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Hamiltonkreisprobleme

Problem (Hamiltonkreis – Hamiltonian Circuit – HC)

Eingabe: Graph G = (V ,E )

Frage: Gibt es einen Hamiltonkreis in G?

Problem (Gerichteter Hamiltonkreis – Directed HC – DHC)

Eingabe: gerichteter Graph G = (V ,E )

Frage: Gibt es einen Hamiltonkreis in G?
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Wiederholung der Ergebnisse

Lemma

HC ≤p DHC.

Lemma

DHC ≤p HC.
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NP-Vollständigkeit von HC und DHC

Satz

HC und DHC sind NP-vollständig.

Beweis:

Beide Probleme sind offensichtlich in NP, da man die Kodierung
eines Hamiltonkreises in polynomieller Zeit auf ihre Korrektheit
überprüfen kann.

Da HC und DHC beidseitig aufeinander polynomiell reduzierbar
sind, genügt es die NP-Härte eines der beiden Probleme
nachzuweisen.

Wir zeigen: SAT ≤p DHC.
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NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

Reduktion:

Wir präsentieren eine polynomiell berechenbare Funktion f die eine
KNF-Formel φ mit Variablen

x1, . . . , xN

und Klauseln
c1, . . . , cM

in einen gerichteten Graphen G = (V ,E ) transformiert, sodaß:

φ ist erfüllbar ⇔ G hat einen Hamiltonkreis .
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NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

Für jede Variable xi enthalte der Graph G die folgende Struktur Gi .

...

...
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Diese Struktur heißt Diamantengadget.
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NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

Diese N Gadgets werden miteinander verbunden, indem wir die
Knoten ti und si+1 (1 ≤ i ≤ N − 1) sowie tN und s1 miteinander
identifizieren. (Bild Tafel)

In dem so entstehenden Graphen besucht jede Rundreise, die beim
Knoten s1 startet, die Gadgets in der Reihenfolge G1,G2, . . . ,GN .

Die Rundreise hat dabei für jedes Gadget Gi die Freiheit das
Gadget von links nach rechts, also von li nach ri , oder von rechts

nach links, also von ri nach li , zu durchlaufen.

Die erste Variante interpretieren wir als Variablenbelegung xi = 1,
die zweite als Variablenbelegung xi = 0.
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NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

Jetzt fügen wir einen weiteren Knoten für jede Klausel cj ein.

Falls das Literal xi in Klausel cj enthalten ist, so verbinden wir das
Gadget Gi wie folgt mit dem Klauselknoten cj :

l ri i

jc

bijaij

...

... ......
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NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

Falls das Literal x̄i in Klausel cj enthalten ist, so verbinden wir das
Gadget Gi wie folgt mit dem Klauselknoten cj :

l ri i

jc

bijaij

...

... ......

Ist es nach Hinzunahme der Klauselknoten möglich, dass eine
Rundreise zwischen den Gadgets hin- und herspringt statt sie in der
vorgesehenen Reihenfolge zu besuchen? - Nein, weil ...

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität



NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

Korrektheit:

zu zeigen: G hat einen Hamiltonkreis ⇒ φ ist erfüllbar

Wird ein Klauselknoten cj aus einem Gadget Gi heraus von
links nach rechts durchlaufen, so muss gemäß unserer
Konstruktion, die Klausel cj das Literal xi enthalten.

Also wird diese Klausel durch die mit der Laufrichtung von
links nach rechts assoziierten Belegung xi = 1 erfüllt.

Bei einer Laufrichtung von rechts nach links, die mit der
Belegung xi = 0 assoziiert ist, wird die Klausel ebenso erfüllt,
weil sie in diesem Fall das Literal x̄i enthält.

Also erfüllt die mit der Rundreise assoziierte Belegung alle
Klauseln.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität



NP-Vollständigkeit von HC und DHC – Fortsetzung Beweis

zu zeigen: φ ist erfüllbar ⇒ G hat einen Hamiltonkreis

Eine Belegung beschreibt in welcher Richtung die Gadgets
G1, . . . ,GN jeweils durchlaufen werden.

Klauselknoten cj können wir in die Rundreise einbauen, indem
wir eine der Variablen xi auswählen, die cj erfüllt, und cj vom
Gadget Gi aus besuchen.

Sollte cj für xi = 1 erfüllt sein, so ist xi unnegiert in cj

enthalten, und somit ist ein Besuch von cj beim Durchlaufen
des Gadgets Gi von links nach rechts möglich.

Sollte cj hingegen für xi = 0 erfüllt sein, so ist xi negiert in
der Klausel enthalten, und der Besuch von cj kann beim
Durchlaufen des Gadgets Gi von rechts nach links erfolgen.

Also können alle Klauselknoten in die Rundreise eingebunden
werden. �
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NP-Vollständigkeit von TSP

{1, 2}-TSP ist eine eingeschränkte Variante des TSP-Problems, bei
der wir nur die Gewichtswerte 1 und 2 erlauben.

Korollar

Die Entscheidungsvariante von {1, 2}-TSP ist NP-hart.

