
Software-Modellierung und Verifikation

Informatik 2

Prof. J.-P. Katoen

RWTH Aachen

Priv.-Doz. T. Noll noll@cs.rwth-aachen.de
D. Klink klink@cs.rwth-aachen.de

7. Exercise sheet Compiler Construction 2008
Due to Wed., 25 June 2008, before the exercise course begins.

Exercise 7.1:

Consider the following grammar:

S ′ → S w.1 = 1 − b.1
S → AB w.1 = w.0,

w.2 = b.1,
b.0 = b.2

A → AA w.1 = w.0,
b.0 = b.1

A → a b.0 = w.0
B → BB w.2 = w.0,

b.0 = b.2
B → b b.0 = w.0

a) Prove that the grammar is circular by graphically representing the dependencies in an ap-
propriate derivation tree.

b) Construct the equation system for the derivation tree chosen in a) and solve it.

Exercise 7.2:

Consider the following grammar:

S → A i1.1 = 1
i2.1 = 2
s1.0 = s2.1

A → a s1.0 = 0
s2.0 = i1.0

A → Aa i1.1 = s1.1
i2.1 = i1.0
s1.0 = s2.1
s2.0 = 0

A → b s1.0 = i2.0
s2.0 = 0

a) Show that the grammar is not circular using the method from the lecture.

b) Check whether it is strongly non-circular.

Exercise 7.3:

Consider the following attributed version of the parameterised grammar from Exercise 4.2 where
all attributes are of type boolean.

S → 1,S1 | . . . | n,Sn attrSyn.0 = attrSyn.3
Si → Ri

i×. . . Ri odd.1 = true
odd.k = ¬oddSyn.(k−1) for k > 1

attrSyn.0 = attrSyn.1 xor . . . xor attrSyn.i

Ri → N i×. . . N, attrSyn.0 = attrSyn.1 xor . . . xor attrSyn.i xor odd.0
oddSyn.0 = odd.0

N → a attrSyn.0 = true
N → b attrSyn.0 = false

(for all i > 0)

a) Extend the recursive descent parser from Exercise 4 such that the attibutes of the grammar
are evaluated on-the-fly and the value of attrSyn.0 in the start rule is returned by s().

b) Give an acyclic attribution for the grammar that cannot be dealt with using a recursive de-
scent parser. Explain, e.g. by graphically representing the information flow in an appropriate
derivation tree!

Exercise 7.4: (optional)

Consider the following ANTLR grammar for terms of binary OPerations +, * and ˆ over variable
IDentifiers and NUMbers in prefix notation. E.g. * + x 2 1 is a word recognised by the grammar:

grammar AstEx;

options{output=AST;}

tokens{SID;}

@header{package ast;}

@lexer::header{package ast;}

spec: NUM

| x=ID -> SID[$x.text]

| op

;

op : OP spec spec -> ^(OP spec spec);

ID : (’a’..’z’)(’a’..’z’ | ’A’..’Z’ | ’0’..’9’)*;

NUM : (’0’..’9’)+;

OP : ’+’ | ’*’ | ’^’;

WS : (’ ’ | ’\r’ | ’\t’ | ’\u000C’ | ’\n’ | ’(’ | ’)’) {$channel=HIDDEN;};

Note that the output is set to AST (abstract syntax tree) and a token SID is specified that is not
implicitly given by the rules of the grammar. In rules spec and op, rewrite rules have been used.
In spec instead of an ID token, an SID token (with the same text information) will be created. In

op, rewriting has been used to specify that the structure added to the AST is not a set containing
OP and two structures given by spec, but a tree with root OP and two spec children.
Use the debugger of ANTLRWorks to examine the AST created for * + x 2 1 and play with the
following Java code to see how the parser output, the abstract syntax tree, can be accessed.

package ast;

import org.antlr.runtime.*;

import org.antlr.runtime.tree.*;

public class AstTest {

public static void main(String args[]) throws Exception {

AstLexer lex = new AstLexer(new ANTLRFileStream("/pathTo/astTest.txt"));

CommonTokenStream tokens = new CommonTokenStream(lex);

AstParser g = new AstParser(tokens);

try {

Tree ast = (Tree) g.spec().getTree();

System.out.println(ast.toStringTree());

} catch (Exception e) {

e.printStackTrace();

}

}

}

a) Extend the grammar such that it recognises functions. I.e. f x y := * + x 2 y, the term
describing function f : N × N → N with f(x, y) = (x + 2) ∗ y, has to be recognised and an
appropriate abstract syntax tree has to be generated.

b) Extend the Java code such that an exception is thrown, if

– a variable identifier is the same as the function identifier,

– a variable identifier is declared twice,

– a variable used on the right hand side has not been declared.

Send your code (the ANTLR and Java files) to klink@cs.rwth-aachen.de. Use Exercise 7.3

as subject and add your student ID numbers (Mat.nr.).

