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Hamiltonkreisprobleme

Problem (Hamiltonkreis — Hamiltonian Circuit — HC)
Eingabe: Graph G = (V,E)

Frage: Gibt es einen Hamiltonkreis in G?

Problem (Gerichteter Hamiltonkreis — Directed HC — DHC)

Eingabe: gerichteter Graph G = (V,E)

Frage: Gibt es einen Hamiltonkreis in G 7
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Wiederholung der Ergebnisse

HC <, DHC.
DHC <, HC.
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NP-Vollstandigkeit von HC und DHC

HC und DHC sind NP-vollstandig.

Beweis:

Beide Probleme sind offensichtlich in NP, da man die Kodierung
eines Hamiltonkreises in polynomieller Zeit auf ihre Korrektheit
iiberpriifen kann.

Da HC und DHC beidseitig aufeinander polynomiell reduzierbar
sind, geniigt es die NP-Harte eines der beiden Probleme
nachzuweisen.

Wir zeigen: | SAT <, DHC.
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NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

Reduktion:

Wir prasentieren eine polynomiell berechenbare Funktion f die eine
KNF-Formel ¢ mit Variablen

X1yeoo sy XN

und Klauseln
Cly---yCMm

in einen gerichteten Graphen G = (V/, E) transformiert, sodaB:

¢ ist erfiillbar < G hat einen Hamiltonkreis .
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NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

Fiir jede Variable x; enthalte der Graph G die folgende Struktur G;.

®

W"OTZTO0OZO0T 0= ®

®

Diese Struktur heit Diamantengadget.
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NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

Diese N Gadgets werden miteinander verbunden, indem wir die
Knoten t; und sj41 (1 <7 < N — 1) sowie ty und s; miteinander
identifizieren. (Bild Tafel)

In dem so entstehenden Graphen besucht jede Rundreise, die beim
Knoten s; startet, die Gadgets in der Reihenfolge Gy, Go, ..., Gy.

Die Rundreise hat dabei fiir jedes Gadget G; die Freiheit das
Gadget von links nach rechts, also von [; nach r;, oder von rechts
nach links, also von r; nach /;, zu durchlaufen.

Die erste Variante interpretieren wir als Variablenbelegung x; = 1,
die zweite als Variablenbelegung x; = 0.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen  Berechenbarkeit und Komplexitat



NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

Jetzt fiigen wir einen weiteren Knoten fiir jede Klausel ¢; ein.

Falls das Literal x; in Klausel ¢; enthalten ist, so verbinden wir das
Gadget G; wie folgt mit dem Klauselknoten ¢;:

©

S

W00 T0<=T0m<—=m

N
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NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

Falls das Literal X; in Klausel ¢; enthalten ist, so verbinden wir das
Gadget G; wie folgt mit dem Klauselknoten ¢;:

©

S

W00 00 <—=m

Ist es nach Hinzunahme der Klauselknoten moglich, dass eine
Rundreise zwischen den Gadgets hin- und herspringt statt sie in der
vorgesehenen Reihenfolge zu besuchen? - Nein, weil ...
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NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

Korrektheit:

zu zeigen: G hat einen Hamiltonkreis = ¢ ist erfiillbar

@ Wird ein Klauselknoten ¢; aus einem Gadget G; heraus von
links nach rechts durchlaufen, so muss gemaB unserer
Konstruktion, die Klausel ¢; das Literal x; enthalten.

@ Also wird diese Klausel durch die mit der Laufrichtung von
links nach rechts assoziierten Belegung x; = 1 erfiillt.

@ Bei einer Laufrichtung von rechts nach links, die mit der
Belegung x; = 0 assoziiert ist, wird die Klausel ebenso erfiillt,
weil sie in diesem Fall das Literal x; enthalt.

Also erfiillt die mit der Rundreise assoziierte Belegung alle
Klauseln.
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NP-Vollstandigkeit von HC und DHC — Fortsetzung Beweis

zu zeigen: ¢ ist erfiillbar = G hat einen Hamiltonkreis

@ Eine Belegung beschreibt in welcher Richtung die Gadgets
Gi,..., Gy jeweils durchlaufen werden.

@ Klauselknoten ¢; kénnen wir in die Rundreise einbauen, indem
wir eine der Variablen x; auswahlen, die ¢; erfiillt, und ¢; vom
Gadget G; aus besuchen.

@ Sollte ¢ fiir x; = 1 erfiillt sein, so ist x; unnegiert in ¢;
enthalten, und somit ist ein Besuch von ¢; beim Durchlaufen
des Gadgets G; von links nach rechts moglich.

@ Sollte ¢; hingegen fiir x; = 0 erfiillt sein, so ist x; negiert in
der Klausel enthalten, und der Besuch von ¢; kann beim
Durchlaufen des Gadgets G; von rechts nach links erfolgen.

