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Kurzfassung Halteproblem

Beim Halteproblem geht es darum, zu entscheiden, ob ein
Programm auf einer bestimmten Eingabe w terminiert.

Das Halteproblem wird als folgende formale Sprache dargestellt:

H = {〈M〉w | M hält auf w} .

Wir haben festgestellt, dass dieses elementare Problem nicht
entscheidbar ist.
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Unterprogrammtechnik

Die Unterprogrammtechnik lässt sich wie folgt zusammenfassen:

Unterprogrammtechnik zum Nachweis von Unentscheidbarkeit

Um nachzuweisen, dass eine Sprache L nicht rekursiv ist, genügt es
zu zeigen, dass man durch Unterprogrammaufruf einer TM ML, die
L entscheidet, ein anderes Problem L′ entscheiden kann, dass bereits
als nicht rekursiv bekannt ist.

Im Folgenden werden wir die Unterprogrammtechnik anwenden auf
ein spezielles Halteproblem.
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Unterprogrammtechnik: Beispiel

Betrachte die sogenannte Diagonalsprache:

D = {w ∈ {0, 1}∗ | w = wi und Mi akzeptiert w nicht} .

Cantor’s Diagonalisierungstechnik hat gezeigt:

Satz:

Die Diagonalsprache D ist nicht rekursiv.

Mit Hilfe der Unterprogrammtechnik können wir dann beweisen:

Satz:

Das Komplement D̄ der Diagonalsprache ist nicht rekursiv.
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Unentscheidbarkeit des Komplement der Diagonalsprache

Illustration: Aus M
D̄

konstruieren wir MD .

w

DM

DM reject

accept accept

reject

Aber die Existenz von MD steht im Widerspruch zur Unent-
scheidbarkeit von D.

Damit kann es M
D̄

nicht geben, und D̄ ist nicht entscheidbar.
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Unentscheidbarkeit des speziellen Halteproblems

Das spezielle Halteproblem ist definiert durch

Hǫ = {〈M〉 | M hält auf Eingabe ǫ} .

Satz:

Das spezielle Halteproblem Hǫ ist nicht rekursiv.

Beweis: Wir nutzen die Unterprogrammtechnik. Aus einer TM Mǫ,
die Hǫ entscheidet, konstruieren wir eine TM MH , die das nicht
rekursive Halteproblem entscheiden würde.
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Unentscheidbarkeit des speziellen Halteproblems – Beweis

Die TM MH mit Unterprogramm Mǫ arbeitet wie folgt

1) Falls die Eingabe nicht mit einer korrekten Gödelnummer
beginnt, verwirft MH die Eingabe.

2) Sonst, also auf Eingaben der Form 〈M〉w , berechnet MH die
Gödelnummer einer TM M∗

w mit den folgenden Eigenschaften.

Eigenschaften von M∗

w

Falls M∗

w die Eingabe ǫ erhält, so schreibt sie das Wort w

aufs Band und simuliert die TM M auf der Eingabe w .

Auf anderen Eingaben kann sich M∗

w beliebig verhalten.

3) Nachdem MH die Gödelnummer 〈M∗

w 〉 auf das Band
geschrieben hat, startet sie Mǫ auf dieser Eingabe, und
akzeptiert genau dann, wenn Mǫ akzeptiert.
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Unentscheidbarkeit des speziellen Halteproblems

Illustration: Aus Mǫ konstruieren wir MH .

w*<M    ><M> w

accept

reject (Syntax)

x

reject

accept

HM

M ε

Aber die Existenz von MH steht im Widerspruch zur Unent-
scheidbarkeit von H. Damit kann es Mǫ nicht geben, und das
spezielle Halteproblem Hǫ ist nicht entscheidbar.
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Unentscheidbarkeit des speziellen Halteproblems – Beweis

Terminierung: Nach unseren Annahmen hält Mǫ auf jeder Eingabe.
Also hält auch MH auf jeder Eingabe.

Korrektheit: Sei x = 〈M〉w . Dann gilt

x ∈ H ⇒ M hält auf w

⇒ M∗

w hält auf der Eingabe ǫ

⇒ Mǫ akzeptiert die Eingabe 〈M∗

w 〉

⇒ MH akzeptiert x .

x 6∈ H ⇒ M hält nicht auf w

⇒ M∗

w hält nicht auf der Eingabe ǫ

⇒ Mǫ verwirft die Eingabe 〈M∗

w 〉

⇒ MH verwirft x .

�
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Weitere unentscheidbare Probleme
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Von TM berechnete Funktionen sind partielle Funktionen

Da TMn nicht auf jeder Eingabe halten, berechnen sie
”
partielle

Funktionen“. Das können wir wie folgt formalisieren:

Die von einer TM M berechnete Funktion ist von der Form

fM : {0, 1}∗ → {0, 1}∗ ∪ {⊥} .

Das Zeichen ⊥ steht dabei für undefiniert und bedeutet, dass
die Maschine nicht hält.

