

2. Exercise sheet *Compiler Construction 2008*

Due to Wed., 7 May 2008, *before* the exercise course begins.

Hand in your solutions in groups of three!

Exercise 2.1:

- a) For extended matching two principles have been introduced to resolve nondeterminism during analysis, the *longest match* principle and the *first match* principle. Instead, we could have insisted on an unambiguous definition of the symbol classes, i.e. for regular expressions $\alpha_1, \dots, \alpha_n$ it should hold $\bigcap_{i=1}^n [\alpha_i] = \emptyset$. Why is this not a good idea from a practical point of view? Give an example to support your explanations.
- b) Let $\alpha_1, \dots, \alpha_n$ be regular expressions over Σ and $w \in \Sigma^*$. In the lecture it was assumed that $\varepsilon \notin [\alpha_i] \neq \emptyset$ for all $i \in \{1, \dots, n\}$. Show that these are reasonable assumptions by proving the following proposition:
 - If $[\alpha_i] = \emptyset$ for some $i \in \{1, \dots, n\}$ there exists no *fm*-analysis of w w.r.t. $\alpha_1, \dots, \alpha_n$ that is not a *fm*-analysis of w w.r.t. $\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_n$ as well.
 - If $\varepsilon \in [\alpha_i]$ for some $i \in \{1, \dots, n\}$ then the *fm*-analysis of w w.r.t. $\alpha_1, \dots, \alpha_n$ is not unique (if it exists).

Exercise 2.2:

Let $\alpha_1 = (\ominus + \varepsilon)N$, $\alpha_2 = N(e \ominus N + \varepsilon)$ where N is a macro for $(1 + \dots + 9)(0 + \dots + 9)^*$ and $\alpha_3 = (a + \dots + z)(a + \dots + z)^*$ be regular expressions over the alphabet $\Sigma = \{\ominus, 0, \dots, 9, a, \dots, z\}$.

- a) Construct DFAs \mathfrak{A}_i for α_i such that $\mathcal{L}(\mathfrak{A}_i) = [\alpha_i]$.
- b) Construct DFA \mathfrak{A} such that $\mathcal{L}(\mathfrak{A}) = \mathcal{L}(\mathfrak{A}_1) \cup \mathcal{L}(\mathfrak{A}_2) \cup \mathcal{L}(\mathfrak{A}_3)$.
- c) Determine the *first match* partitioning of the set of final states in \mathfrak{A} .
 (The regular expressions are ordered $(\alpha_1, \alpha_2, \alpha_3)$.)
- d) Compute the (accepting) run of the corresponding backtracking DFA for input $w = 23exp \ominus 42$.

Exercise 2.3: (optional)

Download *ANTLRWorks* from www.antlr.org/works.

- a) Enter the following grammar file and save it as `Rational.g`:

```
grammar Rational;
start          :  (RATIONAL ' ') * RATIONAL;
RATIONAL       :  a regular expression;
```

Replace *a regular expression* by the regular expression from Exercise 0.1a (in *ANTLRWorks* notation).
 Select the *Interpreter* tab, enter $-1/2 \ 0/4 \ +5$ as input and press the start button.

- b) Generate code (see menu) and write a java application that takes the first command line argument as input lexeme and prints the token generated by the generated `RationalLexer` to the console.