Beweis: Zeige HC ≤p {1, 2}-TSP. Wie? ...
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Das SUBSET-SUM-Problem

Problem (SUBSET-SUM)

Eingabe: a1, . . . , aN ∈ N, b ∈ N

Frage: Gibt es K ⊆ {1, . . . ,N} mit
∑

i∈K ai = b?

Das SUBSET-SUM-Problem ist offensichtlich in NP enthalten, weil
...
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NP-vollständigkeit des SUBSET-SUM-Problems

Satz

SUBSET-SUM ist NP-vollständig.

Beweis:

Um die NP-Härte des Problems nachzuweisen, beweisen wir:

3SAT ≤p SUBSET-SUM.

Gegeben sei eine Formel φ in 3KNF. Diese Formel bestehe aus M

Klauseln c1, . . . , cM über N Variablen x1, . . . , xN .

Für i ∈ {1, . . . ,N} sei

S(i) = {j ∈ {1, . . . ,M} | Klausel cj enthält Literal xi} ,

S ′(i) = {j ∈ {1, . . . ,M} | Klausel cj enthält Literal x̄i} .
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Reduktion 3SAT ≤p SUBSET-SUM

Aus der 3KNF-Formel φ erzeugen wir eine SUBSET-SUM-Eingabe:

Wir beschreiben die Eingabe von SUBSET-SUM in Form von
Dezimalzahlen, die aus N + M Ziffern bestehen.

Die k-te Ziffer einer Zahl a bezeichnen wir dabei mit a(k).

Für jede boolesche Variable xi , i ∈ {1, . . . ,N}, enthält die
SUBSET-SUM-Eingabe zwei Zahlen ai und a′i , wobei

ai(i) = 1 und ∀j ∈ S(i) : ai(N + j) = 1 ,

a′i(i) = 1 und ∀j ∈ S ′(i) : a′i(N + j) = 1 .

Alle anderen Ziffern setzen wir auf den Wert 0.

Beispiel: Wie lauten die Zahlen für die Formel
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x̄4)?
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Reduktion 3SAT ≤p SUBSET-SUM

Aus der Formel φ in 3KNF erzeugen wir eine
SUBSET-SUM-Eingabe:

Zusätzlich erzeugen wir zwei sogenannte Füllzahlen hj und h′j
für jede Klausel j , die nur an Ziffernposition N + j eine 1
haben, alle anderen Ziffern sind 0.

Außerdem definieren wir den Summenwert b folgendermaßen:

b(k) = 1 für1 ≤ k ≤ N

b(k) = 3 fürN + 1 ≤ k ≤ N + M.
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Reduktion 3SAT ≤p SUBSET-SUM: Illustration

1 2 3 · · · N N + 1 N + 2 · · · N + M

a1 1 0 0 · · · 0 1 0 · · · · · ·
a′1 1 0 0 · · · 0 0 0 · · · · · ·
a2 0 1 0 · · · 0 0 1 · · · · · ·
a′2 0 1 0 · · · 0 1 0 · · · · · ·
a3 0 0 1 · · · 0 1 1 · · · · · ·
a′3 0 0 1 · · · 0 0 0 · · · · · ·
...

...
...

...
...

...
...

...
...

...
aN 0 0 0 · · · 1 0 0 · · · · · ·
a′N 0 0 0 · · · 1 0 1 · · · · · ·
h1 0 0 0 · · · 0 1 0 · · · 0
h′

1 0 0 0 · · · 0 1 0 · · · 0
h2 0 0 0 · · · 0 0 1 · · · 0
h′

2 0 0 0 · · · 0 0 1 · · · 0
...

...
...

...
...

...
...

...
...

...
hM 0 0 0 · · · 0 0 0 · · · 1
h′

M 0 0 0 · · · 0 0 0 · · · 1

b 1 1 1 · · · 1 3 3 · · · 3
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Reduktion 3SAT ≤p SUBSET-SUM: Beobachtungen

Beobachtung 1:

Die Eingabezahlen zu SUBSET-SUM können in polynomieller Zeit
erzeugt werden (obwohl die Zahlenwerte exponentiell groß sind).

Beobachtung 2:

Bei der Addition einer beliebigen Teilmenge der Zahlen ai , a
′
i , hi , h

′
i

gibt es keinen Additionsübertrag von Ziffer zu Ziffer, weil ...
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Reduktion 3SAT ≤p SUBSET-SUM: Korrektheit

zu zeigen: φ erfüllbar ⇒ ∃ Teilsumme mit Wert b

Angenommen es gibt eine erfüllende Belegung x∗ für φ.

Dann nehmen wir diejenigen Zahlen ai in unsere Teilmenge K

auf, für die gilt x∗
i = 1, ansonsten nehmen wir a′i auf.

Sei A die Summe der ausgewählten Zahlen ai und a′i .

Da für jedes i ∈ {1, . . . ,N} entweder ai oder a′i aufgenommen
wird, gilt A(i) = 1.

Zudem gilt A(N + j) ∈ {1, 2, 3} für 1 ≤ j ≤ M, weil ...

Falls A(N + j) < 3 so können wir eine oder beide der
Füllzahlen hj und h′j verwenden um exakt den geforderten
Wert 3 an Ziffernposition N + j der Summe zu erhalten.