Im Fall von Entscheidungsproblemen vereinfacht sich die
Funktion zu

fM : {0, 1}∗ → {0, 1,⊥} .

Dabei steht 0 für Verwerfen, 1 für Akzeptieren und ⊥ für
Nicht-Halten.
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Satz von Rice

Satz:

Sei R die Menge der von TM berechenbaren partiellen Funktionen
und S eine Teilmenge von R mit ∅ 6= S 6= R. Dann ist die Sprache

L(S) = { 〈M〉 | M berechnet eine Funktion aus S}

nicht rekursiv.

In anderen Worten: Aussagen über die von einer TM berechneten
Funktion sind nicht entscheidbar.
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Satz von Rice – Anwendungsbeispiele

Beispiel 1:

Sei S = {fM | ∀w ∈ {0, 1}∗ : fM(w) 6=⊥}.

Dann ist

L(S) = { 〈M〉 | M berechnet eine Funktion aus S}

= { 〈M〉 | M hält auf jeder Eingabe}

Diese Sprache ist auch als das allgemeine Halteproblem Hall

bekannt.

Gemäß Satz von Rice ist Hall nicht entscheidbar.
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Satz von Rice – Anwendungsbeispiele

Beispiel 2:

Sei L17 =
{ 〈M〉 | M berechnet bei Eingabe der Zahl 17 die Zahl 42}.

Es ist L17 = L(S) für S = {fM | fM(bin(17)) = bin(42)}.

Somit ist diese Sprache gemäß dem Satz von Rice nicht
entscheidbar.

Beispiel 3:

Sei H17 =
{ 〈M〉 | Auf jeder Eingabe stoppt M nach ≤ 17 Schritten}.

Über diese Sprache sagt der Satz von Rice nichts aus!!!

Ist H17 entscheidbar?
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Satz von Rice – Beweis

Beweis:

Wir nutzen die Unterprogrammtechnik. Aus einer TM ML(S), die
L(S) entscheidet, konstruieren wir eine TM Mǫ, die das spezielle
Halteproblem Hǫ entscheidet, und damit im Widerspruch zur
Unentscheidbarkeit von Hǫ steht.

Einige Vereinbarungen:

Sei u die überall undefinierte
Funktion.

O.B.d.A. u 6∈ S .

Sei f eine Funktion aus S .

Sei N eine TM, die f berechnet.

f
S

R

u

Bemerkung: Im Falle u ∈ S betrachten wir S̄ = R \ S statt S und zeigen

die Unentscheidbarkeit von L(S̄), was dann ebenfalls die Unentscheid-

barkeit von L(S) impliziert.
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Satz von Rice – Fortsetzung Beweis

Die TM Mǫ mit Unterprogramm ML(S) arbeitet wie folgt

1) Falls die Eingabe nicht aus einer korrekten Gödelnummer
besteht, verwirft Mǫ die Eingabe.

2) Sonst berechnet Mǫ aus der Eingabe 〈M〉 die Gödelnummer
einer TM M∗ mit den folgendem Verhalten.

Verhalten von M∗ auf Eingabe x

Schritt A: Simuliere das Verhalten von M bei Eingabe ǫ

auf einer für diesen Zweck reservierten Spur.

Schritt B: Simuliere das Verhalten von N auf x , stoppe
sobald N stoppt und übernehme die Ausgabe.

3) Starte ML(S) mit der Eingabe 〈M∗〉 und übernehme das
Akzeptanzverhalten.
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Satz von Rice – Illustration

Illustration: Aus ML(S) konstruieren wir Mǫ.

x
 <M>
 <M*>

M
L(S)


accept


reject


reject

(Syntax)


accept


reject


M
E


Aber die Existenz von Mǫ steht im Widerspruch zur Unent-
scheidbarkeit von Hǫ. Daraus folgt, dass ML(S) ebenfalls nicht
existiert, und L(S) somit nicht entscheidbar ist.

Prof. Berthold Vöcking präsentiert durch Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität



Satz von Rice – Fortsetzung Beweis

Terminierung:

Schritt 1) und 2) können in endlicher Zeit berechnet werden.

In Schritt 3) wird ML(S) auf der Eingabe 〈M∗〉 gestartet. Nach
unseren Annahmen hält ML(S) auf jeder Eingabe.

Damit ist die Terminierung gesichert.
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Satz von Rice – Fortsetzung Beweis

Korrektheit:

Bei Eingabe von w = 〈M〉 gilt:

w ∈ Hǫ ⇒ M hält auf ǫ

⇒ M∗ berechnet f

⇒ 〈M∗〉 ∈ L(S)

⇒ ML(S) akzeptiert 〈M∗〉

⇒ Mǫ akzeptiert w

w 6∈ Hǫ ⇒ M hält nicht auf ǫ

⇒ M∗ berechnet u

⇒ 〈M∗〉 6∈ L(S)

⇒ ML(S) verwirft 〈M∗〉

⇒ Mǫ verwirft w
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