Berechenbarkeit und Komplexitat

Machtigkeit von Programmiersprachen:
WHILE- und LOOP-Programme

Prof. Berthold Vécking
prasentiert von Prof. Joost-Pieter Katoen

21. November 2008

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Turing-machtige Programmiersprachen

Definition

Eine Programmiersprache wird als Turing-machtig bezeichnet,
wenn jede Funktion, die durch eine TM berechnet werden kann,
auch durch ein Programm in dieser Programmiersprache berechnet

werden kann.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Die Programmiersprache WHILE — Syntax

Elemente eines WHILE-Programms

@ Variablen x5 x1 xo ...

@ Konstanten —1 0 1

@ Symbole ; = + #

@ Schliisselworter WHILE DO END

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Die Programmiersprache WHILE — Syntax

Induktive Definition — Induktionsanfang

Fiir jedes ¢ € {—1,0,1} ist die Zuweisung

Xj ‘= Xj+¢

ein WHILE-Programm.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Die Programmiersprache WHILE — Syntax

Induktive Definition — Induktionsschritte:

Hintereinanderausfiihrung

Falls P; und P, WHILE-Programme sind, dann ist auch
P1; P>

ein WHILE-Programm.

Falls P ein WHILE-Programm ist, dann ist auch

WHILE x; # 0 DO P END

ein WHILE-Programm.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Die Programmiersprache WHILE — Semantik

Ein While-Programm P berechnet eine k-stellige Funktionen der
Form f : Nk — N.

@ Die Eingabe ist in den Variablen xi, ..., x, enthalten.
@ Alle anderen Variablen werden mit 0 initialisiert.

@ Das Resultat eines WHILE-Programms ist die Zahl, die sich
am Ende der Rechnung in der Variable xq ergibt.

@ Programme der Form x; := x; + ¢ sind Zuweisungen des
Wertes x; + ¢ an die Variable x;.

@ In einem WHILE-Programm P;; P, wird zunachst P; und
dann P, ausgefiihrt.

@ Das Programm WHILE x; # 0 DO P END hat die Bedeutung,
dass P solange ausgefiihrt wird, bis x; den Wert 0 erreicht.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Beispiel eines WHILE-Programms

Was berechnet dieses WHILE-Programm?

WHILE x, # 0 DO

X1 = x1 + 1;
X0 = xp — 1
END;
X0 - — X1

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Die Programmiersprache WHILE — Machtigkeit

Die Programmiersprache WHILE ist Turing-machtig.

Beweis: Es ist nicht schwierig zu zeigen, dass eine TM durch eine
RAM mit konstant vielen Registern und eingeschranktem
Befehlssatz

LOAD, CLOAD, STORE, CADD, CSUB,
GOTO, IF ¢(0) # 0 GOTO, END

simuliert werden kann.

Wir miissen also nur noch zeigen, dass jede Funktion, die durch
eine eingeschrankte RAM berechnet werden kann, auch durch ein
WHILE-Programm berechnet werden kann.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Beweis Turing-Machtigkeit von WHILE-Programmen

Sei [T ein beliebiges RAM-Programm mit eingeschranktem
Befehlssatz, das aus ¢ Zeilen besteht und k Register fiir natiirliche
Zahlen benutzt.

Wir speichern den Inhalt von Register ¢(i), fir 0 < i < k, in der
Variable x; des WHILE-Programmes.

In der Variable x4, 1 speichern wir zudem den Befehlszihler b der
RAM ab.

Die Variable xx42 verwenden wir, um eine Variable zu haben, die
immer den initial gesetzen Wert 0 enthalt.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Beweis Turing-Machtigkeit von WHILE-Programmen

Die oben aufgelisteten RAM-Befehle werden nun in Form von
konstant vielen Zuweisungen der Form x; := x; + ¢ mit

c € {—1,0,1} implementiert.

