
Software-Modellierung und Verifikation

Informatik 2

Prof. J.-P. Katoen

RWTH Aachen

Priv.-Doz. T. Noll noll@cs.rwth-aachen.de
D. Klink klink@cs.rwth-aachen.de

5. Exercise sheet Compiler Construction 2008
Due to Wed., 18 June 2008, before the exercise course begins.

Exercise 5.1:

Let grammar G be given by:

S ′ → S

S → Aa | bAc | Bc | bBa

A → d

B → d

a) Check whether G ∈ LR(1) by computing the LR(1)-sets of G.

b) Is G ∈ LALR(1)? Justify your answer.

Exercise 5.2:

Show that LL(1) 6⊆ LALR(1) by providing a counterexample.

Exercise 5.3: (optional)

Use ANTLR to write SPiT, a Simple PetrI net Tool.

a) Write a grammar that recognizes Petri nets in the following notation, where [. . .] denotes
that . . . can be specified optionally.

model PetriNet;

place na[:ia]; place nb[:ib]; ...;

trans na[:ca,1] + nb[:cb,1] + ... -> na[:pa,1] + nb[:pb,1] + ...;

trans na[:ca,2] + nb[:cb,2] + ... -> na[:pa,2] + nb[:pb,2] + ...;

...;

na, nb, . . . ∈ {a, . . . , z} · {a, . . . , z, 0, . . . , 9}∗ are the names of places, ia, ib, . . . ∈ N are the
initial number of tokens in the places and ca,j, cb,j, . . . ∈ N and pa,j, pb,j, . . . ∈ N are the
number of tokens consumed and produced in each place for all transitions j ∈ {1, . . . , n}.

If the initial number of tokens is not specified, assume that the place does not contain any
tokens at start. If the number of tokens consumed or produced is not specified, assume that
one token is consumed or produced. Allow for line comments in Java style and for white
spaces where it makes sense.

Check your grammar on the following example:

l

u1

r1

c1

r2

u2

c2

model PetriNet;

place l:1; //lock

place u1:1; //uncritical section of process 1

place r1; //process 1 requests lock

place c1; //critical section of process 1

place u2:1; //uncritical section of process 2

place r2; //process 2 requests lock

place c2; //critical section of process 2

trans u1 -> r1;

trans r1 + l -> c1;

trans c1 -> u1 + l;

trans u2 -> r2;

trans r2 + l -> c2;

trans c2 -> u2 + l;

b) Implement a simulator, based on the ANTLR grammar, that, starting with the initial mar-

king (numbers of tokens in each place), fires a transition every second and prints the current
configuration to the console. If there is no transition enabled, i.e. there is no rule where the
number of tokens on the left-hand side of the transition rule is available, stop with a deadlock

message. If there is more than one transition that is enabled, resolve this nondeterminism
by randomly selecting a transition.
You are not required to deal with technical details like catching overflows (which may occur
for unbounded Petri nets).
Some ANTLR constructs that may be useful are @header – for package declaration and
import of packages – and @members – for specifying fields and methods that can be used
within the grammar file:

grammar SPiT;

@lexer::header {

package SPiT;

}

@header {

package SPiT;

}

@members {

PetriNet pn = new PetriNet();

}

...

As main class, you may want to use the following:

package SPiT;

import org.antlr.runtime.*;

public class Main {

public static void main(String[] args) throws Exception {

if (args.length == 0)

System.exit(0);

SPiTLexer lexer = new SPiTLexer(new ANTLRFileStream(args[0]));

SPiTParser parser = new SPiTParser(new CommonTokenStream(lexer));

parser.start();

}

}

Avoid cryptic and/or messy code and send it (the ANTLR and java files) to klink@cs.rwth-aachen.de.
Use Exercise 5.3 as subject and add your student ID numbers (Mat.nr.).

