Compiler Construction

Lecture 11: Syntactic Analysis VII (LR(1) Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

© Repetition: LR(0) Parsing

Rm Compiler Construction Summer semester 2

LR(0) Items and Sets

Definition (LR(0) items and sets)

Let G = (N, X, P, S) € CFGyx, be start separated by S’ — S and
S =k aAw =, affow (ie., A— p152 € P).
@ [A — (1 (9] is called an LR(0) item for af;.
o Given v € X*, LR(0)(vy) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of ~.
o LR(0)(G) = {LR(0)(7) | 7 € X"}.

Definition (LR(0) conflicts)

Let G = (N,X, P,S) € CFGx, and I € LR(0)(G).
@ [has a shift/reduce conflict if there exist
A — ajaasg, B — € P such that
[A— a1 -aag],[B— p]€l.
@ [has a reduce/reduce conflict if there exist A - a,B — € P
with A # B or a # (3 such that

m Compiler Construction Summer semester 2008

The LR(0) Action Function

Definition (LR(0) action function)
The LR(0) action function

act : LR(0)(G) — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifr(i)=A—aand [A— o€l (i#0)
shift if [A— a1 -aag] €1

accept if [S"— S-]el

error if I =10

act(l) :=

For every G € CFGyx, G € LR(0) iff act is well defined.

m Compiler Construction Summer semester 2008 4

The LR(0) Parsing Automaton

Definition (LR(0) parsing automaton)

Let G = (N, X, P,S) € LR(0). The (deterministic) LR(0) parsing automaton
of G is defined by the following components.

@ Input alphabet ¥

@ Pushdown alphabet I' := LR(0)(G)

@ Output alphabet A := [p] U {0, error}

@ Configurations X* x I'* x A*

@ Initial configuration (w, Iy, &) where Iy := LR(0)(¢)
@ Final configurations {e} x {e} x A*

® Transitions:

shift: (aw,al,z) b (w,all’, z) if act(I) = shift and goto(I,a) = I’
reduce: (w,all...IL,,2) ¢ (w,all’, zi) if act(I,) = red,
w(i)=A—-Y:...Y,, and goto(I, A) =I'
accept: (g,1p1,2) F (g,e,20) if act(l) = accept
error: (w,al, z) - (e,e, zerror) if act(I) = error

m Compiler Construction Summer semester 2008

© SLR(1) Parsing

Rm Compiler Construction Summer semester 2

Conflicts in LR(0) Parsing

In practice: often G ¢ LR(0)

Example 11.1

Gup: E — E E — E+T|T
T ~T+F|F F— (E)|a|b

LR(0)(G ag) with conflicts:

Iy: [F'—--E] [E—-E+T] I,: [EE—E] [E— E-+T|
[E — T [T — TxF| I,: [E— T [T — T -*F]
[T—>-F] [F—>(E)] I3 : [T—>F]

[F' — -a] [— D]
L: [Fo (-B)]|E— E+T] Ir: [F—a]
[E — T] [T — TxF| Is: [F — b
[T — -F] [F— -(E)] I;: [E— E+-T] [T — ‘TxF]
[F — -a] [F — o] [T — -F] [F — -(B)]
[— -a [F' — -b]

Iy: [T >T* - F|[F—(E)] I: [F—o(E)] [E— E-+T]
[F — -a] [F — -b] Ly: [E— E+T] [T — T -*F]

I : [T—> T*F‘] 1o : [F — (E)]

Adding Lookahead 1

Goal: resolving conflicts by considering first input symbol

Observations:
o [A — ﬁl . aﬁg] S LR(O)(OLﬁl)
= S =} aAw =, afrafaw
7N
pushdown next input symbol

Thus: shift only on lookahead a
o [A— B] € LR(0)(af)
= S’ = adrw =, afBrw

7N

pushdown input
— z€fo(A) CX. (r =conlyifw=c¢)

Thus: reduce with A — (3 only if lookahead z € fo(A)

Rm Compiler Construction Summer semester 2008 8

Adding Lookahead 11

Example 11.2 (cf. Example 11.1)

Gag: E' — E (0)

E - BE+T|T (1,2 AE,N f?i?)
T - TxF|F (3,4) B |
F - (E)|a|b (5,6,7) 2E

o I, = {[E' - B, [E — E-+T]}:
@ accept on lookahead e
o shift on lookahead +
o I, ={[E — T[T — T - *F]}:
o red 2 on lookahead +/) /e
o shift on lookahead *
o Iy ={[E — E+T"|,[T — T *F]}:
o red 1 on lookahead +/) /e
@ shift on lookahead *

= SLR(1) parsing (Simple LR(1))

m Compiler Construction Summer semester 2008 9

The SLR(1) Action Function

Definition 11.3 (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) x . — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifn(i)=A— o, [A—a]el (i#0),
and x € fo(A)
act(I,x) := ¢ shift if [A— oy -zag] €l andz € X
accept if [8'— S]€landz=¢
error otherwise

Definition 11.4 (SLR(1) grammar)

A grammar G € CFGyx, has the SLR(1) property (notation:
G € SLR(1)) if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition ??) form the
SLR(1) parsing table of G.

m Compiler Construction Summer semester 2008 10

The SLR(1) Parsing Table

Iy: [E' — -E] [E— -E+T) L: [E' — E] [E — E - +T]

E — T T — -T*F| Ir: [E— T [T — T -*F]

T — -F] [F—-(BE)] I3: [T — F

F — -a] [F — b
L: [Fo (-B)] [E— -E+qT] Is: [F—a] Ag,N o)