Also konnen alle Klauselknoten in die Rundreise eingebunden
werden. O
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NP-Vollstandigkeit von TSP

{1,2}-TSP ist eine eingeschrankte Variante des TSP-Problems, bei
der wir nur die Gewichtswerte 1 und 2 erlauben.

Die Entscheidungsvariante von {1,2}-TSP ist NP-hart.

Beweis: Zeige HC <, {1,2}-TSP. Wie? ...
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Das SUBSET-SUM-Problem

Problem (SUBSET-SUM)

Eingabe: a1,...,ay € N, be N
Frage: Gibt es K C {1,...,N} mit ), a; = b?

Das SUBSET-SUM-Problem ist offensichtlich in NP enthalten, weil
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NP-vollstandigkeit des SUBSET-SUM-Problems

SUBSET-SUM ist NP-vollstindig.

Beweis:

Um die NP-Harte des Problems nachzuweisen, beweisen wir:

3SAT <, SUBSET-SUM.|

Gegeben sei eine Formel ¢ in 3KNF. Diese Formel bestehe aus M
Klauseln ¢, ..., cy iiber N Variablen xi, ..., xy.

Firie{1,...,N} sei

S(i) = {jeA{l,...,M}|Klausel ¢j enthdlt Literal x;} ,
S'(i) = {j€{1,...,M}|Klausel ¢; enthilt Literal x;} .
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Reduktion 3SAT <, SUBSET-SUM

Aus der 3KNF-Formel ¢ erzeugen wir eine SUBSET-SUM-Eingabe:

@ Wir beschreiben die Eingabe von SUBSET-SUM in Form von
Dezimalzahlen, die aus N + M Ziffern bestehen.

@ Die k-te Ziffer einer Zahl a bezeichnen wir dabei mit a(k).

o Fiir jede boolesche Variable x;, i € {1,..., N}, enthilt die
SUBSET-SUM-Eingabe zwei Zahlen a; und af-, wobei

ai(i)=1 und VjeS(i):a(N+j)=1,
d(i)=1 und VjeS(i):a(N+j)=1.

@ Alle anderen Ziffern setzen wir auf den Wert 0.

Beispiel: Wie lauten die Zahlen fiir die Formel
(X1 V xo V X3) A (X2 V X3V )?4)?
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Reduktion 3SAT <, SUBSET-SUM

Aus der Formel ¢ in 3KNF erzeugen wir eine
SUBSET-SUM-Eingabe:

@ Zusatzlich erzeugen wir zwei sogenannte Fiillzahlen h; und hJ’-
fiir jede Klausel j, die nur an Ziffernposition N + j eine 1
haben, alle anderen Ziffern sind 0.

@ AuBerdem definieren wir den Summenwert b folgendermaBen:
b(k)=1 furl<k<N
b(k)=3 firN+1<k <N+ M.
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Reduktion 3SAT <, SUBSET-SUM: /llustration

| [1 2 3 NIN+1 N+2 N+ M|
a1 0 0 0] 1 0
a1 0 0 0] 0 0
a |0 1 0 0 0 1
a|lo 1 0 0 1 0
a |0 0 1 0| 1 1
a |0 0 1 0] 0 0
ay |0 0 0 1 0 0
ay |0 0 0 1] 0 1
hy O 0 O 0 1 0 0
hi |0 0 0 0 1 0 0
h |0 0 O 0 0 1 0
by |0 0 0 0] 0 1 0
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Reduktion 3SAT <, SUBSET-SUM: Beobachtungen

Beobachtung 1:
Die Eingabezahlen zu SUBSET-SUM konnen in polynomieller Zeit
erzeugt werden (obwohl die Zahlenwerte exponentiell groB sind).

Beobachtung 2:

Bei der Addition einer beliebigen Teilmenge der Zahlen aj, a’, hj, h!
gibt es keinen Additionsiibertrag von Ziffer zu Ziffer, weil ...
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Reduktion 3SAT <, SUBSET-SUM: Korrektheit

zu zeigen: ¢ erfiillbar = 3 Teilsumme mit Wert b

Angenommen es gibt eine erfiillende Belegung x* fiir ¢.
@ Dann nehmen wir diejenigen Zahlen a; in unsere Teilmenge K
auf, fiir die gilt x = 1, ansonsten nehmen wir af- auf.
@ Sei A die Summe der ausgewahlten Zahlen a; und a).
o Da fiir jedes i € {1,..., N} entweder a; oder a; aufgenommen
wird, gilt A(7/) = 1.
@ Zudem gilt A(N + ) € {1,2,3} fir 1 <j < M, weil ...

