SOFTWARE-MODELLIERUNG UND VERIFIKATION Priv.-Doz. T. Noll noll@cs.rwth-aachen.de
D. Klink klink@cs.rwth-aachen.de
INFORMATIK 2

PRroF. J.-P. KATOEN
RWTH Aachen

4. Exercise sheet Compiler Construction 2008
Due to Wed., 4 June 2008, before the exercise course begins.
Hand in your solutions in groups of three!

Exercise 4.1:

Consider the grammar G given by:

S — NxN|NxxN
N — NO|N1|M
M — 1

a) Show that G ¢ LL(1) by analysing the lookahead sets.
b) Construct G’ € LL(1) with £L(G) = L(G).
¢) Show that G’ € LL(1), again by analysing the lookahead sets.

Exercise 4.2:

Consider G,, = (N, %, P,,, S) (a variant of the grammar from Exercise 3.2) where instead of linebreaks there are
commas and the matrix contains a’s and b’s.

P,: S — 1,5]...|n,S
S; — R; X R; forallie {1,...,n}
R, — N XN, forallie {1,...,n}
N — alb
a) Write a Java class Lexer that implements java.util.Iterator. Choose singleton symbol classes for 1,...,n,

a, b, the comma and document how tokens are represented.

b) Write a Java recursive descent parser Parser for the grammar using the Lexer from a). The first commandline
argument is to specify n, the second argument should be the input word.
Calling, say, java g.Parse 2 2,ab,ba, should print something like

dimensions 2x2

parsing 2 rows

parsing 2 chars
parsing char: a
parsing char: b
parsing 2 chars
parsing char: b
parsing char: a

to the console (instead of just giving a sequence of numbers as in the example from the lecture).

Avoid cryptic and/or messy code and send it (the java files) to klink@cs.rwth-aachen.de. Use Exercise 4.2 as
subject and add your student ID numbers (Mat.nr.).

Exercise 4.3:

Consider the grammar G given by:

S — S

S — MR

M — LM|m
L — LL'|I
L' — LL'|U
R — RR'|r
R — RR'|"

a) Show that G ¢ LR(0).

b) Give a grammar G’ € LR(0) (and show that G’ € LR(0)) such that for w € £*, a € X:

wa € L(G) & wm € L(G)

¢) Compute an accepting run of NBA(G’) for input lII'mrm

Exercise 4.4: (optional)

Use ANTLR to write a calculator capable of (at least) addition and multiplication of binary encoded numbers
(including parentheses), i.e. for an input (100+001)*011%010 the parser should print 101010 to the console (the
example code shown below should contain all necessary ANTLR constructs).

a) Write an appropriate ANTLR, grammar.
b) Add functionality.

Avoid cryptic and/or messy code and send it (the ANTLR file) to klink@cs.rwth-aachen.de. Use Exercise 4.4
as subject and add your student ID numbers (Mat.nr.).

grammar CalcEx;

start : e=multExpr {

System.out.println("="+$e.value);

};

multExpr returns [int valuel
: e=NUMBER {

int n = Integer.parselnt($e.text);

$value = n;
System.out.print (n);

}
(7% {
System.out.print ("*");
}
e=NUMBER {
n = Integer.parselnt($e.text);
$value *= n;
System.out.print(n);
}
) *;

NUMBER : (’0’..°97)+;

