
Berechenbarkeit und Komplexität

Die Reduktionstechnik

Prof. Berthold Vöcking
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Rehearsal: Rekursive Aufzählbarkeit

Ein Aufzähler für eine Sprache L ⊆ Σ∗ ist eine Variante einer TM
mit einem angeschlossenen Drucker im Sinne eines zusätzlichen
Ausgabebandes, auf dem sich der Kopf nur nach rechts bewegt.

Prof. Berthold Vöcking präsentiert durch Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität



Rehearsal: Rekursive Aufzählbarkeit

Ein Aufzähler für eine Sprache L ⊆ Σ∗ ist eine Variante einer TM
mit einem angeschlossenen Drucker im Sinne eines zusätzlichen
Ausgabebandes, auf dem sich der Kopf nur nach rechts bewegt.

Eigenschaften des Aufzählers

Gestartet mit leerem Arbeitsband, enummeriert der Aufzähler al-
le Wörter aus L (möglicherweise mit Wiederholungen) auf dem
Drucker, d.h.

gedruckt werden ausschließlich Wörter aus L, und

jedes Wort aus L wird irgendwann ausgedruckt.
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Rehearsal: Rekursive Aufzählbarkeit

Ein Aufzähler für eine Sprache L ⊆ Σ∗ ist eine Variante einer TM
mit einem angeschlossenen Drucker im Sinne eines zusätzlichen
Ausgabebandes, auf dem sich der Kopf nur nach rechts bewegt.

Eigenschaften des Aufzählers

Gestartet mit leerem Arbeitsband, enummeriert der Aufzähler al-
le Wörter aus L (möglicherweise mit Wiederholungen) auf dem
Drucker, d.h.

gedruckt werden ausschließlich Wörter aus L, und

jedes Wort aus L wird irgendwann ausgedruckt.

Die enummerierten Wörter sind durch ein Zeichen 6∈ Σ getrennt.
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Rehearsal: Rekursive Aufzählbarkeit

Ein Aufzähler für eine Sprache L ⊆ Σ∗ ist eine Variante einer TM
mit einem angeschlossenen Drucker im Sinne eines zusätzlichen
Ausgabebandes, auf dem sich der Kopf nur nach rechts bewegt.

Eigenschaften des Aufzählers

Gestartet mit leerem Arbeitsband, enummeriert der Aufzähler al-
le Wörter aus L (möglicherweise mit Wiederholungen) auf dem
Drucker, d.h.

gedruckt werden ausschließlich Wörter aus L, und

jedes Wort aus L wird irgendwann ausgedruckt.

Die enummerierten Wörter sind durch ein Zeichen 6∈ Σ getrennt.

Definition

Eine Sprache für die es einen Aufzähler gibt, heißt rekursiv

aufzählbar.
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Semi-Entscheidbarkeit

Semi-entscheidbar

Eine Sprache L, für die eine TM existiert, die L erkennt, wird als
semi-entscheidbar bezeichnet.
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Semi-Entscheidbarkeit

Semi-entscheidbar

Eine Sprache L, für die eine TM existiert, die L erkennt, wird als
semi-entscheidbar bezeichnet.

Eine Sprache L wird von einer TM M erkannt, wenn

M jedes Wort aus L akzeptiert, und

M kein Wort akzeptiert, das nicht in L enthalten ist.

Prof. Berthold Vöcking präsentiert durch Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität



Rekursiv Aufzählbar = Semi-entscheidbar

Satz

Eine Sprache L ist genau dann semi-entscheidbar, wenn sie rekursiv
aufzählbar ist.
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Rekursiv versus Rekursiv aufzählbarkeit

Korollar

Für jede Sprache L gilt eine der beiden folgenden Eigenschaften.

L ist rekursiv und sowohl L als auch L̄ sind rekursiv aufzählbar.

L ist nicht rekursiv und L oder L̄ (oder beide) sind nicht
rekursiv aufzählbar.
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Rekursiv versus Rekursiv aufzählbarkeit

Korollar

Für jede Sprache L gilt eine der beiden folgenden Eigenschaften.

