
Software-Modellierung und Verifikation

Informatik 2

Prof. J.-P. Katoen

RWTH Aachen

Priv.-Doz. T. Noll noll@cs.rwth-aachen.de
D. Klink klink@cs.rwth-aachen.de

4. Exercise sheet Compiler Construction 2008
Due to Wed., 4 June 2008, before the exercise course begins.

Hand in your solutions in groups of three!

Exercise 4.1:

Consider the grammar G given by:

S → N ∗ N | N ∗ ∗ N

N → N0 | N1 | M

M → 1

a) Show that G 6∈ LL(1) by analysing the lookahead sets.

b) Construct G′ ∈ LL(1) with L(G) = L(G′).

c) Show that G′ ∈ LL(1), again by analysing the lookahead sets.

Exercise 4.2:

Consider Gn = 〈N, Σ, Pn, S〉 (a variant of the grammar from Exercise 3.2) where instead of linebreaks there are
commas and the matrix contains a’s and b’s.

Pn : S → 1,S1 | . . . | n,Sn

Si → Ri
i×. . . Ri for all i ∈ {1, . . . , n}

Ri → N i×. . . N, for all i ∈ {1, . . . , n}
N → a | b

a) Write a Java class Lexer that implements java.util.Iterator. Choose singleton symbol classes for 1, . . . , n,
a, b, the comma and document how tokens are represented.

b) Write a Java recursive descent parser Parser for the grammar using the Lexer from a). The first commandline
argument is to specify n, the second argument should be the input word.
Calling, say, java g.Parse 2 2,ab,ba, should print something like

dimensions 2x2

parsing 2 rows

parsing 2 chars

parsing char: a

parsing char: b

parsing 2 chars

parsing char: b

parsing char: a

to the console (instead of just giving a sequence of numbers as in the example from the lecture).

Avoid cryptic and/or messy code and send it (the java files) to klink@cs.rwth-aachen.de. Use Exercise 4.2 as
subject and add your student ID numbers (Mat.nr.).

Exercise 4.3:

Consider the grammar G given by:

S′ → S

S → MR

M → LM | m

L → LL′ | l

L′ → LL′ | l′

R → RR′ | r

R′ → RR′ | r′

a) Show that G 6∈ LR(0).

b) Give a grammar G′ ∈ LR(0) (and show that G′ ∈ LR(0)) such that for w ∈ Σ∗, a ∈ Σ:

wa ∈ L(G) ⇔ wm ∈ L(G′)

c) Compute an accepting run of NBA(G′) for input lll′mrm

Exercise 4.4: (optional)

Use ANTLR to write a calculator capable of (at least) addition and multiplication of binary encoded numbers
(including parentheses), i.e. for an input (100+001)*011*010 the parser should print 101010 to the console (the
example code shown below should contain all necessary ANTLR constructs).

a) Write an appropriate ANTLR grammar.

b) Add functionality.

Avoid cryptic and/or messy code and send it (the ANTLR file) to klink@cs.rwth-aachen.de. Use Exercise 4.4

as subject and add your student ID numbers (Mat.nr.).

grammar CalcEx;

start : e=multExpr {

System.out.println("="+$e.value);

};

multExpr returns [int value]

: e=NUMBER {

int n = Integer.parseInt($e.text);

$value = n;

System.out.print(n);

}

(’*’ {

System.out.print("*");

}

e=NUMBER {

n = Integer.parseInt($e.text);

$value *= n;

System.out.print(n);

}

)*;

NUMBER : (’0’..’9’)+;

