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LR(0) Items and Sets

Definition (LR(0) items and sets)

Let G = (N, X, P, S) € CFGyx, be start separated by S’ — S and
S =k aAw =, affow (ie., A— p152 € P).
@ [A — (1 (9] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of ~.
o LR(0)(G) = {LR(0)(7) | 7 € X"}.

Definition (LR(0) conflicts)

Let G = (N,X, P,S) € CFGx, and I € LR(0)(G).
@ [ has a shift/reduce conflict if there exist
A — ajaasg, B — € P such that
[A— a1 -aag],[B— p]€l.
@ [ has a reduce/reduce conflict if there exist A - a,B — € P
with A # B or a # (3 such that
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The LR(0) Action Function

Definition (LR(0) action function)
The LR(0) action function

act : LR(0)(G) — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifr(i)=A—aand [A— o€l (i#0)
shift if [A— a1 -aag] €1

accept if [S"— S-]el

error  if I =10

act(l) :=

For every G € CFGyx, G € LR(0) iff act is well defined.
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The LR(0) Parsing Automaton

Definition (LR(0) parsing automaton)

Let G = (N, X, P,S) € LR(0). The (deterministic) LR(0) parsing automaton
of G is defined by the following components.

@ Input alphabet ¥

@ Pushdown alphabet I' := LR(0)(G)

@ Output alphabet A := [p] U {0, error}

@ Configurations X* x I'* x A*

@ Initial configuration (w, Iy, &) where Iy := LR(0)(¢)
@ Final configurations {e} x {e} x A*

® Transitions:

shift: (aw,al,z) b (w,all’, z) if act(I) = shift and goto(I,a) = I’
reduce: (w,all...IL,,2) ¢ (w,all’, zi) if act(I,) = red,
w(i)=A—-Y:...Y,, and goto(I, A) =I'
accept: (g,1p1,2) F (g,e,20) if act(l) = accept
error: (w,al, z) - (e,e, zerror) if act(I) = error
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Conflicts in LR(0) Parsing

In practice: often G ¢ LR(0)

Example 11.1

Gup: E — E E — E+T|T
T ~T+F|F F— (E)|a|b

LR(0)(G ag) with conflicts:

Iy: [F'—--E] [E—-E+T] I,: [EE—E] [E— E-+T|
[E — T [T — TxF| I,: [E— T [T — T -*F]
[T—>-F] [F—>(E)] I3 : [T—>F]

[F' — -a] [ — D]
L: [Fo (-B)]|E— E+T] Ir: [F—a]
[E — T] [T — TxF| Is: [F — b
[T — -F] [F— -(E)] I;: [E— E+-T] [T — ‘TxF]
[F — -a] [F — o] [T — -F] [F — -(B)]
[ — -a [F' — -b]

Iy: [T >T* - F|[F—(E)] I: [F—o(E)] [E— E-+T]
[F — -a] [F — -b] Ly: [E— E+T] [T — T -*F]

I : [T—> T*F‘] 1o : [F — (E)]




Adding Lookahead 1

Goal: resolving conflicts by considering first input symbol

Observations:
o [A — ﬁl . aﬁg] S LR(O)(OLﬁl)
= S =} aAw =, afrafaw
7N
pushdown next input symbol

Thus: shift only on lookahead a
o [A— B] € LR(0)(af)
= S’ = adrw =, afBrw

7N

pushdown input
— z€fo(A) CX. (r =conlyifw=c¢)

Thus: reduce with A — (3 only if lookahead z € fo(A)
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Adding Lookahead 11

Example 11.2 (cf. Example 11.1)

Gag: E' — E (0)

E - BE+T|T (1,2 AE,N f?i?)
T - TxF|F  (3,4) B |
F - (E)|a|b (5,6,7) 2E

o I, = {[E' - B, [E — E-+T]}:
@ accept on lookahead e
o shift on lookahead +
o I, ={[E — T[T — T - *F]}:
o red 2 on lookahead +/) /e
o shift on lookahead *
o Iy ={[E — E+T"|,[T — T *F]}:
o red 1 on lookahead +/) /e
@ shift on lookahead *

