
Software-Modellierung und Verifikation

Informatik 2

Prof. J.-P. Katoen

RWTH Aachen

Priv.-Doz. T. Noll noll@cs.rwth-aachen.de
D. Klink klink@cs.rwth-aachen.de

10. Exercise sheet Compiler Construction 2008
Due to Wed., 16 July 2008. Bring it to the chair.

The exercises on this sheet are taken from an earlier exam. You might try to first prepare yourself and then solve
the exercises without having a look into your learning material. All exercises are optional such that those who feel
they are prepared for the exam do not have to solve them to get the points. However, if you still need some points,
this is your opportunity!

Exercise 10.1: (optional)

a) Give a regular expression, describing the language of all rational numbers with at least one decimal place,
but without superfluous zeros. I.e. 0.0 and 1.001 are in the language, but not 00.0, 1.000 and 1 (because there
is no decimal place at all).

b) Construct an NFA that recognises the language from a). Superfluous ε-transitions may be omitted.

c) Give the chain of sets of states that are visited when recognizing 0.01 using the NFA method.

Exercise 10.2: (optional)

Consider the following grammar:

S → S′S | S′

S′ → a | (T ′)
T ′ → S′T ′ | S′

a) Transform the grammar into an equivalent LL(1)-grammar G′.

b) Show that G′ ∈ LL(1).

Exercise 10.3: (optional)

Consider the following grammar:

S → A

A → BdC

B → Ba | Bb | a

C → Ca | Cb | a

a) Construct the LR(0) sets for the grammar.

b) Show that the grammar is in SLR(1) but not in LR(0).

Exercise 10.4: (optional)

Consider the following attribute grammar:

S → A β.1 = α.1 A → a α.0 = β.0

A → AB α.0 = α.1 B → b α.0 = β.0
β.2 = β.0
β.1 = α.2

a) Check whether this is an S-attributed grammar.

b) Check whether this is an L-attributed grammar.

Exercise 10.5: (optional)

Translate the following EPL-program into intermediate code.

in/out x;

while (x < 0) do

x := x + 1;

Exercise 10.6: (optional)

Consider the following intermediate code:

...
7: LOAD(1, 2); (dif, off)
8: ADD;
9: RET;

...
26: CALL(38, 1, 3); (ca, dif, loc)

Give the next four states of the abstract machine starting in:

(ca, d, p) := (7,−3, 9 : 4 : 26 : 3 : 7 : 4 : 3 : 36 : 5 : 10 : 4 : 40 : 1 : 2 : . . .)

Recall that the procedure stack has the form:

sl dl ra v1 . . . vn . . .

and the base-function is defined as:

base(p, 0) := 1
base(p, dif + 1) := base(p, dif) + p.base(p, dif)