Der RAM-Befehl LOAD i wird beispielsweise ersetzt durch

X0 =X +0; Xkp1:=xkq1 +1

Der RAM-Befehl CLOAD i wird analog ersetzt durch

X0 =xk2+0; xo:=x0+1; ...; x0:=x0+ 1, xkr1:=xkq1+1

i mal

Die RAM-Befehle STORE, CADD, CSUB und GOTO lassen sich
leicht auf ahnliche Art realisieren.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Beweis Turing-Machtigkeit von WHILE-Programmen

Der RAM-Befehl IF ¢(0) # 0 GOTO j ersetzen wir durch das
WHILE-Programm:

Xkl = Xkr1 + 1 (b:=b+1)
Xk+3 1= X0 + 0; (help := c(0))
WHILE xi43 # 0 DO (while help # 0)
X1 = Xk2 + 0 Xpy1 = X1 + 100+ 1 (bi=))
Jj mal
Xk+3 = Xks2 + 0 (help :=0)
END (end of while)

Den RAM-Befehl END ersetzen wir durch das WHILE-Programm

Xk+1 =0 . ‘

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Beweis Turing-Machtigkeit von WHILE-Programmen

Jede Zeile des RAM-Programms wird nun wie oben beschrieben in
ein WHILE-Programm transformiert. Das WHILE-Programm fiir
Zeile i bezeichnen wir mit P;.

Wir betten P; in ein WHILE-Programm P! mit der folgenden
Semantik ein:
Falls xx4+1 = i dann fiihre P; aus.

Wie kann man P! implementieren? — Hausaufgabe

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Beweis Turing-Machtigkeit von WHILE-Programmen

Nun fiigen wir die WHILE-Programme Py, ..., P, zu einem
WHILE-Programm P zusammen:

X1 =1
WHILE xx4+1 # 0 DO

Pi;...; Py

END

P berechnet dieselbe Funktion wie 1. O

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Die Programmiersprache LOOP — Erlauterung

Syntax
Anderung im Vergleich zu WHILE-Programmen:
Wir ersetzen das WHILE-Konstrukt durch ein LOOP-Konstrukt der

folgenden Form:
LOOP x; DO P END ,

wobei die Variable x; nicht in P vorkommen darf.

Das Programm P wird x; mal hintereinander ausgefiihrt.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Die Programmiersprache LOOP — Machigkeit

Definition

Die durch LOOP-Programme berechenbaren Funktionen werden
als primitiv-rekursiv bezeichnet.

Vermutung von Hilbert (1926): Die Klasse der primitiv rekursiven
Funktionen stimmt mit der Klasse der rekursiven (berechenbaren)
Funktionen iiberein.

Ackermann (1929): Diese Vermutung stimmt nicht!

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Die Ackermann-Funktion — Definition

Definition

Die Ackermannfunktion A : N> — N ist folgendermaBen definiert:

A(0, n) = n+1 fir n >0
A(m+1,0) = A(m,1) firm>0
Am+1,n+1) = A(m,A(m+1,n)) fir m,n>0

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Die Ackermann-Funktion — Eigenschaften

@ A(m+1,n) > A(m,n)
o A(m,n+1) > A(m,n)
@ A(m+1,n—1) > A(m,n) (Ubungsaufgabe)

Wenn man den ersten Parameter fixiert ...

o A(l,n)=n+2, 2_-2
® A(2,n) =2n+3, S Al)= 2\"' =
o A(3,n)=8-2" 3, botenzen

Bereits A(4,2) = 295936 _ 3 ist groBer als die geschitzte Anzahl
der Atome im Weltraum.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Wachstum der Variableninhalte in einem LOOP-Programm

Definition der Funktion Fp

@ Sei P ein LOOP-Programm
@ Seien xg, X1, ...,xx die Variablen in P.

@ Wenn die Variablen initial die Werte a = (ap, ..., ax) € N<+1
haben, dann sei fp(a) das (k + 1)-Tupel der Variablenwerte
nach Ausfiihrung von P.

@ Sei |fp(a)| die Summe der Eintrage im (k + 1)-Tupel fp(a).
@ Wir definieren nun die Funktion Fp : N — N durch

k
a € N1 mit Zaign}

i=0

Fe(n) = max{|fp(a)|

Intuitiv beschreibt die Funktion Fp das maximale Wachstum der
Variablenwerte im LOOP-Programm P.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Ackermannfunktion versus Fp

Wir zeigen nun, dass Fp(n) fiir alle n € N echt kleiner ist als
A(m, n), wenn der Parameter m geniigend groB in Abhingigkeit
von P gewahlt wird.

Fiir jedes LOOP-Programm P gibt es eine natiirliche Zahl m, so
dass fiir alle n gilt: Fp(n) < A(m, n).

Beachte, fiir ein festes Programm P ist der Parameter m eine
Konstante.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Beweis durch Strukturelle Induktion (Uberblick)

Induktionsanfang

@ Sei P von der Form x; := x; + c fiir c € {-1,0,1}.
@ Wir werden zeigen: Fp(n) < A(2, n).

Induktionsschritt (1. Art)
@ Sei P von der Form Py; P.