= SLR(1) parsing (Simple LR(1))
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The SLR(1) Action Function

Definition 11.3 (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) x . — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifn(i)=A— o, [A—a]el (i#0),
and x € fo(A)
act(I,x) := ¢ shift  if [A— oy -zag] €l andz € X
accept if [8'— S ]€landz=¢
error  otherwise

Definition 11.4 (SLR(1) grammar)

A grammar G € CFGyx, has the SLR(1) property (notation:
G € SLR(1)) if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition ??) form the
SLR(1) parsing table of G.
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The SLR(1) Parsing Table

Iy: [E' — -E] [E— -E+T) L: [E' — E] [E — E - +T]

E — T T — -T*F| Ir: [E— T [T — T -*F]

T — -F] [F—-(BE)] I3: [T — F

F — -a] [F — b
L: [Fo (-B)] [E— -E+qT] Is: [F—a] Ag,N o)

E — T [T — -T*F| Is: [F — b I +{§}

T —-F| [F—-(B)] Ir: [E— E+-T|[T — -TxF| = ;{f; 35}

F = .3 [F — 1] T—.F]  [F— (B)] I {+,*,),E}

F_),a] [F_)b] {7 ) 75}

Is: T —>T*-F|[F— - (E)] Is: [F— (E-)] |[E— E-+T)]

F — -a] [F — b Iio: [E— E+T] [T — T *F|
I : [T — T*F} Iio: [F — (E)}
LR(0)(GaEg) act goto

+ * ( ) a b 5 E T F + x ( ) a b

Iy shift shift shift I I I3 I Is Ig
I shift accept Iz
I red 2 shift red 2 red 2 Ig
I3 red4d red4 red 4 red 4
Iy shift shift shift Iy Io I3 Iy Is Ig
Is red6 red 6 red 6 red 6
Is red7 red7 red 7 red 7
I shift shift shift Lo I3 Iy Is Ig
Is shift shift shift I11 n Is Ig
Ig shift shift I I12
I10 red1 shift red 1 red 1 Ig
I11 red3 red3 red 3 red 3
T2 red5 redb red 5 red 5
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The SLR(1) Parsing Automaton

Definition 11.6 (SLR(1) parsing automaton)

The SLR(1) parsing automaton is defined as in the LR(0) case (see
Definition ??), except for the transition relation:

shift: (aw,al, z) F (w,all’, z) if act(I,a) = shift and
goto(I,a) =1
reduce,: (aw,ally ... I, 2)F (aw,all’, i) if act(I,,a) = red s,
(i) =A—Y7...Y,, and goto(I, A) =TI
reduce.: (e,ally...I,,2) b (e,all’, i) if act(l,,c) = red 1,
w(i)=A—Y;...Y,, and goto(I,A) =TI’
accept: (e,Ipl,2) F (g,e,20) if act([,e) = accept

errory: (aw,al, z) F (g,¢e, zerror) if act(I,a) = error

errore: (g,al,z) - (e,e, zerror) if act(l,e) = error
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SLR(1) Conflicts

Problem: not all conflicts can be resolved using fo sets

Example 11.7

Grr:S'"—S S—L=R|R L—*R|a R—L
LR(0)(GLRr):
Iy := LR(0)(¢) : [S" — 5] [S — -L=R] [S — ‘R]
L=+ [L—a [R—-I
I := LR(0)(S) : [S" — S
Iy := LR(0)(L) : [S— L-=R] [R— L
Is:= LR(0)(R) : [S — R
Iy := LR(0)(*) : [L —-*-R] [R— L] [L — *R] [L — -a]
I = LR(0)(a):  [L—a
Is ;== LR(0)(L=): [S— L=-R] [R— ‘L] [L — *xR] [L — -a]
I; := LR(0)(*R) :  [L — *R]
Is:= LR(0)(*L): [R— L]
Iy :== LR(0)(L=R) : [S — L=R]
But: conflict in I not SLR(1)-solvable since = € fo(R)
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LR(1) Items and Sets 1