L ist rekursiv und sowohl L als auch L̄ sind rekursiv aufzählbar.

L ist nicht rekursiv und L oder L̄ (oder beide) sind nicht
rekursiv aufzählbar.

Wir behaupten, beispielsweise die Sprache

Hall = {〈M〉 |M hält auf jede Eingabe}

hat diese Eigenschaft.
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Die Reduktion

Wie kann man nachweisen, dass sowohl Hall als auch H̄all nicht
rekursiv aufzählbar sind?
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Die Reduktion

Wie kann man nachweisen, dass sowohl Hall als auch H̄all nicht
rekursiv aufzählbar sind?

Die Reduktion ist eine Spezialisierung der Unterprogrammtechnik,
die gut zum Nachweis rekursiver Aufzählbarkeit geeignet ist.
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Die Reduktion

Wie kann man nachweisen, dass sowohl Hall als auch H̄all nicht
rekursiv aufzählbar sind?

Die Reduktion ist eine Spezialisierung der Unterprogrammtechnik,
die gut zum Nachweis rekursiver Aufzählbarkeit geeignet ist.

Definition

Es seien L1 und L2 Sprachen über einem Alphabet Σ. Dann heißt
L1 auf L2 reduzierbar, Notation L1 ≤ L2, wenn es eine berechenbare
Funktion f : Σ∗ → Σ∗ gibt, so dass für alle x ∈ Σ∗ gilt

x ∈ L1 ⇔ f (x) ∈ L2 .
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Die Reduktion

Lemma

Falls L1 ≤ L2 und L2 rekursiv aufzählbar ist, so ist L1 rekursiv

aufzählbar.
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Die Reduktion

Lemma

Falls L1 ≤ L2 und L2 rekursiv aufzählbar ist, so ist L1 rekursiv

aufzählbar.

Beweis: Wir konstruieren eine TM M1, die L1 erkennt, durch
Unterprogrammaufruf einer TM M2, die L2 erkennt:
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Die Reduktion

Lemma

Falls L1 ≤ L2 und L2 rekursiv aufzählbar ist, so ist L1 rekursiv

aufzählbar.

Beweis: Wir konstruieren eine TM M1, die L1 erkennt, durch
Unterprogrammaufruf einer TM M2, die L2 erkennt:

Die TM M1 berechnet f (x) aus ihrer Eingabe x .

Dann simuliert M1 die TM M2 mit der Eingabe f (x) und
übernimmt das Akzeptanzverhalten.
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Die Reduktion

Lemma

Falls L1 ≤ L2 und L2 rekursiv aufzählbar ist, so ist L1 rekursiv

aufzählbar.

Beweis: Wir konstruieren eine TM M1, die L1 erkennt, durch
Unterprogrammaufruf einer TM M2, die L2 erkennt:

Die TM M1 berechnet f (x) aus ihrer Eingabe x .

Dann simuliert M1 die TM M2 mit der Eingabe f (x) und
übernimmt das Akzeptanzverhalten.

Korrektheit:

M1 akz x ⇔ M2 akz f (x) ⇔ f (x) ∈ L2 ⇔ x ∈ L1 .

�
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Die Reduktion

reject

accept

x f(x)

1M

2M
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Die Reduktion

Es gilt übrigens auch

Lemma

Falls L1 ≤ L2 und L2 rekursiv ist, so ist L1 rekursiv.
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Die Reduktion

Es gilt übrigens auch

Lemma

Falls L1 ≤ L2 und L2 rekursiv ist, so ist L1 rekursiv.

Dieses Lemma folgt direkt daraus, dass die Reduktion eine
spezialisierte Variante der Unterprogrammtechnik ist.

Prof. Berthold Vöcking präsentiert durch Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität



Anwendung der Reduktion

Hǫ ist nicht rekursiv aber rekursiv aufzählbar. Folglich ist H̄ǫ nicht
rekursiv aufzählbar.
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Anwendung der Reduktion

Hǫ ist nicht rekursiv aber rekursiv aufzählbar. Folglich ist H̄ǫ nicht
rekursiv aufzählbar.