@ Induktionsannahme: 3qg € N : Fp,(¢) < A(q,¥) und
Fra(0) < A(g,).
@ Wir werden zeigen: Fp(n) < A(q + 1, n).

Induktionsschritt (2. Art)
@ Sei P von der Form LOOP x; DO @ END.
@ Induktionsannahme: 3g € N : Fo(¢) < A(q, ?).
@ Wir werden zeigen: Fp(n) < A(q + 1, n).

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Beweis des Lemmas

Der Induktionsanfang

@ Sei P von der Form x; := x; + c fiir c € {-1,0,1}.
@ Dann gilt Fp(n) <2n+ 1.
@ Somit folgt Fp(n) < A(2, n).

Erlduterung: Vor Ausfiihrung von P kénnte gelten x; = n und alle
anderen Variablen haben den Wert 0. Ferner kénnte ¢ den Wert 1
haben. Nach Ausfiihrung von P gilt somit x; = n+ 1 und somit ist
die Summe der Variableninhalte x; + x; = 2n + 1. Ein groBeres
Wachstum der Variableninhalte ist nicht méglich.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Beweis des Lemmas

Der Induktionsschritt (1. Art)
@ Sei P von der Form Py; P,.

@ Induktionsannahme: 3qg € N : Fp,(¢) < A(q,{) und
Fra(0) < A(g,).

@ Somit gilt

Fo(n) < Fey(Fe(n)) < A(,A(q.n)) -

@ Wir verwenden die Abschatzung A(g,n) < A(g+1,n—1).
o Es folgt

Fp(n) < A(q,A(g+1,n—1)) = A(g+1,n) .

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Beweis des Lemmas

Der Induktionsschritt (2. Art)
@ Sei P von der Form LOOP x; DO Q@ END.
@ Induktionsannahme: 3g € N : Fg(¢) < A(q,).

@ Sei a = a(n) derjenige Wert fiir x; der Fp(n) maximiert.

@ Dann gilt

Fp(n) < Fo(Fo(.-- Fa(F(n—a))...)) + o,

wobei die Funktion Fg(-) hier a-fach ineinander eingesetzt ist.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Beweis des Lemmas

Der Induktionsschritt (2. Art) — Fortsetzung

@ Bisher haben wir gezeigt

Fp(n) < Fo(Fo(..- Fa(F(n—a))...)) + o,

wobei die Funktion Fg(-) hier a-fach ineinander eingesetzt ist.
@ Aus der Induktionsannahme folgt Fo(¢) < A(q,¢) — 1.

@ Dies wenden wir auf die duBerste Funktion Fg an und erhalten
Fp(n) < A(q, Fo(...Fo(Fo(n—a))...))+a—1.
@ Wiederholte Anwendung liefert

A(q,A(q,...A(q,A(g,n— a))...))
A(a, A(g, A(q, Alg+1,n—a))...) .

Fp(n) §
<

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Beweis des Lemmas

Der Induktionsschritt (2. Art) — Fortsetzung

@ Bisher haben wir gezeigt
Fe(n) < A(q,A(q,---A(g,A(g+1,n—q))...)) .

@ Der Definition der Ackermannfunktion entnehmen wir
Alg+1,y+1)=A(q,A(g + 1,y)).
@ Auf die innere Verschachtelung angewendet ergibt sich

Fp(n) < A(q,A(q,...-Alg+1,n—a+1)..))),

wobei die Schachtelungstiefe nur noch o — 1 ist.

@ Nach weiteren o« — 2 vielen Anwendungen, folgt

Fp(n) < A(g+1,n—1) < A(g+1,n) .

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Ackermannfunktion nicht LOOP-berechenbar

Die Ackermannfunktion ist nicht primitiv-rekursiv.

Beweis:

@ Angenommen die Ackermannfunktion ist durch ein
LOOP-Programm berechenbar.

@ Dann sei P ein LOOP-Programm fiir die Fkt B(n) = A(n, n).
@ Es gilt B(n) < Fp(n).
@ Aus dem Lemma folgt, es gibt m € N mit Fp(n) < A(m, n).

@ Fiir m = n gilt somit
B(n) < Fp(n) < A(m,n) = A(n,n) = B(n) .

@ Widerspruch! Also folgt der Satz. O

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

Schlussfolgerung

Da die Ackermannfunktion durch eine TM berechenbar ist, folgt

Die Klasse der primitiv-rekursiven Funktionen ist eine echte
Teilmenge der rekursiven Funktionen.

Prof. Berthold Vécking prasentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexitat

