
Berechenbarkeit und Komplexität
Mächtigkeit von Programmiersprachen:

WHILE- und LOOP-Programme

Prof. Berthold Vöcking
präsentiert von Prof. Joost-Pieter Katoen

21. November 2008

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Turing-mächtige Programmiersprachen

Definition

Eine Programmiersprache wird als Turing-mächtig bezeichnet,
wenn jede Funktion, die durch eine TM berechnet werden kann,
auch durch ein Programm in dieser Programmiersprache berechnet
werden kann.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Die Programmiersprache WHILE – Syntax

Elemente eines WHILE-Programms

Variablen x0 x1 x2 . . .

Konstanten −1 0 1

Symbole ; := + �=
Schlüsselwörter WHILE DO END

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Die Programmiersprache WHILE – Syntax

Induktive Definition – Induktionsanfang

Zuweisung

Für jedes c ∈ {−1, 0, 1} ist die Zuweisung

xi := xj + c

ein WHILE-Programm.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Die Programmiersprache WHILE – Syntax

Induktive Definition – Induktionsschritte:

Hintereinanderausführung

Falls P1 und P2 WHILE-Programme sind, dann ist auch

P1;P2

ein WHILE-Programm.

WHILE-Konstrukt

Falls P ein WHILE-Programm ist, dann ist auch

WHILE xi �= 0 DO P END

ein WHILE-Programm.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Die Programmiersprache WHILE – Semantik

Ein While-Programm P berechnet eine k-stellige Funktionen der
Form f : N

k → N.

Die Eingabe ist in den Variablen x1, . . . , xk enthalten.

Alle anderen Variablen werden mit 0 initialisiert.

Das Resultat eines WHILE-Programms ist die Zahl, die sich
am Ende der Rechnung in der Variable x0 ergibt.

Programme der Form xi := xj + c sind Zuweisungen des
Wertes xj + c an die Variable xi .

In einem WHILE-Programm P1; P2 wird zunächst P1 und
dann P2 ausgeführt.

Das Programm WHILE xi �= 0 DO P END hat die Bedeutung,
dass P solange ausgeführt wird, bis xi den Wert 0 erreicht.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Beispiel eines WHILE-Programms

Was berechnet dieses WHILE-Programm?

WHILE x2 �= 0 DO
x1 := x1 + 1;
x2 := x2 − 1

END;
x0 := x1

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Die Programmiersprache WHILE – Mächtigkeit

Satz

Die Programmiersprache WHILE ist Turing-mächtig.

Beweis: Es ist nicht schwierig zu zeigen, dass eine TM durch eine
RAM mit konstant vielen Registern und eingeschränktem
Befehlssatz

LOAD, CLOAD, STORE, CADD, CSUB,
GOTO, IF c(0) �= 0 GOTO, END

simuliert werden kann.

Wir müssen also nur noch zeigen, dass jede Funktion, die durch
eine eingeschränkte RAM berechnet werden kann, auch durch ein
WHILE-Programm berechnet werden kann.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Beweis Turing-Mächtigkeit von WHILE-Programmen

Sei Π ein beliebiges RAM-Programm mit eingeschränktem
Befehlssatz, das aus � Zeilen besteht und k Register für natürliche
Zahlen benutzt.

Wir speichern den Inhalt von Register c(i), für 0 ≤ i ≤ k, in der
Variable xi des WHILE-Programms.

In der Variable xk+1 speichern wir zudem den Befehlszähler b der
RAM ab.

Die Variable xk+2 verwenden wir, um eine Variable zu haben, die
immer den initial gesetzen Wert 0 enthält.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Beweis Turing-Mächtigkeit von WHILE-Programmen

Die oben aufgelisteten RAM-Befehle werden nun in Form von
konstant vielen Zuweisungen der Form xi := xj + c mit
c ∈ {−1, 0, 1} implementiert.

Der RAM-Befehl LOAD i wird beispielsweise ersetzt durch

x0 := xi + 0; xk+1 := xk+1 + 1

Der RAM-Befehl CLOAD i wird analog ersetzt durch

x0 := xk+2 + 0; x0 := x0 + 1; . . . ; x0 := x0 + 1;︸ ︷︷ ︸
i mal

xk+1 := xk+1 + 1

Die RAM-Befehle STORE, CADD, CSUB und GOTO lassen sich
leicht auf ähnliche Art realisieren.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Beweis Turing-Mächtigkeit von WHILE-Programmen

Der RAM-Befehl IF c(0) �= 0 GOTO j ersetzen wir durch das
WHILE-Programm:

xk+1 := xk+1 + 1; (b := b + 1)
xk+3 := x0 + 0; (help := c(0))
WHILE xk+3 �= 0 DO (while help �= 0)

xk+1 := xk+2 + 0; xk+1 := xk+1 + 1; · · · + 1;︸ ︷︷ ︸
j mal

(b := j)

xk+3 := xk+2 + 0 (help := 0)
END (end of while)

Den RAM-Befehl END ersetzen wir durch das WHILE-Programm

xk+1 = 0 .