Wir zeigen nun

Behauptung A

H̄ǫ ≤ H̄all

Behauptung B

H̄ǫ ≤ Hall
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Anwendung der Reduktion

Hǫ ist nicht rekursiv aber rekursiv aufzählbar. Folglich ist H̄ǫ nicht
rekursiv aufzählbar.

Wir zeigen nun

Behauptung A

H̄ǫ ≤ H̄all

Behauptung B

H̄ǫ ≤ Hall

Wäre also H̄all oder Hall rekursiv aufzählbar, so wäre auch H̄ǫ

rekursiv aufzählbar.
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Anwendung der Reduktion

Hǫ ist nicht rekursiv aber rekursiv aufzählbar. Folglich ist H̄ǫ nicht
rekursiv aufzählbar.

Wir zeigen nun

Behauptung A

H̄ǫ ≤ H̄all

Behauptung B

H̄ǫ ≤ Hall

Wäre also H̄all oder Hall rekursiv aufzählbar, so wäre auch H̄ǫ

rekursiv aufzählbar. Also folgt

Satz

Sowohl H̄all als auch Hall sind nicht rekursiv aufzählbar.
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Beweis von Behauptung A: H̄ǫ ≤ H̄all

Wir konstruieren eine berechenbare Funktion f , die Ja-Instanzen
von H̄ǫ auf Ja-Instanzen von H̄all abbildet, und Nein-Instanzen von
H̄ǫ auf Nein-Instanzen von H̄all abbildet.
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Beweis von Behauptung A: H̄ǫ ≤ H̄all

Wir konstruieren eine berechenbare Funktion f , die Ja-Instanzen
von H̄ǫ auf Ja-Instanzen von H̄all abbildet, und Nein-Instanzen von
H̄ǫ auf Nein-Instanzen von H̄all abbildet.

Die Funktion f

Sei w die Eingabe für H̄ǫ.

Wenn w keine gültige Gödelnummer ist, so sei f (w) = w .
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Beweis von Behauptung A: H̄ǫ ≤ H̄all

Wir konstruieren eine berechenbare Funktion f , die Ja-Instanzen
von H̄ǫ auf Ja-Instanzen von H̄all abbildet, und Nein-Instanzen von
H̄ǫ auf Nein-Instanzen von H̄all abbildet.

Die Funktion f

Sei w die Eingabe für H̄ǫ.

Wenn w keine gültige Gödelnummer ist, so sei f (w) = w .

Falls w = 〈M〉 für eine TM M, so sei f (w) die Gödelnummer
einer TM M∗

ǫ
mit der folgenden Eigenschaft: M∗

ǫ
ignoriert die

Eingabe und simuliert M mit der Eingabe ǫ.
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Beweis von Behauptung A: H̄ǫ ≤ H̄all

Wir konstruieren eine berechenbare Funktion f , die Ja-Instanzen
von H̄ǫ auf Ja-Instanzen von H̄all abbildet, und Nein-Instanzen von
H̄ǫ auf Nein-Instanzen von H̄all abbildet.

Die Funktion f

Sei w die Eingabe für H̄ǫ.

Wenn w keine gültige Gödelnummer ist, so sei f (w) = w .

Falls w = 〈M〉 für eine TM M, so sei f (w) die Gödelnummer
einer TM M∗

ǫ
mit der folgenden Eigenschaft: M∗

ǫ
ignoriert die

Eingabe und simuliert M mit der Eingabe ǫ.

Die Funktion f ist offensichtlich berechenbar.

Prof. Berthold Vöcking präsentiert durch Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität



Beweis von Behauptung A: H̄ǫ ≤ H̄all

Wir konstruieren eine berechenbare Funktion f , die Ja-Instanzen
von H̄ǫ auf Ja-Instanzen von H̄all abbildet, und Nein-Instanzen von
H̄ǫ auf Nein-Instanzen von H̄all abbildet.