Observation: not every element of fo(A) can follow every occurrence
of A
— refinement of LR(0) items by adding possible lookahead symbols

Definition 11.8 (LR(1) items and sets)

Let G = (N, X, P,S) € CFGy, be start separated by S — S.

o If S’ =% adaw =, affraw, then [A — [31 - 52, a] is called an
LR(1) item for of.

o If ' =% aA =, af1fs, then [A — (1 - [a,¢] is called an LR(1)
item for af;.

o Given v € X*, LR(1)(vy) denotes the set of all LR(1) items for ~,
called the LR(1) set (or: LR(1) information) of ~.

° LR(1)(G) :={LR(1)(v) |y € X*}.
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LR(1) Items and Sets II

Corollary 11.9

Q For every v € X*, LR(1)(7y) is finite.
Q@ LR(1)(G) is finite.
Q For every v € X*, LR(1)(y) “contains” LR(0)(v), i.e.,

{[A— B1-Ba] | [A— b1 B2,2] € LR(1)(7)} = LR(0)(v)-

Q [A— (1 P2,2] € LR(1)(G) = =z € fo(4)
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LR(1) Conflicts

Definition 11.10 (LR(1) conflicts)

Let G = (N,X,P,S) € CFGy and I € LR(1)(G).
@ [ has a shift/reduce conflict if there exist A — ajaag, B — 3 € P

and x € Y. such that
[A — a1 - aag, z],[B — (-,a] € I.

@ I has a reduce/reduce conflict if there exist x € 3. and
A— a,B— € P with A# B or a # (8 such that
[A — a,z],[B — (,z] € 1.

G € LR(1) iff no I € LR(1)(G) contains conflicting items.
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Computing LR(1) Sets I

The computation of LR(0) sets (cf. Theorem 9.14) can be extended to
cover right contexts:

Theorem 11.12 (Computing LR(1) sets)

Let G = (N, X, P,S) € CFGy, be start separated by S" — S and
reduced.
QO LR(1)(e) is the least set such that
o [§'—-S,e] € LR(1)(¢) and
o if [A— -By,z] € LR(1)(¢), B— B € P, and y € fi(yx), then
[B— -08,y] € LR(1)(e).
Q@ LR(1)(aY) (x € X*,Y € X) is the least set such that
o if [A = Y ° Y’)’?vw] € LR(].)(O(),
then [A — 7Y - y2,2] € LR(1)(aY) and
o if [A = v - Bys,z] € LR(1)(aY), B— B € P, and y € fi(y2x), then
[B— -0,y] € LR(1)(aY).

4
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Computing LR(1) Sets II
Example 11.13 (cf. Example 11.7)

Grr:8'"—-S S—L=R|R L—*R|a R— L
LR(1)(Grr): [S" — -S,e] € LR(1)(e) [A — -Bv,z] € LR(1)(¢), B — B € P,y € fi(yz
= [B — -B,y] € LR(1)(¢)

Iy == LR(1)(e) : [ — .S, €] [S— -L=R,e] [S— -R,e] [L— -*R,=]
[L -, =] [R - 'L>E] [L — *R, 6} [L A 6}

Ii := LR(1)(S) : [S" — S €]

I5:= LR(1)(L) : [S— L-=R,e] [R— L€

I5:= LR(1)(R) : [S — R- €]

L= RO :  [L—*Re [L—+Re [R— L [R— L
L—+RH [L—-an [L—*Re [L—ad

I := LR(1)(a) : [L — a-,=] [L — a-,¢€]

Is := LR(1)(L=) : [S— L=-R,e] [R— -L,¢] [L — *R,e] [L — -a,¢]

