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Einfiihrung

Motivation

@ Wir nennen ein Optimierungsproblem NP-hart, wenn die
Entscheidungsvariante des Problems NP-hart ist.

@ Unter der Hypothese P # NP gibt es fiir NP-harte
Optimierungsprobleme keinen Polynomialzeitalgorithmus, der
eine optimale Lésung berechnet.

@ In der Praxis ist es haufig jedoch ausreichend eine Losung zu
berechnen, deren Zielfunktionswert vielleicht nicht optimal ist,
aber das Optimum annihernd erreicht.
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Einfiihrung

Def: Approximationsalgorithmus

Sei I ein Optimierungsproblem. Fiir eine Instanz / von Tl
bezeichnen wir den optimalen Zielfunktionswert mit opt(/).

@ Ein a-Approximationsalgorithmus, o > 1, fiir ein
Minimierungsproblem [T berechnet fiir jede Instanz / von [l
eine zuldssige Losung mit Zielfunktionswert héchstens
a - opt(l).

@ Ein a-Approximationsalgorithmus, o < 1, fiir ein
Maximierungsproblem [1 berechnet fiir jede Instanz / von 1
eine zuldssige Losung mit Zielfunktionswert mindestens
a - opt(l).

a wird auch als Approximationsfaktor oder Approximationsgiite
bezeichnet.
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Einfiihrung

Def: Approximationsschema

Ein Approximationsschema A fiir ein Optimierungsproblem ist ein
Algorithmus, der es ermoglicht, fiir jedes vorgegebene € > 0 eine
zuldssige Losung mit Approximationsgiite 1 + € bzw. 1 — e zu

berechnen.
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Einfiihrung

Def: Approximationsschema

Ein Approximationsschema A fiir ein Optimierungsproblem ist ein
Algorithmus, der es ermoglicht, fiir jedes vorgegebene € > 0 eine
zuldssige Losung mit Approximationsgiite 1 + € bzw. 1 — e zu
berechnen.

FPTAS (fully polynomial time approximation scheme)

A wird als FPTAS bezeichnet, falls die Laufzeit polynomiell sowohl
in der Eingabeldnge n als auch in % beschrankt ist.

Magliche Laufzeitschranken: z.B. O(n?/¢) oder O(n3 + 1/¢?).
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Einfiihrung

Def: Approximationsschema

Ein Approximationsschema A fiir ein Optimierungsproblem ist ein
Algorithmus, der es ermoglicht, fiir jedes vorgegebene € > 0 eine
zuldssige Losung mit Approximationsgiite 1 + € bzw. 1 — e zu
berechnen.

FPTAS (fully polynomial time approximation scheme)

A wird als FPTAS bezeichnet, falls die Laufzeit polynomiell sowohl
in der Eingabeldnge n als auch in % beschrankt ist.

Magliche Laufzeitschranken: z.B. O(n?/¢) oder O(n3 + 1/¢?).

PTAS (polynomial time approximation scheme)

A wird als PTAS bezeichnet, falls die Laufzeit fiir jedes konstante
€ > 0 polynomiell in n beschrankt ist.

Mégliche Laufzeitschranken: z.B. O(2/¢n?) oder O(n'/¢ log n).
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FPTAS fiir das Rucksackproblem

@ Das Rucksackproblem kann durch einen Algorithmus mit
Laufzeit O(N?P) geldst werden, wobei P = maxi<j<y pi.

@ Warum ist diese Laufzeitschranke nicht polynomiell?
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FPTAS fiir das Rucksackproblem

@ Das Rucksackproblem kann durch einen Algorithmus mit
Laufzeit O(N?P) geldst werden, wobei P = maxi<j<y pi.

@ Warum ist diese Laufzeitschranke nicht polynomiell?

@ Obige Laufzeitschranke ist pseudopolynomiell, d.h.

polynomiell beschrankt bezogen auf die Eingabeldnge bei
unarer Kodierung.
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FPTAS fiir das Rucksackproblem

@ Das Rucksackproblem kann durch einen Algorithmus mit
Laufzeit O(N?P) geldst werden, wobei P = maxi<j<y pi.

@ Warum ist diese Laufzeitschranke nicht polynomiell?

@ Obige Laufzeitschranke ist pseudopolynomiell, d.h.
polynomiell beschrankt bezogen auf die Eingabeldnge bei
unarer Kodierung.

@ Das FPTAS fiir Rucksack basiert auf diesem
pseudopolynomiellen Algorithmus.
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FPTAS fiir das Rucksackproblem

Der pseudopolynomielle Algorithmus

Wir zeigen

Fiir das Rucksackproblem gibt es einen Algorithmus, der eine
optimale Lésung in O(N?P) uniformen Rechenschritten berechnet.