Die Funktion f

Sei w die Eingabe für H̄ǫ.

Wenn w keine gültige Gödelnummer ist, so sei f (w) = w .

Falls w = 〈M〉 für eine TM M, so sei f (w) die Gödelnummer
einer TM M∗

ǫ
mit der folgenden Eigenschaft: M∗

ǫ
ignoriert die

Eingabe und simuliert M mit der Eingabe ǫ.

Die Funktion f ist offensichtlich berechenbar.

Falls w keine Gödelnummer ist, so ist die Korrektheit klar, denn in
diesem Fall gilt w ∈ H̄ǫ und f (w) ∈ H̄all.
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Beweis von Behauptung A: H̄ǫ ≤ H̄all — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M∗

ǫ
〉. Es gilt

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ
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Beweis von Behauptung A: H̄ǫ ≤ H̄all — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M∗

ǫ
〉. Es gilt

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ M∗

ǫ
hält auf jeder Eingabe
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Beweis von Behauptung A: H̄ǫ ≤ H̄all — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M∗

ǫ
〉. Es gilt

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ M∗

ǫ
hält auf jeder Eingabe

⇒ 〈M∗

ǫ
〉 ∈ Hall

Prof. Berthold Vöcking präsentiert durch Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität



Beweis von Behauptung A: H̄ǫ ≤ H̄all — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M∗

ǫ
〉. Es gilt

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ M∗

ǫ
hält auf jeder Eingabe

⇒ 〈M∗

ǫ
〉 ∈ Hall

⇒ f (w) 6∈ H̄all .
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Beweis von Behauptung A: H̄ǫ ≤ H̄all — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M∗

ǫ
〉. Es gilt

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ M∗

ǫ
hält auf jeder Eingabe

⇒ 〈M∗

ǫ
〉 ∈ Hall

⇒ f (w) 6∈ H̄all .

w ∈ H̄ǫ ⇒ M hält nicht auf Eingabe ǫ
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Beweis von Behauptung A: H̄ǫ ≤ H̄all — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M∗

ǫ
〉. Es gilt

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ M∗

ǫ
hält auf jeder Eingabe

⇒ 〈M∗

ǫ
〉 ∈ Hall

⇒ f (w) 6∈ H̄all .

w ∈ H̄ǫ ⇒ M hält nicht auf Eingabe ǫ

⇒ M∗

ǫ
hält auf keiner Eingabe
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Beweis von Behauptung A: H̄ǫ ≤ H̄all — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M∗

ǫ
〉. Es gilt

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ M∗

ǫ
hält auf jeder Eingabe

⇒ 〈M∗

ǫ
〉 ∈ Hall

⇒ f (w) 6∈ H̄all .

w ∈ H̄ǫ ⇒ M hält nicht auf Eingabe ǫ

⇒ M∗

ǫ
hält auf keiner Eingabe

⇒ 〈M∗

ǫ
〉 6∈ Hall
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Beweis von Behauptung A: H̄ǫ ≤ H̄all — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M∗

ǫ
〉. Es gilt

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ M∗

ǫ
hält auf jeder Eingabe

⇒ 〈M∗

ǫ
〉 ∈ Hall

⇒ f (w) 6∈ H̄all .

w ∈ H̄ǫ ⇒ M hält nicht auf Eingabe ǫ

⇒ M∗

ǫ
hält auf keiner Eingabe

⇒ 〈M∗

ǫ
〉 6∈ Hall

⇒ f (w) ∈ H̄all .
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Beweis von Behauptung A: H̄ǫ ≤ H̄all — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M∗

ǫ
〉. Es gilt

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ M∗

ǫ
hält auf jeder Eingabe

⇒ 〈M∗

ǫ
〉 ∈ Hall

⇒ f (w) 6∈ H̄all .

w ∈ H̄ǫ ⇒ M hält nicht auf Eingabe ǫ

⇒ M∗

ǫ
hält auf keiner Eingabe

⇒ 〈M∗

ǫ
〉 6∈ Hall

⇒ f (w) ∈ H̄all .

