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Einführung
FPTAS für das Rucksackproblem

Stark und schwach NP-harte Probleme

Motivation

Wir nennen ein Optimierungsproblem NP-hart, wenn die
Entscheidungsvariante des Problems NP-hart ist.

Unter der Hypothese P 6= NP gibt es für NP-harte
Optimierungsprobleme keinen Polynomialzeitalgorithmus, der
eine optimale Lösung berechnet.

In der Praxis ist es häufig jedoch ausreichend eine Lösung zu
berechnen, deren Zielfunktionswert vielleicht nicht optimal ist,
aber das Optimum annähernd erreicht.
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Def: Approximationsalgorithmus

Sei Π ein Optimierungsproblem. Für eine Instanz I von Π
bezeichnen wir den optimalen Zielfunktionswert mit opt(I ).

Ein α-Approximationsalgorithmus, α > 1, für ein
Minimierungsproblem Π berechnet für jede Instanz I von Π
eine zulässige Lösung mit Zielfunktionswert höchstens
α · opt(I ).

Ein α-Approximationsalgorithmus, α < 1, für ein
Maximierungsproblem Π berechnet für jede Instanz I von Π
eine zulässige Lösung mit Zielfunktionswert mindestens
α · opt(I ).

α wird auch als Approximationsfaktor oder Approximationsgüte

bezeichnet.

Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und KomplexitätBerechenbarkeit und Komplexität: Approximationsalgorithmen für



Einführung
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Def: Approximationsschema

Ein Approximationsschema A für ein Optimierungsproblem ist ein
Algorithmus, der es ermöglicht, für jedes vorgegebene ǫ > 0 eine
zulässige Lösung mit Approximationsgüte 1 + ǫ bzw. 1 − ǫ zu
berechnen.
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Einführung
FPTAS für das Rucksackproblem

Stark und schwach NP-harte Probleme

Def: Approximationsschema

Ein Approximationsschema A für ein Optimierungsproblem ist ein
Algorithmus, der es ermöglicht, für jedes vorgegebene ǫ > 0 eine
zulässige Lösung mit Approximationsgüte 1 + ǫ bzw. 1 − ǫ zu
berechnen.

FPTAS (fully polynomial time approximation scheme)

A wird als FPTAS bezeichnet, falls die Laufzeit polynomiell sowohl
in der Eingabelänge n als auch in 1

ǫ beschränkt ist.

Mögliche Laufzeitschranken: z.B. O(n2/ǫ) oder O(n3 + 1/ǫ2).
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Def: Approximationsschema

Ein Approximationsschema A für ein Optimierungsproblem ist ein
Algorithmus, der es ermöglicht, für jedes vorgegebene ǫ > 0 eine
zulässige Lösung mit Approximationsgüte 1 + ǫ bzw. 1 − ǫ zu
berechnen.

FPTAS (fully polynomial time approximation scheme)

A wird als FPTAS bezeichnet, falls die Laufzeit polynomiell sowohl
in der Eingabelänge n als auch in 1

ǫ beschränkt ist.

Mögliche Laufzeitschranken: z.B. O(n2/ǫ) oder O(n3 + 1/ǫ2).

PTAS (polynomial time approximation scheme)

A wird als PTAS bezeichnet, falls die Laufzeit für jedes konstante
ǫ > 0 polynomiell in n beschränkt ist.

Mögliche Laufzeitschranken: z.B. O(21/ǫn2) oder O(n1/ǫ log n).
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Das Rucksackproblem kann durch einen Algorithmus mit
Laufzeit O(N2P) gelöst werden, wobei P = max1≤i≤N pi .

Warum ist diese Laufzeitschranke nicht polynomiell?
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Stark und schwach NP-harte Probleme

Das Rucksackproblem kann durch einen Algorithmus mit
Laufzeit O(N2P) gelöst werden, wobei P = max1≤i≤N pi .

Warum ist diese Laufzeitschranke nicht polynomiell?

Obige Laufzeitschranke ist pseudopolynomiell, d.h.
polynomiell beschränkt bezogen auf die Eingabelänge bei
unärer Kodierung.
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Stark und schwach NP-harte Probleme

Das Rucksackproblem kann durch einen Algorithmus mit
Laufzeit O(N2P) gelöst werden, wobei P = max1≤i≤N pi .

Warum ist diese Laufzeitschranke nicht polynomiell?

Obige Laufzeitschranke ist pseudopolynomiell, d.h.
polynomiell beschränkt bezogen auf die Eingabelänge bei
unärer Kodierung.