Da jeder uniforme Rechenschritt dieses Algorithmus nur
polynomiell viele Bits anspricht, hat der Algorithmus auch im
logarithmischen Kostenmal3 eine pseudopolynomielle
Laufzeitschranke.

Der im Lemma beschriebene Algorithmus basiert auf dem Prinzip
der dynamischen Programmierung.
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FPTAS fiir das Rucksackproblem

Der pseudopolynomielle Algorithmus - Beweis des Lemmas

@ Der optimale Nutzenwert liegt offensichtlich zwischen 0 und
N-P.

o Firie{0,...,N} und pe€{0,...,N- P}, sei A, das
kleinstmogliche Gewicht, mit dem man den Nutzenwert p
exakt erreichen kann, wenn man nur Objekte aus der Menge
{1,...,i} verwenden darf.

o Wir setzen A; , = oo, falls der Nutzen p nicht durch eine
Teilmenge von {1,...,i} erreicht werden kann.

o Fiirallejie {1,...,N} gilt Ajo=0.

@ AuBerdem gilt Ag , = oo fiir alle p > 0 und A; , = oo fiir alle
p <0.

e Firie{l,...,N}und pe {1,...,N- P} gilt nun die
folgende Rekursionsgleichung:

Ais1p = min(Aip, Aip—piy + Wit1) -
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FPTAS fiir das Rucksackproblem

Der pseudopolynomielle Algorithmus - Beweis des Lemmas

@ Wir verwenden den Ansatz der dynamischen Programmierung
und berechnen Zeile fiir Zeile alle Eintrage in der Tabelle bzw.

Matrix (Ai,p)ie{o,...,N},pe{O,...,NP}-
@ Der gesuchte, maximal erreichbare Nutzenwert ist

max{p|Anp < b} .

@ Die zugehorige Rucksackbepackung lasst sich durch
Abspeichern geeigneter Zusatzinformationen zu den einzelnen
Tabelleneintrdgen rekonstruieren.

o Laufzeit?
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FPTAS fiir das Rucksackproblem

Der pseudopolynomielle Algorithmus - Beweis des Lemmas

@ Wir verwenden den Ansatz der dynamischen Programmierung
und berechnen Zeile fiir Zeile alle Eintrage in der Tabelle bzw.
Matrix (Ai p)ic{o,....N},pe{0,.... NP}

@ Der gesuchte, maximal erreichbare Nutzenwert ist

max{p|Anp < b} .

@ Die zugehorige Rucksackbepackung lasst sich durch
Abspeichern geeigneter Zusatzinformationen zu den einzelnen
Tabelleneintrdgen rekonstruieren.

o Laufzeit? O(N?P) (= GroBe der Tabelle). O
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FPTAS fiir das Rucksackproblem

Vom dynamischen Programm zum FPTAS

@ Die Laufzeitschranke des dynamichen Programms hangt linear
von der GroBe der Nutzenwerte ab.

@ Zu beachten ist, dass der Algorithmus davon ausgeht, dass die
Nutzenwerte — wie in der Problemspezifikation festgelegt —
natiirliche Zahlen sind.

@ Wir kdnnen die GroBe der Eingabezahlen verringern, indem
wir alle Nutzenwerte mit demselben Skalierungsfaktor «
multiplizieren (z.B. & = 0.01) und die dabei entstehenden
Nachkommastellen streichen.

@ Was passiert nun, wenn wir das dynamische Programm mit

derart skalierten und gerundeten Nutzenwerten aufrufen? ...
Diskussion ...
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FPTAS fiir das Rucksackproblem

Vom dynamischen Programm zum FPTAS

Fiir das FPTAS miissen wir “nur” den Rundungsfaktor geeignet
wahlen ...

Das FPTAS fiir das Rucksackproblem
© Skaliere die Nutzenwerte mit dem Faktor oo = Eﬂp und runde
ab, d.h. fiir i € {1,..., N} setze p! = |api].
@ Berechne eine optimale Rucksackbepackung K C {1,..., N}

fur die Nutzenwerte pf, ..., pj mit dem dynamischen
Programm aus dem Lemma.
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FPTAS fiir das Rucksackproblem

Laufzeitanalyse

@ Durch die Skalierung sind die Nutzenwerte nach oben
beschrinkt durch P’ = |aP] = [Y].