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Beweis Turing-Mächtigkeit von WHILE-Programmen

Jede Zeile des RAM-Programms wird nun wie oben beschrieben in
ein WHILE-Programm transformiert. Das WHILE-Programm für
Zeile i bezeichnen wir mit Pi .

Wir betten Pi in ein WHILE-Programm P ′
i mit der folgenden

Semantik ein:

Falls xk+1 = i dann führe Pi aus.

Wie kann man P ′
i implementieren? – Hausaufgabe

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Beweis Turing-Mächtigkeit von WHILE-Programmen

Nun fügen wir die WHILE-Programme P ′
1, . . . ,P

′
� zu einem

WHILE-Programm P zusammen:

xk+1 := 1;

WHILE xk+1 �= 0 DO

P ′
1; . . . ;P

′
�

END

P berechnet dieselbe Funktion wie Π. �

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Die Programmiersprache LOOP – Erläuterung

Syntax

Änderung im Vergleich zu WHILE-Programmen:

Wir ersetzen das WHILE-Konstrukt durch ein LOOP-Konstrukt der
folgenden Form:

LOOP xi DO P END ,

wobei die Variable xi nicht in P vorkommen darf.

Semantik

Das Programm P wird xi mal hintereinander ausgeführt.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Die Programmiersprache LOOP – Mächigkeit

Definition

Die durch LOOP-Programme berechenbaren Funktionen werden
als primitiv-rekursiv bezeichnet.

Vermutung von Hilbert (1926): Die Klasse der primitiv rekursiven
Funktionen stimmt mit der Klasse der rekursiven (berechenbaren)
Funktionen überein.

Ackermann (1929): Diese Vermutung stimmt nicht!

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Die Ackermann-Funktion – Definition

Definition

Die Ackermannfunktion A : N
2 → N ist folgendermaßen definiert:

A(0, n) = n + 1 für n ≥ 0
A(m + 1, 0) = A(m, 1) für m ≥ 0
A(m + 1, n + 1) = A(m,A(m + 1, n)) für m, n ≥ 0

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Die Ackermann-Funktion – Eigenschaften

Monotonie

A(m + 1, n) > A(m, n)

A(m, n + 1) > A(m, n)

A(m + 1, n − 1) ≥ A(m, n) (Übungsaufgabe)

Wenn man den ersten Parameter fixiert ...

A(1, n) = n + 2,

A(2, n) = 2n + 3,

A(3, n) = 8 · 2n − 3,

A(4, n) = 22·
··2︸︷︷︸

n + 2 viele
Potenzen

−3,

Bereits A(4, 2) = 265536 − 3 ist größer als die geschätzte Anzahl
der Atome im Weltraum.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Wachstum der Variableninhalte in einem LOOP-Programm

Definition der Funktion FP

Sei P ein LOOP-Programm

Seien x0, x1, . . . , xk die Variablen in P .

Wenn die Variablen initial die Werte a = (a0, . . . , ak) ∈ N
k+1

haben, dann sei fP(a) das (k + 1)-Tupel der Variablenwerte
nach Ausführung von P .

Sei |fP(a)| die Summe der Einträge im (k + 1)-Tupel fP(a).

Wir definieren nun die Funktion FP : N → N durch

FP(n) = max

{
|fP(a)|

∣∣∣∣∣a ∈ N
k+1 mit

k∑
i=0

ai ≤ n

}
.

Intuitiv beschreibt die Funktion FP das maximale Wachstum der
Variablenwerte im LOOP-Programm P .

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Ackermannfunktion versus FP

Wir zeigen nun, dass FP(n) für alle n ∈ N echt kleiner ist als
A(m, n), wenn der Parameter m genügend groß in Abhängigkeit
von P gewählt wird.

Lemma

Für jedes LOOP-Programm P gibt es eine natürliche Zahl m, so
dass für alle n gilt: FP(n) < A(m, n).

Beachte, für ein festes Programm P ist der Parameter m eine
Konstante.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Beweis durch Strukturelle Induktion (Überblick)

Induktionsanfang

Sei P von der Form xi := xj + c für c ∈ {−1, 0, 1}.
Wir werden zeigen: FP(n) < A(2, n).