@ Falls A(N + j) < 3 so kdnnen wir eine oder beide der
Fiillzahlen h; und hj’- verwenden um exakt den geforderten
Wert 3 an Ziffernposition N + j der Summe zu erhalten.

Also gibt es eine Teilsumme mit Wert b.
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Reduktion 3SAT <, SUBSET-SUM: Korrektheit

zu zeigen: 3 Teilsumme mit Wert b = ¢ erfiillbar

Angenommen es gibt eine Teilsumme mit Wert b.

Dann enthilt K fiir jedes i € {1,..., N} entweder die Zahl a; oder
die Zahl a’, denn sonst ...

Setze x* =1, falls a; € K, und x} =0, falls &} € K.

zu zeigen: x* ist eine erfiillende Belegung fiir ¢

@ Sei A die Summe der Zahlen a; und af- aus K.
@ Esgilt AIN+/)>1firl<j<M, weil ...

@ Dadurch ist sichergestellt, dass x* fiir jede Klausel mindestens
ein Literal mit Wert 1 enthilt, so dass ¢ erfiillt ist.

Damit ist die Korrektheit der Reduktion nachgewiesen. O
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NP-Vollstandigkeit von PARTITION

Problem (PARTITION)

Eingabe: a1,...,ay € N
Frage: Gibt es K C {1,... N} mit 37 ai =2 e npk @i?

PARTITION ist ein Spezialfall von SUBSET-SUM, da die gestellte
Frage dquivalent zur Frage ist, ob es eine Teilmenge K mit
Summenwert %vazl a; gibt.
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NP-Vollstandigkeit von PARTITION

PARTITION ist NP-vollstindig.

Beweis:

PARTITION ist offensichtlich € NP, weil es ein Spezialfall von
SUBSET-SUM ist.

Um zu zeigen, dass PARTITION NP-hart ist, zeigen wir
SUBSET-SUM <, PARTITION.
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Reduktion von SUBSET-SUM auf PARTITION

Die Eingabe von SUBSET-SUM sei a1,...,ay € N und b € N.
Es sei A= Z,N:1 aj.

Wir bilden diese Eingabe fiir SUBSET-SUM auf eine Eingabe fiir
PARTITION ab, die aus den N + 2 Zahlen aj, ..., a), , bestehe.

@ a =afirl<i<N,
® ajy,; =2A— b, und
° ay,,=A+b

In der Summe ergeben diese N 4 2 Zahlen den Wert 4A.

PARTITION fragt also danach, ob es eine Teilmenge der Zahlen
ay, .-y, Mit Summenwert 2A gibt.
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Reduktion von SUBSET-SUM auf PARTITION

Die Reduktion ist in polynomieller Zeit berechenbar.

zeige: 3 Losung fiir PARTITION = 3 Losung fiir SUBSET-SUM

@ Wenn es eine geeignete Aufteilung der Eingabezahlen fiir
PARTITION gibt, so konnen aj,_ ; und ajy, dabei nicht in
derselben Teilmenge sein, denn aj,_; + ajy, = 3A.

@ Deshalb ergibt sich auch eine Losung fiir SUBSET-SUM, denn

diejenigen Zahlen aus af, ..., a), die sich in derselben

Teilmenge wie a;V+1 befinden, summieren sich auf zu
o

2A—ay, ;= b
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Reduktion von SUBSET-SUM auf PARTITION

zeige: 3 Losung fiir SUBSET-SUM = 3 Lésung fiir PARTITION

@ Wenn es eine Teilmenge der Zahlen ay, ..., ay mit
Summenwert b gibt, so gibt es auch eine Teilmenge der
Zahlen &, ..., a} mit diesem Summenwert.

o Wir kénnen die Zahl a;V+1 = 2A — b zu dieser Teilmenge
hinzufiigen, und erhalten dadurch eine Teilmenge mit
Summenwert 2A.
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Konsequenzen fiir KP und BPP

Problem (Entscheidungsvariante des Rucksackproblems — KP-E)

Eingabe: B,P €N, wy,...,wy €{1,...,B}, p1,...,pn €N
Frage: Gibt es K C {1,..., N} mit >, ,c w; < B und
dliek PiZ P

KP-E ist NP-vollstandig.

Beweis durch einfache Reduktion von SUBSET-SUM (Wie?)
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Konsequenzen fiir KP und BPP

Problem (Entscheidungsvariante von Bin Packing — BPP-E)
Eingabe: B,k e N, wy,...,wy € {1,...,B}

zuldssige Losungen: Gibt es eine Fkt f : {1,... N} — {1,... k},

so dassVie{l,..., Z VVJ<B
jef-1

BPP-E ist NP-vollstandig.

Beweis durch einfache Reduktion von PARTITION (Wie?)
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