€
@ Aus dem Lemma 1 ergibt sich somit unmittelbar eine
Laufzeitschranke von O(N?P’") = O(N3/¢) uniformen
Rechenschritten.
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FPTAS fiir das Rucksackproblem

Analyse des Approximationsfaktors

@ Sei K* C {1,..., N} eine optimale Rucksackbepackung.

@ Die durch den Algorithmus berechnete Rucksackbepackung
bezeichnen wir mit K.

o Es gilt zu zeigen
p(K) = (1 =€) p(K") .

@ Dazu skalieren wir die gerundeten Nutzenwerte virtuell wieder
herauf, allerdings ohne dabei den Rundungsfehler riickgangig
zu machen, d.h. wir setzen p/ = p!/a.

o Die Rucksackbepackung K ist optimal fiir die Nutzenwerte p]
und somit auch optimal fiir die Nutzenwerte p!.
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FPTAS fiir das Rucksackproblem

Analyse des Approximationsfaktors

@ Bezogen auf die urspriinglichen Nutzenwerte p; macht der
Algorithmus allerdings moglicherweise fiir jedes Objekt einen
Rundungsfehler: Objekte sehen weniger profitabel aus als sie
eigentlich sind.

@ Der Rundungsfehler fiir Objekt i |dsst sich abschatzen durch

ap; api —1 1
pi—p; = Pi—M < P;—L = —.
o o o

o Fiir eine Teilmenge S C {1,...,N} sei p(S) = > ;5 pi und

P'(S) = Dies i
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FPTAS fiir das Rucksackproblem

Analyse des Approximationsfaktors

@ Der Rundungsfehler fiir eine optimale Losung K™ lasst sich
entsprechend absch&tzen durch

1 N
— = eP < ep(KY) ,
o'

*\ Ll * < Z <
pK)=p/(K) < 3 = <
ieEK*
wobei die Ungleichung p(K*) > P daraus folgt, dass der
optimale Nutzen p(K*) mindestens so groB ist wie der Nutzen
des Objektes mit dem maximalen Nutzenwert P.

@ Aus der obigen Ungleichung folgt p”(K*) > (1 — €) p(K™).
@ Nun ergibt sich

p(K) = p"(K) = p"(K*) = (1 —€)p(K") -

Prof. Dr. Berthold Vécking Lehrstuhl Informatik 1 Algorithmen v Berechenbarkeit und Komplexitat: Approximationsalgorithmen fii



FPTAS fiir das Rucksackproblem

Diskussion

@ Eine wichtige Grundlage fiir das FPTAS des Rucksackproblems
ist das dynamische Programm mit Laufzeit O(N2P).

@ Ein anderes dynamisches Programm hat Laufzeit O(N?W),
wobei W das maximale Gewicht ist.

@ Dieser Algorithmus ist also pseudopolynomiell in den
Gewichten statt in den Nutzenwerten.

@ Um aus diesem Algorithmus ein FPTAS zu gewinnen, miisste
man die Gewichte runden. Welche Auswirkungen hatte das?
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FPTAS fiir das Rucksackproblem

Diskussion

@ Eine wichtige Grundlage fiir das FPTAS des Rucksackproblems
ist das dynamische Programm mit Laufzeit O(N2P).

@ Ein anderes dynamisches Programm hat Laufzeit O(N?W),
wobei W das maximale Gewicht ist.

@ Dieser Algorithmus ist also pseudopolynomiell in den
Gewichten statt in den Nutzenwerten.

@ Um aus diesem Algorithmus ein FPTAS zu gewinnen, miisste
man die Gewichte runden. Welche Auswirkungen hatte das?

@ Fazit: Nicht jeder pseudopolynomielle Algorithmus liefert auch
ein FPTAS.
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Stark und schwach NP-harte Probleme

Binare versus unare Kodierung der Eingabe

@ Bisher sind wir durchgidngig davon ausgegangen, dass Zahlen
in der Eingabe eines Problems binar kodiert werden.

@ Wenn wir das Eingabeformat dndern, so erhalten wir ein neues
Problem.

@ Das Rucksackproblem mit bindrer Kodierung haben wir mit
KP bezeichnet.

@ Sei u-KP die Variante des Rucksackproblems, bei der wir
annehmen, dass die Eingabezahlen unar kodiert vorliegen, d.h.
wir kodieren eine Zahl k € IN durch k aufeinander folgende
Einsen.
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Stark und schwach NP-harte Probleme

Binare versus unare Kodierung der Eingabe

@ Wir wissen KP ist NP-hart, hat aber einen Algorithmus mit
pseudopolynomieller Laufzeitschranke.

@ Die Laufzeit dieses Algorithmus ist polynomiell in der
Eingabelange von u-KP.