Das FPTAS für Rucksack basiert auf diesem
pseudopolynomiellen Algorithmus.
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Der pseudopolynomielle Algorithmus

Wir zeigen

Lemma

Für das Rucksackproblem gibt es einen Algorithmus, der eine

optimale Lösung in O(N2P) uniformen Rechenschritten berechnet.

Da jeder uniforme Rechenschritt dieses Algorithmus nur
polynomiell viele Bits anspricht, hat der Algorithmus auch im
logarithmischen Kostenmaß eine pseudopolynomielle
Laufzeitschranke.

Der im Lemma beschriebene Algorithmus basiert auf dem Prinzip
der dynamischen Programmierung.
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Der pseudopolynomielle Algorithmus - Beweis des Lemmas

Der optimale Nutzenwert liegt offensichtlich zwischen 0 und
N · P .

Für i ∈ {0, . . . ,N} und p ∈ {0, . . . ,N · P}, sei Ai ,p das
kleinstmögliche Gewicht, mit dem man den Nutzenwert p

exakt erreichen kann, wenn man nur Objekte aus der Menge
{1, . . . , i} verwenden darf.

Wir setzen Ai ,p = ∞, falls der Nutzen p nicht durch eine
Teilmenge von {1, . . . , i} erreicht werden kann.

Für alle i ∈ {1, . . . ,N} gilt Ai ,0 = 0.

Außerdem gilt A0,p = ∞ für alle p > 0 und Ai ,p = ∞ für alle
p < 0.

Für i ∈ {1, . . . ,N} und p ∈ {1, . . . ,N · P} gilt nun die
folgende Rekursionsgleichung:

Ai+1,p = min(Ai ,p, Ai ,p−pi+1
+ wi+1) .
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Der pseudopolynomielle Algorithmus - Beweis des Lemmas

Wir verwenden den Ansatz der dynamischen Programmierung
und berechnen Zeile für Zeile alle Einträge in der Tabelle bzw.
Matrix (Ai ,p)i∈{0,...,N},p∈{0,...,NP}.

Der gesuchte, maximal erreichbare Nutzenwert ist

max{p |AN,p ≤ b} .

Die zugehörige Rucksackbepackung lässt sich durch
Abspeichern geeigneter Zusatzinformationen zu den einzelnen
Tabelleneinträgen rekonstruieren.

Laufzeit?
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Der pseudopolynomielle Algorithmus - Beweis des Lemmas

Wir verwenden den Ansatz der dynamischen Programmierung
und berechnen Zeile für Zeile alle Einträge in der Tabelle bzw.
Matrix (Ai ,p)i∈{0,...,N},p∈{0,...,NP}.

Der gesuchte, maximal erreichbare Nutzenwert ist

max{p |AN,p ≤ b} .

Die zugehörige Rucksackbepackung lässt sich durch
Abspeichern geeigneter Zusatzinformationen zu den einzelnen
Tabelleneinträgen rekonstruieren.

Laufzeit? O(N2P) (= Größe der Tabelle). �
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Vom dynamischen Programm zum FPTAS

Die Laufzeitschranke des dynamichen Programms hängt linear
von der Größe der Nutzenwerte ab.

Zu beachten ist, dass der Algorithmus davon ausgeht, dass die
Nutzenwerte – wie in der Problemspezifikation festgelegt –
natürliche Zahlen sind.

Wir können die Größe der Eingabezahlen verringern, indem
wir alle Nutzenwerte mit demselben Skalierungsfaktor α
multiplizieren (z.B. α = 0.01) und die dabei entstehenden
Nachkommastellen streichen.

Was passiert nun, wenn wir das dynamische Programm mit
derart skalierten und gerundeten Nutzenwerten aufrufen? ...
Diskussion ...
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Vom dynamischen Programm zum FPTAS

Für das FPTAS müssen wir “nur” den Rundungsfaktor geeignet
wählen ...

Das FPTAS für das Rucksackproblem

1 Skaliere die Nutzenwerte mit dem Faktor α = N
ǫP und runde

ab, d.h. für i ∈ {1, . . . ,N} setze p′
i = ⌊αpi ⌋.

2 Berechne eine optimale Rucksackbepackung K ⊆ {1, . . . ,N}
für die Nutzenwerte p′

1, . . . , p
′
N mit dem dynamischen

Programm aus dem Lemma.
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Laufzeitanalyse

Durch die Skalierung sind die Nutzenwerte nach oben
beschränkt durch P ′ = ⌊αP⌋ = ⌊N

ǫ ⌋.

