Compiler Construction

Lecture 1: Introduction

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

@ Preliminaries

Rm Compiler Construction Summer semester 2

@ Lectures: Thomas Noll

o Lehrstuhl fiir Informatik 2, Room 4211
o E-mail noll@cs.rwth-aachen.de

o Phone (0241)80-21213
o Exercise classes: Daniel Klink
o Lehrstuhl fiir Informatik 2, Room 4205
o E-mail k1ink@cs.rwth-aachen.de
o Phone (0241)80-21210
@ Student assistants:

o Johanna Nellen (johanna.nellen@rwth-aachen.de)
o Maximilian Odenbrett (maximilian.odenbrett@rwth-aachen.de)

Rm Compiler Construction Summer semester 2008

noll@cs.rwth-aachen.de
klink@cs.rwth-aachen.de
johanna.nellen@rwth-aachen.de
maximilian.odenbrett@rwth-aachen.de

Target Audience

o Bachelor program (Informatik): V3 U2
@ Wahlpflichtfach Theorie
o Master programs (Software Systems Engineering [, Informatik]):

V4 U2
o Theoretical (4 Practical) CS
o Specialization Formal Methods, Programming Languages and
Software Validation .
o Diplomstudiengang (Informatik): V4 U2
o Theoretische (+ Praktische) Informatik
o Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung
@ In general:
o interest in implementation of (imperative) programming languages
@ application of theoretical concepts
@ compiler = example of a complex software architecture
e gaining experience with tool support
o Expected: basic knowledge in
e imperative programming languages
o formal languages and automata theory

m' Compiler Construction Summer semester 2008

Organization

@ Schedule:

o Lecture Mon 10:00-11:30 AH 2 (starting April 14)
o Lecture Thu 15:00-16:30 AH5
o Exercise class Wed 13:30-15:00 AH 3 (starting 23.10.2006)

(see overview at
http://www-i2.informatik.rwth-aachen.de/i2/cc08/)

Today: Oth assignment sheet, presented next Wednesday

©

(2

Work on assignments in groups of three
Examination:

o oral for BSc candidates (6 ECTS credit points)
o otherwise (8 ECTS credit points) depending on number of
candidates

(2

(2

Admission requires at least 50% of the points in the (non-Diplom)
exercises

o Written material in English, lecture and presentation of
assignments in German, rest up to you

m' Compiler Construction Summer semester 2008

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

© Introduction

Rm Compiler Construction Summer semester 2

What Is It All About?

Compiler = Program: Source code — Machine code

Source code: in high-level programming language, tailored to problem
(imperative/declarative [functional, logic|/
object-oriented, sequential /concurrent)

Machine code: architecture dependent
(von Neumann; RISC/CISC/parallel)

Rm Compiler Construction Summer semester 2008 7

What Is It All About?

Compiler = Program: Source code — Machine code

Source code: in high-level programming language, tailored to problem
(imperative/declarative [functional, logic|/
object-oriented, sequential /concurrent)

Machine code: architecture dependent
(von Neumann; RISC/CISC/parallel)

Important issues:
Correctness: “equivalence” of source and machine code
(= compiler verification, proof-carrying code, ...)
Efficiency of generated code: machine code as fast and/or memory
efficient as possible
(= program analysis and optimization)
Efficiency of compiler: translation process as fast and/or memory
efficient as possible
(= sophisticated algorithms and data structures;
bootstrapping)

Efficiency depends on system environment (mutual tradeoff)
m' Compiler Construction Summer semester 2008

Aspects of a Programming Language

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)

Semantics: “What does this program mean?”

@ “Static semantics”: properties which are not (easily)
definable in syntax

(declaredness of identifiers, type correctness, ...)
“Dynamic semantics”: execution evokes state
transformations of an [abstract] machine

length and understandability of programs

Pragmatics: o
@ learnability of programming language
°
°

appropriateness for specific applications

Rm Compiler Construction Summer semester 2008

Historic development

o Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler /interpreter

@ Formal semantics since 1970s
(operational/denotational /axiomatic)

@ Automatic compiler generation since 1980s
([f]lex, yacc, action semantics, ...)

Rm Compiler Construction Summer semester 2008

Motivation for Rigorous Formal Treatment

Examples:

@ How often is the following loop traversed?
for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

Rm Compiler Construction Summer semester 2008 10

Motivation for Rigorous Formal Treatment

Examples:

@ How often is the following loop traversed?
for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

© What if p = nil in the following program?
while p <> nil and p~.key < val do ...

Pascal: strict Boolean operations |
Modula: non-strict Boolean operations T

Rm Compiler Construction Summer semester 2008 10

Compiler Phases

Lexical analysis (Scanner):
@ recognition of symbols, delimiters, and comments
@ by regular expressions and finite automata

Rm Compiler nstruction Summer semester 2

Compiler Phases

Lexical analysis (Scanner):
@ recognition of symbols, delimiters, and comments
@ by regular expressions and finite automata
Syntactic analysis (Parser):
® determination of hierarchical program structure
@ by context-free grammars and pushdown automata

Rm Compiler Construction Summer semester 2008 11

Compiler Phases

Lexical analysis (Scanner):

@ recognition of symbols, delimiters, and comments

@ by regular expressions and finite automata
Syntactic analysis (Parser):

® determination of hierarchical program structure

@ by context-free grammars and pushdown automata
Semantic analysis:

@ checking context dependencies, data types, ...