Das Rucksackproblem bei unarer Kodierung ist in P, obwohl es in
der iiblichen binaren Kodierung NP-hart ist.

Wie lasst sich dieses Paradoxon erklaren?
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Stark und schwach NP-harte Probleme

@ Ein NP-hartes Problem, das bei unarer Kodierung einen

polynomiellen Algorithmus hat, wird als schwach NP-hart
bezeichnet.

@ Ein Problem, das auch bei unarer Kodierung der
Eingabezahlen NP-hart bleibt, wird als stark NP-hart
bezeichnet.
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Stark und schwach NP-harte Probleme

@ Ein NP-hartes Problem, das bei unarer Kodierung einen

polynomiellen Algorithmus hat, wird als schwach NP-hart
bezeichnet.

@ Ein Problem, das auch bei unarer Kodierung der
Eingabezahlen NP-hart bleibt, wird als stark NP-hart
bezeichnet.

schwach NP-hart sind z.B. KP, SUBSET-SUM, PARTITION
stark NP-hart sind z.B. CLIQUE, TSP, BPP

Frage: Warum sind CLIQUE und TSP stark NP-hart?
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Stark und schwach NP-harte Probleme

Stark NP-harte Probleme haben kein FPTAS

Sei N ein Optimierungsproblem mit ganzzahliger, nicht-negativer
Zielfunktion. Sei p ein geeignetes Polynom. Fiir eine Eingabe |
bezeichne opt(l) € IN den Wert einer optimalen Lésung und ny (1)
die unare Eingabelange. Es gelte opt(l) < p(ny(l)) fiir jede
Eingabe |. Falls T1 stark NP-hart ist, so hat 1 kein FPTAS, es sei
denn P = NP.
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Stark und schwach NP-harte Probleme

Stark NP-harte Probleme haben kein FPTAS — Beweis

@ Zum Zwecke des Widerspruchs nehmen wir an, 1 ist stark
NP-hart und hat ein FPTAS.

@ Aus dem FPTAS werden wir einen pseudopolynomiellen
Algorithmus fiir I konstruieren.

@ Einen derartigen Algorithmus kann es unter der Hypothese
P # NP nicht geben. Also hat I kein FPTAS oder P = NP.

(Im Folgenden nehmen wir der Einfachheit halber an, I ist ein
Minimierungsproblem.)
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Stark und schwach NP-harte Probleme

Stark NP-harte Probleme haben kein FPTAS — Beweis

@ Sei A ein FPTAS fiir IN.
@ Bei Eingabe / mit unarere Lange n,(/) setzen wir

e = 1/p(nu(1)).

@ Die von A berechnete Lésung hat damit den Wert hochstens

(14 ¢€)opt(l) < opt(l)+ep(n,(l)) = opt(l)+1 .
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Stark und schwach NP-harte Probleme

Stark NP-harte Probleme haben kein FPTAS — Beweis

@ Sei A ein FPTAS fiir IN.
@ Bei Eingabe / mit unarere Lange n,(/) setzen wir

e = 1/p(nu(1)).

@ Die von A berechnete Lésung hat damit den Wert hochstens

(14 ¢€)opt(l) < opt(l)+ep(n,(l)) = opt(l)+1 .

(]

Somit berechnet A eine Losung mit Zielfunktionswert
z € [opt(l), opt(l) +1).
Aus der Ganzzahligkeit der Zielfunktion folgt, z = opt(/).

¢ ©

A berechnet also eine optimale Losung.

Die Laufzeit von A ist polynomiell in £ = p(n,(/)) beschrankt,
also polynomiell in n,(/), und somit pseudopolynomiell.

Bl
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Stark und schwach NP-harte Probleme

Diskussion

@ Aus dem obigen Satz folgt beispielsweise, dass TSP kein
FPTAS hat, da es stark NP-hart ist.

@ Die Umkehrung des Satzes gilt nicht: Es gibt Probleme mit
pseudopolynomiellen Algorithmen, fiir die es unter der
Hypothese P ## NP beweisbar kein FPTAS gibt.
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Stark und schwach NP-harte Probleme

Ausblick

@ In der Vorlesung Effiziente Algorithmen wird das Thema
Approximationsalgorithmen intensiver vorgestellt.

@ Es wird z.B. gezeigt, dass TSP in seiner allgemeinen Form
tiberhaupt keinen Approximationsalgorithmus mit polynomiell
beschrankter Laufzeit hat, es sei denn P = NP.

@ Nur wenn man bestimmte Forderungen an die Distanzmatrix

stellt, also die Eingabe einschrankt, kann man das
TSP-Problem bis auf einen konstanten Faktor approximieren.
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