Also gilt w ∈ H̄ǫ ⇔ f (w) ∈ H̄all und somit ist die Funktion f

korrekt konstruiert. �
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Beweis von Behauptung B: H̄ǫ ≤ Hall

Wir konstruieren eine berechenbare Funktion f , die Ja-Instanzen
von H̄ǫ auf Ja-Instanzen von Hall abbildet, und Nein-Instanzen von
H̄ǫ auf Nein-Instanzen von Hall abbildet.
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Beweis von Behauptung B: H̄ǫ ≤ Hall

Wir konstruieren eine berechenbare Funktion f , die Ja-Instanzen
von H̄ǫ auf Ja-Instanzen von Hall abbildet, und Nein-Instanzen von
H̄ǫ auf Nein-Instanzen von Hall abbildet.

Die Funktion f

Sei w die Eingabe für H̄ǫ. Sei w ′ irgendein Wort aus Hall.

Wenn w keine gültige Gödelnummer ist, so sei f (w) = w ′.
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Beweis von Behauptung B: H̄ǫ ≤ Hall

Wir konstruieren eine berechenbare Funktion f , die Ja-Instanzen
von H̄ǫ auf Ja-Instanzen von Hall abbildet, und Nein-Instanzen von
H̄ǫ auf Nein-Instanzen von Hall abbildet.

Die Funktion f

Sei w die Eingabe für H̄ǫ. Sei w ′ irgendein Wort aus Hall.

Wenn w keine gültige Gödelnummer ist, so sei f (w) = w ′.

Falls w = 〈M〉 für eine TM M, so sei f (w) die Gödelnummer
einer TM M ′

M
, die sich auf Eingaben der Länge i wie folgt

verhält: M ′

M
simuliert die ersten i Schritte von M auf der

Eingabe ǫ. Wenn M innerhalb dieser i Schritte hält, dann geht
M ′

M
in eine Endlosschleife, ansonsten hält M ′

M
.
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Beweis von Behauptung B: H̄ǫ ≤ Hall

Wir konstruieren eine berechenbare Funktion f , die Ja-Instanzen
von H̄ǫ auf Ja-Instanzen von Hall abbildet, und Nein-Instanzen von
H̄ǫ auf Nein-Instanzen von Hall abbildet.

Die Funktion f

Sei w die Eingabe für H̄ǫ. Sei w ′ irgendein Wort aus Hall.

Wenn w keine gültige Gödelnummer ist, so sei f (w) = w ′.

Falls w = 〈M〉 für eine TM M, so sei f (w) die Gödelnummer
einer TM M ′

M
, die sich auf Eingaben der Länge i wie folgt

verhält: M ′

M
simuliert die ersten i Schritte von M auf der

Eingabe ǫ. Wenn M innerhalb dieser i Schritte hält, dann geht
M ′

M
in eine Endlosschleife, ansonsten hält M ′

M
.

Die Funktion f ist offensichtlich berechenbar.
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Beweis von Behauptung B: H̄ǫ ≤ Hall

Wir konstruieren eine berechenbare Funktion f , die Ja-Instanzen
von H̄ǫ auf Ja-Instanzen von Hall abbildet, und Nein-Instanzen von
H̄ǫ auf Nein-Instanzen von Hall abbildet.

Die Funktion f

Sei w die Eingabe für H̄ǫ. Sei w ′ irgendein Wort aus Hall.

Wenn w keine gültige Gödelnummer ist, so sei f (w) = w ′.

Falls w = 〈M〉 für eine TM M, so sei f (w) die Gödelnummer
einer TM M ′

M
, die sich auf Eingaben der Länge i wie folgt

verhält: M ′

M
simuliert die ersten i Schritte von M auf der

Eingabe ǫ. Wenn M innerhalb dieser i Schritte hält, dann geht
M ′

M
in eine Endlosschleife, ansonsten hält M ′

M
.

Die Funktion f ist offensichtlich berechenbar.