Also gibt es eine Teilsumme mit Wert b.
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Reduktion 3SAT ≤p SUBSET-SUM: Korrektheit

zu zeigen: ∃ Teilsumme mit Wert b ⇒ φ erfüllbar

Angenommen es gibt eine Teilsumme mit Wert b.

Dann enthält K für jedes i ∈ {1, . . . ,N} entweder die Zahl ai oder
die Zahl a′i , denn sonst ...

Setze x∗
i = 1, falls ai ∈ K , und x∗

i = 0, falls a′i ∈ K .

zu zeigen: x∗ ist eine erfüllende Belegung für φ

Sei A die Summe der Zahlen ai und a′i aus K .

Es gilt A(N + j) ≥ 1 für 1 ≤ j ≤ M, weil ...

Dadurch ist sichergestellt, dass x∗ für jede Klausel mindestens
ein Literal mit Wert 1 enthält, so dass φ erfüllt ist.

Damit ist die Korrektheit der Reduktion nachgewiesen. �
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NP-Vollständigkeit von PARTITION

Problem (PARTITION)

Eingabe: a1, . . . , aN ∈ N

Frage: Gibt es K ⊆ {1, . . . ,N} mit
∑

i∈K ai =
∑

i∈{1,...,N}\K ai?

PARTITION ist ein Spezialfall von SUBSET-SUM, da die gestellte
Frage äquivalent zur Frage ist, ob es eine Teilmenge K mit
Summenwert 1

2

∑N
i=1 ai gibt.
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NP-Vollständigkeit von PARTITION

Satz

PARTITION ist NP-vollständig.

Beweis:

PARTITION ist offensichtlich ∈ NP, weil es ein Spezialfall von
SUBSET-SUM ist.

Um zu zeigen, dass PARTITION NP-hart ist, zeigen wir
SUBSET-SUM ≤p PARTITION.
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Reduktion von SUBSET-SUM auf PARTITION

Die Eingabe von SUBSET-SUM sei a1, . . . , aN ∈ N und b ∈ N.

Es sei A =
∑N

i=1 ai .

Wir bilden diese Eingabe für SUBSET-SUM auf eine Eingabe für
PARTITION ab, die aus den N + 2 Zahlen a′1, . . . , a

′
N+2 bestehe.

Dazu setzen wir

a′i = ai für 1 ≤ i ≤ N,

a′N+1 = 2A − b, und

a′N+2 = A + b.

In der Summe ergeben diese N + 2 Zahlen den Wert 4A.

PARTITION fragt also danach, ob es eine Teilmenge der Zahlen
a′1, . . . , a

′
N+2 mit Summenwert 2A gibt.
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Reduktion von SUBSET-SUM auf PARTITION

Die Reduktion ist in polynomieller Zeit berechenbar.

zeige: ∃ Lösung für PARTITION ⇒ ∃ Lösung für SUBSET-SUM

Wenn es eine geeignete Aufteilung der Eingabezahlen für
PARTITION gibt, so können a′N+1 und a′N+2 dabei nicht in
derselben Teilmenge sein, denn a′N+1 + a′N+2 = 3A.

Deshalb ergibt sich auch eine Lösung für SUBSET-SUM, denn
diejenigen Zahlen aus a′1, . . . , a

′
N , die sich in derselben

Teilmenge wie a′N+1 befinden, summieren sich auf zu
2A − a′N+1 = b.
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Reduktion von SUBSET-SUM auf PARTITION

zeige: ∃ Lösung für SUBSET-SUM ⇒ ∃ Lösung für PARTITION

Wenn es eine Teilmenge der Zahlen a1, . . . , aN mit
Summenwert b gibt, so gibt es auch eine Teilmenge der
Zahlen a′1, . . . , a

′
N mit diesem Summenwert.

Wir können die Zahl a′N+1 = 2A − b zu dieser Teilmenge
hinzufügen, und erhalten dadurch eine Teilmenge mit
Summenwert 2A.

�
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Konsequenzen für KP und BPP

Problem (Entscheidungsvariante des Rucksackproblems – KP-E)

Eingabe: B ,P ∈ N, w1, . . . ,wN ∈ {1, . . . ,B}, p1, . . . , pN ∈ N

Frage: Gibt es K ⊆ {1, . . . ,N} mit
∑

i∈K wi ≤ B und∑
i∈K pi ≥ P

Korollar

KP-E ist NP-vollständig.

Beweis durch einfache Reduktion von SUBSET-SUM (Wie?)
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Konsequenzen für KP und BPP

Problem (Entscheidungsvariante von Bin Packing – BPP-E)

Eingabe: B , k ∈ N, w1, . . . ,wN ∈ {1, . . . ,B}

zulässige Lösungen: Gibt es eine Fkt f : {1, . . . ,N} → {1, . . . , k},

so dass ∀i ∈ {1, . . . , k} :
∑

j∈f −1(i)

wj ≤ B

Korollar

BPP-E ist NP-vollständig.

Beweis durch einfache Reduktion von PARTITION (Wie?)
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