Aus dem Lemma 1 ergibt sich somit unmittelbar eine
Laufzeitschranke von O(N2P ′) = O(N3/ǫ) uniformen
Rechenschritten.
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Analyse des Approximationsfaktors

Sei K ∗ ⊆ {1, . . . ,N} eine optimale Rucksackbepackung.

Die durch den Algorithmus berechnete Rucksackbepackung
bezeichnen wir mit K .

Es gilt zu zeigen

p(K ) ≥ (1 − ǫ) p(K ∗) .

Dazu skalieren wir die gerundeten Nutzenwerte virtuell wieder
herauf, allerdings ohne dabei den Rundungsfehler rückgängig
zu machen, d.h. wir setzen p′′

i = p′
i/α.

Die Rucksackbepackung K ist optimal für die Nutzenwerte p′
i

und somit auch optimal für die Nutzenwerte p′′
i .
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Analyse des Approximationsfaktors

Bezogen auf die ursprünglichen Nutzenwerte pi macht der
Algorithmus allerdings möglicherweise für jedes Objekt einen
Rundungsfehler: Objekte sehen weniger profitabel aus als sie
eigentlich sind.

Der Rundungsfehler für Objekt i lässt sich abschätzen durch

pi − p′′
i = pi −

⌊αpi⌋

α
≤ pi −

αpi − 1

α
=

1

α
.

Für eine Teilmenge S ⊆ {1, . . . ,N} sei p(S) =
∑

i∈S pi und
p′′(S) =

∑
i∈S p′′

i .
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Analyse des Approximationsfaktors

Der Rundungsfehler für eine optimale Lösung K ∗ lässt sich
entsprechend abschätzen durch

p(K ∗) − p′′(K ∗) ≤
∑

i∈K∗

1

α
≤

N

α
= ǫP ≤ ǫ p(K ∗) ,

wobei die Ungleichung p(K ∗) ≥ P daraus folgt, dass der
optimale Nutzen p(K ∗) mindestens so groß ist wie der Nutzen
des Objektes mit dem maximalen Nutzenwert P .

Aus der obigen Ungleichung folgt p′′(K ∗) ≥ (1 − ǫ) p(K ∗).

Nun ergibt sich

p(K ) ≥ p′′(K ) ≥ p′′(K ∗) ≥ (1 − ǫ) p(K ∗) .

�
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Diskussion

Eine wichtige Grundlage für das FPTAS des Rucksackproblems
ist das dynamische Programm mit Laufzeit O(N2P).

Ein anderes dynamisches Programm hat Laufzeit O(N2W ),
wobei W das maximale Gewicht ist.

Dieser Algorithmus ist also pseudopolynomiell in den
Gewichten statt in den Nutzenwerten.

Um aus diesem Algorithmus ein FPTAS zu gewinnen, müsste
man die Gewichte runden. Welche Auswirkungen hätte das?
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Diskussion

Eine wichtige Grundlage für das FPTAS des Rucksackproblems
ist das dynamische Programm mit Laufzeit O(N2P).

Ein anderes dynamisches Programm hat Laufzeit O(N2W ),
wobei W das maximale Gewicht ist.

Dieser Algorithmus ist also pseudopolynomiell in den
Gewichten statt in den Nutzenwerten.

Um aus diesem Algorithmus ein FPTAS zu gewinnen, müsste
man die Gewichte runden. Welche Auswirkungen hätte das?

Fazit: Nicht jeder pseudopolynomielle Algorithmus liefert auch
ein FPTAS.
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Binäre versus unäre Kodierung der Eingabe

Bisher sind wir durchgängig davon ausgegangen, dass Zahlen
in der Eingabe eines Problems binär kodiert werden.

Wenn wir das Eingabeformat ändern, so erhalten wir ein neues
Problem.

Das Rucksackproblem mit binärer Kodierung haben wir mit
KP bezeichnet.

Sei u-KP die Variante des Rucksackproblems, bei der wir
annehmen, dass die Eingabezahlen unär kodiert vorliegen, d.h.
wir kodieren eine Zahl k ∈ N durch k aufeinander folgende
Einsen.
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Binäre versus unäre Kodierung der Eingabe

Wir wissen KP ist NP-hart, hat aber einen Algorithmus mit
pseudopolynomieller Laufzeitschranke.