@ by attribute grammars

Rm Compiler Construction Summer semester 2008 11

Compiler Phases

Lexical analysis (Scanner):

@ recognition of symbols, delimiters, and comments

@ by regular expressions and finite automata
Syntactic analysis (Parser):

® determination of hierarchical program structure

@ by context-free grammars and pushdown automata
Semantic analysis:

@ checking context dependencies, data types, ...

@ by attribute grammars
Generation of intermediate code:

@ translation into (target-independent) intermediate code
@ by tree translations

Rm Compiler Construction Summer semester 2008

Compiler Phases

Lexical analysis (Scanner):

@ recognition of symbols, delimiters, and comments

@ by regular expressions and finite automata
Syntactic analysis (Parser):

® determination of hierarchical program structure

@ by context-free grammars and pushdown automata
Semantic analysis:

@ checking context dependencies, data types, ...

@ by attribute grammars
Generation of intermediate code:

@ translation into (target-independent) intermediate code

@ by tree translations

Code optimization: to improve runtime and/or memory behavior

Rm Compiler Construction Summer semester 2008

Compiler Phases

Lexical analysis (Scanner):
@ recognition of symbols, delimiters, and comments
@ by regular expressions and finite automata

Syntactic analysis (Parser):

® determination of hierarchical program structure
@ by context-free grammars and pushdown automata

Semantic analysis:

@ checking context dependencies, data types, ...
@ by attribute grammars

Generation of intermediate code:

@ translation into (target-independent) intermediate code
@ by tree translations

Code optimization: to improve runtime and/or memory behavior

Generation of target code: tailored to target system

Rm Compiler Construction Summer semester 2008

Compiler Phases

Lexical analysis (Scanner):
@ recognition of symbols, delimiters, and comments
@ by regular expressions and finite automata

Syntactic analysis (Parser):

® determination of hierarchical program structure
@ by context-free grammars and pushdown automata

Semantic analysis:

@ checking context dependencies, data types, ...
@ by attribute grammars

Generation of intermediate code:

@ translation into (target-independent) intermediate code
@ by tree translations

Code optimization: to improve runtime and/or memory behavior
Generation of target code: tailored to target system

Additionally: optimization of target code, symbol table, error handling

Rm Compiler Construction Summer semester 2008

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

4
Syntactic analysis (Parser))

Y
Semantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Summer semester 2008 12

Conceptual Structure of a Compiler

Source code
xl1 :=y2 + 1

(Lexical analysis (Scanner))

4
Syntactic analysis (Parser))

Y
Semantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Summer semester 2008 12

Conceptual Structure of a Compiler

Source code
xl1 :=y2 + 1

@()Xical analysis (Scanncr) regular expressions/finite automata
(id, x1)(gets,) (id, y2)(plus,) (int, 1)

4
Syntactic analysis (Parser))

Y
Semantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Summer semester 2008 12

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

v (id, x1)(gets,)(id, y2) (plus,) (int, 1)
(Syntactic analysis (Parser) context-free grammars/pushdown automata

Assgn
VAR
\ Var EiEP
Semantic analysis) Ju
Var Const

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Summer semester 2008 12

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y A/ssg\n
GSyntactic analysis (Parser)) vaf bap
Sum
VA
Var Const

Y
(Scmantic analysis) attribute grammars
Assgn ok
int Var EAITP int
Sumint
int Var Constint

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Summer semester 2008 12

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

4
Syntactic analysis (Parser))

A J Assgn ok

0 . VA

Semantic analysis) int Vaf Erping
Sum int

int Var Constint

\
(Generation of intermediate code) tree translations

LOAD y2; LIT 1; ADD; STO x1

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Summer semester 2008 12

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

4
Syntactic analysis (Parser))

Y
Semantic analysis)

Y
(Generation of intermediate code)

! LOAD y2; LIT 1; ADD; STO x1

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Summer semester 2008 12

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

4
Syntactic analysis (Parser))

Y
Semantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

[omitted: symbol table, error handling]

Target code

Rm Compiler Construction Summer semester 2008 12

Classification of Compiler Phases

Analysis: lexical/syntactic/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization

Rm Compiler Construction Summer semester 2008 13

Classification of Compiler Phases

Analysis: lexical/syntactic/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization

Alternatively:

Frontend: machine-independent parts
(analysis + intermediate code + machine-independent
optimizations)

Backend: machine-dependent parts
(generation + optimization of machine code)

Rm Compiler Construction Summer semester 2008 13

Classification of Compiler Phases

Analysis: lexical/syntactic/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization

Alternatively:

Frontend: machine-independent parts
(analysis + intermediate code + machine-independent
optimizations)

Backend: machine-dependent parts
(generation + optimization of machine code)

Another classification: n-pass compiler
(number of runs through source program; nowadays mainly one-pass)

m' Compiler Construction Summer semester 2008 13

(also see the collection [“Handapparat”] at the CS Library)
@ A. Aho, R. Sethi, J. Ullman: Compilers — Principles, Techniques,
and Tools, Addison-Wesley, 1988

W. Waite, G. Goos: Compiler Construction, 2nd edition, Springer,
1985

R. Wilhelm, D. Maurer: Ubersetzerbau, 2. Auflage, Springer, 1997

N. Wirth: Grundlagen und Techniken des Compilerbaus,
Addison-Wesley, 1996

J.R. Levine et al.: lex & yacc, O’Reilly, 1992

A.W. Appel, J. Palsberg: Modern Compiler Implementation in
Java, Cambridge University Press, 2002

o D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Langendoen: Modern
Compiler Design, Wiley & Sons, 2000

O. Mayer: Syntaxanalyse, BI-Verlag, 1978

(2

©

©

(2

(2

©

m' Compiler Construction Summer semester 2008

	Preliminaries
	Introduction

