

3. Exercise sheet *Compiler Construction 2008*

Due to Wed., 21 May 2008, *before* the exercise course begins.
 Hand in your solutions in groups of three!

Exercise 3.1:

In the lecture two characterizations of $LL(1)$ have been given:

- $G \in LL(1)$ iff for all leftmost derivations of the form

$$S \Rightarrow_l^* wA\alpha \begin{cases} \Rightarrow_l w\beta\alpha \\ \Rightarrow_l w\gamma\alpha \end{cases}$$

such that $\beta \neq \gamma$, it follows that $fi(\beta\alpha) \cap fi(\gamma\alpha) = \emptyset$.

- $G \in LL(1)$ iff for all pairs of rules $A \rightarrow \beta \mid \gamma \in P$ (where $\beta \neq \gamma$):

$$la(A \rightarrow \beta) \cap la(A \rightarrow \gamma) = \emptyset$$

- Lift the second definition to $LL(k)$ for $k \in \mathbb{N}^+$. (The first definition was given for $k \in \mathbb{N}^+$ in the lecture.)
- Show that the definitions are not equivalent by showing that the following grammar is in $LL(2)$ according to the first definition but not according to the second definition (also referred to as *strong LL(2)* property).

$$\begin{array}{lcl} S & \rightarrow & aAab \mid bAbb \\ A & \rightarrow & a \mid \epsilon \end{array}$$

- Explain (in a few words) why the definitions are not equivalent.

Exercise 3.2:

Consider the following *parameterized* grammar $G_n = \langle N, \Sigma, P_n, S \rangle$ with $\Sigma = \{0, 1, \dots, n, \leftarrow\}$. The symbol \leftarrow may be represented by a linebreak.

$$\begin{array}{lcl} P_n : & S & \rightarrow 1 \leftarrow S_1 \mid \dots \mid n \leftarrow S_n \\ & S_i & \rightarrow R_i \stackrel{i \times}{\dots} R_i & \text{for all } i \in \{1, \dots, n\} \\ & R_i & \rightarrow N \stackrel{i \times}{\dots} N \leftarrow & \text{for all } i \in \{1, \dots, n\} \\ & N & \rightarrow 0 \mid 1 \end{array}$$

- Construct the NTA for grammar $G_n \in LL(1)$.
- Construct the DTA for grammar G_n .
- Compute the run of $DTA(G_1)$ and $DTA(G_2)$ for input:

$$\begin{array}{r} 2 \\ 0 \ 1 \\ 1 \ 0 \end{array}$$

Exercise 3.3:

a) Show that the following grammar is ambiguous:

$$S \rightarrow (S) \mid S \vee S \mid S \wedge S \mid \neg S \mid \text{true}$$

b) Devise a method that chooses a reasonable derivation out of the set of all leftmost derivations for a given word $w \in \Sigma^*$ by investigating the leftmost analysis information. Reasonable in this context means that

\neg binds stronger than \vee and \wedge ,

\wedge binds stronger than \vee .

Exercise 3.4:

Prove the correctness of the top down analysis automaton $NTA(G)$ for a grammar $G = \langle N, \Sigma, P, S \rangle$, i.e. show that for all $w \in \Sigma^*$ and all $z \in \{1, \dots, |P|\}^*$:

$$(w, S, \varepsilon) \vdash^* (\varepsilon, \varepsilon, z) \quad \text{implies} \quad S \xrightarrow[z]{l} w$$