

1. Exercise sheet *Compiler Construction 2008*

Due to Wed., 23 April 2008, *before* the exercise course begins.

Hand in your solutions in groups of three!

Exercise 1.1:

In this exercise we focus on regular expressions (regex) over the alphabet of all words in $\{a, \dots, z\}^*$ that end with a or b . E.g. $bla \in \mathcal{L}_{\text{word}} =: \Omega$ but $bah \notin \mathcal{L}_{\text{word}}$. Furthermore, $bla \cdot (blub^* + bla^* \cdot blub) \in \mathcal{L}_{\text{regex}}$, the set of regular expressions (as described above), but $bla blub \notin \mathcal{L}_{\text{regex}}$ as we require all operators to be explicitly stated and regular expressions shall not contain any white spaces.

- Give regular expressions and languages for all symbol classes that will be needed for a lexical analysis of elements of $\mathcal{L}_{\text{regex}}$. Denote the languages of each symbol class by the associated token, e.g. for tokens lambda, concat, word, ... write $\mathcal{L}_{\text{lambda}}, \mathcal{L}_{\text{concat}}, \mathcal{L}_{\text{word}}, \dots$
- Give the sequence of lexemes for $bla \cdot (blub^* + bla^* \cdot blub)$ and translate each lexeme into a symbol.
- Devise an automaton that accepts $w \in \mathcal{L}_{\text{tok}}$ in state q_{tok} for all $\text{tok} \in \{\text{lambda}, \text{concat}, \text{word}, \dots\}$. Give an accepting run for bla . (Note that $bla + blub$ is a regular expression but it is in none of the symbol class languages.)
- Give a grammar describing all *token sequences* that represent regular expressions. Find a derivation of the *token sequence* from b). (A token sequence is the projection of a sequence of symbols to the tokens.)

Exercise 1.2:

Extend regular expressions by a complement operator, i.e. if α is a regular expression so is $\neg\alpha$. The semantics is given by $\llbracket \neg\alpha \rrbracket := \Omega^* \setminus \llbracket \alpha \rrbracket$. Let $\Omega = \{a, \dots, z\}$ and $\alpha = moo^*$.

- Give an NFA for regular expression α .
- Construct the complement automaton $\mathfrak{A}(\neg\alpha)$, i.e. $\mathcal{L}(\mathfrak{A}(\neg\alpha)) = \llbracket \neg\alpha \rrbracket$, in a way such that it can be used for the Thompson construction.
- Construct an NFA $\mathfrak{A}(\neg\alpha \cdot h)$ via Thompson construction.
- Check whether the NFA from c) accepts *moodoh* and *mooh*.