Die Laufzeit dieses Algorithmus ist polynomiell in der
Eingabelänge von u-KP.

Das Rucksackproblem bei unärer Kodierung ist in P , obwohl es in
der üblichen binären Kodierung NP-hart ist.

Wie lässt sich dieses Paradoxon erklären?
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Definition

Ein NP-hartes Problem, das bei unärer Kodierung einen
polynomiellen Algorithmus hat, wird als schwach NP-hart

bezeichnet.

Ein Problem, das auch bei unärer Kodierung der
Eingabezahlen NP-hart bleibt, wird als stark NP-hart

bezeichnet.
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Einführung
FPTAS für das Rucksackproblem

Stark und schwach NP-harte Probleme

Definition

Ein NP-hartes Problem, das bei unärer Kodierung einen
polynomiellen Algorithmus hat, wird als schwach NP-hart

bezeichnet.

Ein Problem, das auch bei unärer Kodierung der
Eingabezahlen NP-hart bleibt, wird als stark NP-hart

bezeichnet.

schwach NP-hart sind z.B. KP, SUBSET-SUM, PARTITION

stark NP-hart sind z.B. CLIQUE, TSP, BPP

Frage: Warum sind CLIQUE und TSP stark NP-hart?
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Stark NP-harte Probleme haben kein FPTAS

Satz

Sei Π ein Optimierungsproblem mit ganzzahliger, nicht-negativer

Zielfunktion. Sei p ein geeignetes Polynom. Für eine Eingabe I

bezeichne opt(I ) ∈ N den Wert einer optimalen Lösung und nu(I )
die unäre Eingabelänge. Es gelte opt(I ) < p(nu(I )) für jede

Eingabe I . Falls Π stark NP-hart ist, so hat Π kein FPTAS, es sei

denn P = NP.
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Stark NP-harte Probleme haben kein FPTAS – Beweis

Zum Zwecke des Widerspruchs nehmen wir an, Π ist stark
NP-hart und hat ein FPTAS.

Aus dem FPTAS werden wir einen pseudopolynomiellen
Algorithmus für Π konstruieren.

Einen derartigen Algorithmus kann es unter der Hypothese
P 6= NP nicht geben. Also hat Π kein FPTAS oder P = NP.

(Im Folgenden nehmen wir der Einfachheit halber an, Π ist ein
Minimierungsproblem.)
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Stark NP-harte Probleme haben kein FPTAS – Beweis

Sei A ein FPTAS für Π.

Bei Eingabe I mit unärere Länge nu(I ) setzen wir
ǫ = 1/p(nu(I )).

Die von A berechnete Lösung hat damit den Wert höchstens

(1 + ǫ) opt(I ) < opt(I ) + ǫ p(nu(I )) = opt(I ) + 1 .
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Stark NP-harte Probleme haben kein FPTAS – Beweis

Sei A ein FPTAS für Π.

Bei Eingabe I mit unärere Länge nu(I ) setzen wir
ǫ = 1/p(nu(I )).

Die von A berechnete Lösung hat damit den Wert höchstens

(1 + ǫ) opt(I ) < opt(I ) + ǫ p(nu(I )) = opt(I ) + 1 .

Somit berechnet A eine Lösung mit Zielfunktionswert
z ∈ [opt(I ), opt(I ) + 1).

Aus der Ganzzahligkeit der Zielfunktion folgt, z = opt(I ).

A berechnet also eine optimale Lösung.

Die Laufzeit von A ist polynomiell in 1
ǫ = p(nu(I )) beschränkt,

also polynomiell in nu(I ), und somit pseudopolynomiell.

�
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Diskussion

Aus dem obigen Satz folgt beispielsweise, dass TSP kein
FPTAS hat, da es stark NP-hart ist.

Die Umkehrung des Satzes gilt nicht: Es gibt Probleme mit
pseudopolynomiellen Algorithmen, für die es unter der
Hypothese P 6= NP beweisbar kein FPTAS gibt.
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Ausblick

In der Vorlesung Effiziente Algorithmen wird das Thema
Approximationsalgorithmen intensiver vorgestellt.

Es wird z.B. gezeigt, dass TSP in seiner allgemeinen Form
überhaupt keinen Approximationsalgorithmus mit polynomiell
beschränkter Laufzeit hat, es sei denn P = NP.

Nur wenn man bestimmte Forderungen an die Distanzmatrix
stellt, also die Eingabe einschränkt, kann man das
TSP-Problem bis auf einen konstanten Faktor approximieren.
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