Falls w keine Gödelnummer ist die Korrektheit klar, denn in diesem
Fall gilt w ∈ H̄ǫ und f (w) = w ′ ∈ Hall.
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Beweis von Behauptung B: H̄ǫ ≤ Hall — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M ′

M
〉.

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ
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Beweis von Behauptung B: H̄ǫ ≤ Hall — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M ′

M
〉.

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ ∃i : M hält innerhalb von i Schritten auf ǫ
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⇒ ∃i : M ′

M hält nicht auf Eingaben der Länge i
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Beweis von Behauptung B: H̄ǫ ≤ Hall — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M ′

M
〉.

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ ∃i : M hält innerhalb von i Schritten auf ǫ

⇒ ∃i : M ′

M hält nicht auf Eingaben der Länge i

⇒ f (w) = 〈M ′

M〉 6∈ Hall .
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Beweis von Behauptung B: H̄ǫ ≤ Hall — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M ′

M
〉.

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ ∃i : M hält innerhalb von i Schritten auf ǫ

⇒ ∃i : M ′

M hält nicht auf Eingaben der Länge i

⇒ f (w) = 〈M ′

M〉 6∈ Hall .

w ∈ H̄ǫ ⇒ M hält nicht auf der Eingabe ǫ
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Beweis von Behauptung B: H̄ǫ ≤ Hall — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M ′

M
〉.

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ ∃i : M hält innerhalb von i Schritten auf ǫ

⇒ ∃i : M ′

M hält nicht auf Eingaben der Länge i

⇒ f (w) = 〈M ′

M〉 6∈ Hall .

w ∈ H̄ǫ ⇒ M hält nicht auf der Eingabe ǫ

⇒ ¬∃i : M hält innerhalb von i Schritten auf ǫ
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Beweis von Behauptung B: H̄ǫ ≤ Hall — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M ′
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⇒ ∃i : M ′

M hält nicht auf Eingaben der Länge i

⇒ f (w) = 〈M ′

M〉 6∈ Hall .

w ∈ H̄ǫ ⇒ M hält nicht auf der Eingabe ǫ

⇒ ¬∃i : M hält innerhalb von i Schritten auf ǫ

⇒ ∀i : M ′

M hält auf Eingaben der Länge i
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M
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w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ ∃i : M hält innerhalb von i Schritten auf ǫ

⇒ ∃i : M ′

M hält nicht auf Eingaben der Länge i

⇒ f (w) = 〈M ′

M〉 6∈ Hall .

w ∈ H̄ǫ ⇒ M hält nicht auf der Eingabe ǫ

⇒ ¬∃i : M hält innerhalb von i Schritten auf ǫ

⇒ ∀i : M ′

M hält auf Eingaben der Länge i

⇒ f (w) = 〈M ′

M〉 ∈ Hall .
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Beweis von Behauptung B: H̄ǫ ≤ Hall — Fortsetzung

Sei nun w = 〈M〉 für eine TM M, so dass f (w) = 〈M ′

M
〉.

w 6∈ H̄ǫ ⇒ M hält auf der Eingabe ǫ

⇒ ∃i : M hält innerhalb von i Schritten auf ǫ

⇒ ∃i : M ′

M hält nicht auf Eingaben der Länge i

⇒ f (w) = 〈M ′

M〉 6∈ Hall .

w ∈ H̄ǫ ⇒ M hält nicht auf der Eingabe ǫ

⇒ ¬∃i : M hält innerhalb von i Schritten auf ǫ

⇒ ∀i : M ′

M hält auf Eingaben der Länge i

⇒ f (w) = 〈M ′

M〉 ∈ Hall .

Also gilt w ∈ H̄ǫ ⇔ f (w) ∈ Hall und somit ist die Funktion f

korrekt konstruiert. �
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Berechenbarkeitslandschaft

Probleme mit rek.
aufz. Komplement

rekursive
Probleme

rek. aufz. Probleme

z.B. z.B.H D

nicht rek. aufz. Probleme, deren Komplement ebenfalls nicht rek. aufz. ist

allz.B. H
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