Induktionsschritt (1. Art)

Sei P von der Form P1;P2.

Induktionsannahme: ∃q ∈ N : FP1(�) < A(q, �) und
FP2(�) < A(q, �).

Wir werden zeigen: FP(n) < A(q + 1, n).

Induktionsschritt (2. Art)

Sei P von der Form LOOP xi DO Q END.

Induktionsannahme: ∃q ∈ N : FQ(�) < A(q, �).

Wir werden zeigen: FP(n) < A(q + 1, n).

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Beweis des Lemmas

Der Induktionsanfang

Sei P von der Form xi := xj + c für c ∈ {−1, 0, 1}.
Dann gilt FP(n) ≤ 2n + 1.

Somit folgt FP(n) < A(2, n).

Erläuterung: Vor Ausführung von P könnte gelten xj = n und alle
anderen Variablen haben den Wert 0. Ferner könnte c den Wert 1
haben. Nach Ausführung von P gilt somit xi = n + 1 und somit ist
die Summe der Variableninhalte xi + xj = 2n + 1. Ein größeres
Wachstum der Variableninhalte ist nicht möglich.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Beweis des Lemmas

Der Induktionsschritt (1. Art)

Sei P von der Form P1;P2.

Induktionsannahme: ∃q ∈ N : FP1(�) < A(q, �) und
FP2(�) < A(q, �).

Somit gilt

FP(n) ≤ FP2(FP1(n)) < A(q,A(q, n)) .

Wir verwenden die Abschätzung A(q, n) ≤ A(q + 1, n − 1).

Es folgt

FP(n) < A(q,A(q + 1, n − 1)) = A(q + 1, n) .

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Beweis des Lemmas

Der Induktionsschritt (2. Art)

Sei P von der Form LOOP xi DO Q END.

Induktionsannahme: ∃q ∈ N : FQ(�) < A(q, �).

Sei α = α(n) derjenige Wert für xi der FP(n) maximiert.

Dann gilt

FP(n) ≤ FQ(FQ(. . . FQ(FQ(n − α)) . . .)) + α ,

wobei die Funktion FQ(·) hier α-fach ineinander eingesetzt ist.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Beweis des Lemmas

Der Induktionsschritt (2. Art) – Fortsetzung

Bisher haben wir gezeigt

FP(n) ≤ FQ(FQ(. . . FQ(FQ(n − α)) . . .)) + α ,

wobei die Funktion FQ(·) hier α-fach ineinander eingesetzt ist.

Aus der Induktionsannahme folgt FQ(�) ≤ A(q, �) − 1.

Dies wenden wir auf die äußerste Funktion FQ an und erhalten

FP(n) ≤ A(q,FQ(. . . FQ(FQ(n − α)) . . .)) + α − 1 .

Wiederholte Anwendung liefert

FP(n) ≤ A(q,A(q, . . . A(q,A(q, n − α)) . . .))

≤ A(q,A(q, . . . A(q,A(q + 1, n − α)) . . .)) .

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Beweis des Lemmas

Der Induktionsschritt (2. Art) – Fortsetzung

Bisher haben wir gezeigt

FP(n) ≤ A(q,A(q, . . . A(q,A(q + 1, n − α)) . . .)) .

Der Definition der Ackermannfunktion entnehmen wir
A(q + 1, y + 1) = A(q,A(q + 1, y)).

Auf die innere Verschachtelung angewendet ergibt sich

FP(n) ≤ A(q,A(q, . . . A(q + 1, n − α + 1) . . .)) ,

wobei die Schachtelungstiefe nur noch α − 1 ist.

Nach weiteren α − 2 vielen Anwendungen, folgt

FP(n) ≤ A(q + 1, n − 1) < A(q + 1, n) .

�
Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Ackermannfunktion nicht LOOP-berechenbar

Satz

Die Ackermannfunktion ist nicht primitiv-rekursiv.

Beweis:

Angenommen die Ackermannfunktion ist durch ein
LOOP-Programm berechenbar.

Dann sei P ein LOOP-Programm für die Fkt B(n) = A(n, n).

Es gilt B(n) ≤ FP(n).

Aus dem Lemma folgt, es gibt m ∈ N mit FP(n) < A(m, n).

Für m = n gilt somit

B(n) ≤ FP(n) < A(m, n) = A(n, n) = B(n) .

Widerspruch! Also folgt der Satz. �

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

Schlussfolgerung

Da die Ackermannfunktion durch eine TM berechenbar ist, folgt

Korollar

Die Klasse der primitiv-rekursiven Funktionen ist eine echte
Teilmenge der rekursiven Funktionen.

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen Berechenbarkeit und Komplexität

