat dabei fiir jedes Gadget G; die Freiheit das
Gadget von links nach rechts, also von [; nach r;, oder von rechts
nach links, also von r; nach /;, zu durchlaufen.

Die erste Variante interpretieren wir als Variablenbelegung x; = 1,
die zweite als Variablenbelegung x; = 0.
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NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

Jetzt fiigen wir einen weiteren Knoten fiir jede Klausel ¢; ein.

Falls das Literal x; in Klausel ¢; enthalten ist, so verbinden wir das
Gadget G; wie folgt mit dem Klauselknoten ¢;:

©

S

W00 T0<=T0m<—=m

N
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NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

Falls das Literal X; in Klausel ¢; enthalten ist, so verbinden wir das
Gadget G; wie folgt mit dem Klauselknoten ¢;:

©

S

W00 00 <—=m

Ist es nach Hinzunahme der Klauselknoten moglich, dass eine
Rundreise zwischen den Gadgets hin- und herspringt statt sie in der
vorgesehenen Reihenfolge zu besuchen? - Nein, weil ...
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NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

Korrektheit:

zu zeigen: G hat einen Hamiltonkreis = ¢ ist erfiillbar

@ Wird ein Klauselknoten ¢; aus einem Gadget G; heraus von
links nach rechts durchlaufen, so muss gemaB unserer
Konstruktion, die Klausel ¢; das Literal x; enthalten.

@ Also wird diese Klausel durch die mit der Laufrichtung von
links nach rechts assoziierten Belegung x; = 1 erfiillt.

@ Bei einer Laufrichtung von rechts nach links, die mit der
Belegung x; = 0 assoziiert ist, wird die Klausel ebenso erfiillt,
weil sie in diesem Fall das Literal x; enthalt.

Also erfiillt die mit der Rundreise assoziierte Belegung alle
Klauseln.
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NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

zu zeigen: ¢ ist erfiillbar = G hat einen Hamiltonkreis

@ Eine Belegung beschreibt in welcher Richtung die Gadgets
Gi,..., Gy jeweils durchlaufen werden.

@ Klauselknoten ¢; kénnen wir in die Rundreise einbauen, indem
wir eine der Variablen x; auswahlen, die ¢; erfiillt, und ¢; vom
Gadget G; aus besuchen.

@ Sollte ¢ fiir x; = 1 erfiillt sein, so ist x; unnegiert in ¢;
enthalten, und somit ist ein Besuch von ¢; beim Durchlaufen
des Gadgets G; von links nach rechts moglich.

@ Sollte ¢; hingegen fiir x; = 0 erfiillt sein, so ist x; negiert in
der Klausel enthalten, und der Besuch von ¢; kann beim
Durchlaufen des Gadgets G; von rechts nach links erfolgen.

Also konnen alle Klauselknoten in die Rundreise eingebunden
werden. O
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NP-Vollstandigkeit von TSP

{1,2}-TSP ist eine eingeschrankte Variante des TSP-Problems, bei
der wir nur die Gewichtswerte 1 und 2 erlauben.

Die Entscheidungsvariante von {1,2}-TSP ist NP-hart.

Beweis: Zeige HC <, {1,2}-TSP. Wie? ...
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