I; := LR(1)(*R) : [L — *R-, =] [L — *R-, €]

Iy := LR(1)(*L) : [R — L-, =] [R— L-¢]

Iy ;== LR(1)(L=R) : [S — L=R- €]

Il := LR(1)(L=L): [R — L-¢|

It := LR(1)(L=%) : [L —*-Re] [R—-Le] [L — *R,e] [L — -a,¢

12 := LR(1)(L=a) : [
— LRO)(L=+R) : |
=
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The LR(1) Action Function

Definition 11.14 (LR(1) action function)

The LR(1) action function
act : LR(1)(G) x . — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifr(i)=A—aand [A—a,z]e]
shift — if [A— aq-zag,yl€landz e
accept if [S" — S.,eleTandz=¢

error  otherwise

act([,x) :=

For every G € CFGx,, G € LR(1) iff its LR(1) action function is well
defined.
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The LR(1) goto Function

The goto function is defined in analogy to the LR(0) case
(Definition ??). Likewise, it can be obtained using a powerset
construction.

Definition 11.16 (LR(1) goto function)

The function goto : LR(1)(G) x X — LR(1)(G) is determined by

goto(I,Y)=1" iff there exists v € X* such that
I =LR(1)(y) and I’ = LR(1)(7Y).

Again, act and goto form the LR(1) parsing table of G.
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The LR(1) Parsing Table

Example 11.17 (cf. Example 11.13)

LR(1)(GLR) act/goto|x. goto| N

* = a e |S L R

7 shift/ T} shift/T7 T I T

0 accept

I shift/ I} red 5

I3 red 2

I shift /I shift /I I

I red 4

I shift/ I/, shift /1., I, I

Il red 3

I red 5

I red 1

Io red 5

I, |shift/I], shift /1., I, Il

Iy red 4

Iig red 3

(empty = error /()
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The LR(1) Parsing Automaton I

Definition 11.18 (LR(1) parsing automaton)

The LR(1) parsing automaton is defined as in the LR(0) case (see
Definition ??), except for the transition relation:

shift: (aw,al, z) F (w,all’, z) if act(I,a) = shift and
goto(I,a) =1
reduce,: (aw,all ... I, 2)F (aw,all’, zi) if act(I,,a) = red 1,
(i) = A—Y;...Y,, and goto(I, A) =TI’
reduce.: (e,ally...I,,2) F (e,all’, zi) if act([,,e) = red i,
w(i)=A—Y;...Y,, and goto(I,A) =TI’
accept: (e,Ipl,2) F (g,e,20) if act([,e) = accept

errory: (aw,al, z) b (g,¢e, zerror) if act(I,a) = error

errore: (g,al,z) - (e,e, zerror) if act(l,e) = error
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The LR(1) Parsing Automaton II

Example 11.19 (cf. Example 11.13)

Grr:8"—-S(0) S—L=R|R(1,2) L—*R|a (3,4 R—L (5
LR(1)(GLr) act/goto[s, goto|n
* = a e |[SL R

15 shift/I; shift /17 7715 13| LR(1) parsing of a=x*a:
Ii accept] (a=*a, I} , € )
I shift/I§ red 5 b =*a, Iy1} , € )
I3 red 2 b ( =*a, 1)1} .4 )
I; shift/I} shift /I Is Ir| + ( =a, IjI}14 , 4 )
I red 4 F( o oa, INILILE, 4 )
I shift /11, shift/ 1, oI5| + (e, ILIGILI T, 4 )
I red 3 F( e LI, 44 )
Is red 5 B e RILIGIL T, 445 )
I red 1 F( e INIGIGT, 4453 )
Io red 5 F( e INIGIEL, 44535 )
I shift/ 1, shift/ I, Iolis| ( & Iyl , 445351 )
I, red 4 F( ee , 4453510)
Iis red 3

(empty = error /()
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