E — T [T — -T*F| Is: [F — b I +{§}

T —-F| [F—-(B)] Ir: [E— E+-T|[T — -TxF| = ;{f; 35}

F = .3 [F — 1] T—.F] [F— (B)] I {+,*,),E}

F_),a] [F_)b] {7) 75}

Is: T —>T*-F|[F— - (E)] Is: [F— (E-)] |[E— E-+T)]

F — -a] [F — b Iio: [E— E+T] [T — T *F|
I : [T — T*F} Iio: [F — (E)}
LR(0)(GaEg) act goto

+ * () a b 5 E T F + x () a b

Iy shift shift shift I I I3 I Is Ig
I shift accept Iz
I red 2 shift red 2 red 2 Ig
I3 red4d red4 red 4 red 4
Iy shift shift shift Iy Io I3 Iy Is Ig
Is red6 red 6 red 6 red 6
Is red7 red7 red 7 red 7
I shift shift shift Lo I3 Iy Is Ig
Is shift shift shift I11 n Is Ig
Ig shift shift I I12
I10 red1 shift red 1 red 1 Ig
I11 red3 red3 red 3 red 3
T2 red5 redb red 5 red 5

Compiler Construction

Summer semester 2008

The SLR(1) Parsing Automaton

Definition 11.6 (SLR(1) parsing automaton)

The SLR(1) parsing automaton is defined as in the LR(0) case (see
Definition ??), except for the transition relation:

shift: (aw,al, z) F (w,all’, z) if act(I,a) = shift and
goto(I,a) =1
reduce,: (aw,ally ... I, 2)F (aw,all’, i) if act(I,,a) = red s,
(i) =A—Y7...Y,, and goto(I, A) =TI
reduce.: (e,ally...I,,2) b (e,all’, i) if act(l,,c) = red 1,
w(i)=A—Y;...Y,, and goto(I,A) =TI’
accept: (e,Ipl,2) F (g,e,20) if act([,e) = accept

errory: (aw,al, z) F (g,¢e, zerror) if act(I,a) = error

errore: (g,al,z) - (e,e, zerror) if act(l,e) = error

m Compiler Construction Summer semester 2008 12

© LR(1) Parsing

Rm Compiler Construction Summer semester 2

SLR(1) Conflicts

Problem: not all conflicts can be resolved using fo sets

Example 11.7

Grr:S'"—S S—L=R|R L—*R|a R—L
LR(0)(GLRr):
Iy := LR(0)(¢) : [S" — 5] [S — -L=R] [S — ‘R]
L=+ [L—a [R—-I
I := LR(0)(S) : [S" — S
Iy := LR(0)(L) : [S— L-=R] [R— L
Is:= LR(0)(R) : [S — R
Iy := LR(0)(*) : [L —-*-R] [R— L] [L — *R] [L — -a]
I = LR(0)(a): [L—a
Is ;== LR(0)(L=): [S— L=-R] [R— ‘L] [L — *xR] [L — -a]
I; := LR(0)(*R) : [L — *R]
Is:= LR(0)(*L): [R— L]
Iy :== LR(0)(L=R) : [S — L=R]
But: conflict in I not SLR(1)-solvable since = € fo(R)

Compiler Construction Summer semester 2008 14

LR(1) Items and Sets 1

Observation: not every element of fo(A) can follow every occurrence
of A
— refinement of LR(0) items by adding possible lookahead symbols

Definition 11.8 (LR(1) items and sets)

Let G = (N, X, P,S) € CFGy, be start separated by S — S.

o If S’ =% adaw =, affraw, then [A — [31 - 52, a] is called an
LR(1) item for of.

o If ' =% aA =, af1fs, then [A — (1 - [a,¢] is called an LR(1)
item for af;.

o Given v € X*, LR(1)(vy) denotes the set of all LR(1) items for ~,
called the LR(1) set (or: LR(1) information) of ~.

° LR(1)(G) :={LR(1)(v) |y € X*}.

m Compiler Construction Summer semester 2008 15

LR(1) Items and Sets II

Corollary 11.9

Q For every v € X*, LR(1)(7y) is finite.
Q@ LR(1)(G) is finite.
Q For every v € X*, LR(1)(y) “contains” LR(0)(v), i.e.,

{[A— B1-Ba] | [A— b1 B2,2] € LR(1)(7)} = LR(0)(v)-

Q [A— (1 P2,2] € LR(1)(G) = =z € fo(4)

m Compiler Construction Summer semester 2008 16

LR(1) Conflicts

Definition 11.10 (LR(1) conflicts)

Let G = (N,X,P,S) € CFGy and I € LR(1)(G).
@ [has a shift/reduce conflict if there exist A — ajaag, B — 3 € P

and x € Y. such that
[A — a1 - aag, z],[B — (-,a] € I.

@ I has a reduce/reduce conflict if there exist x € 3. and
A— a,B— € P with A# B or a # (8 such that
[A — a,z],[B — (,z] € 1.

G € LR(1) iff no I € LR(1)(G) contains conflicting items.

m Compiler Construction Summer semester 2008 17

Computing LR(1) Sets I

The computation of LR(0) sets (cf. Theorem 9.14) can be extended to
cover right contexts:

Theorem 11.12 (Computing LR(1) sets)

Let G = (N, X, P,S) € CFGy, be start separated by S" — S and
reduced.
QO LR(1)(e) is the least set such that
o [§'—-S,e] € LR(1)(¢) and
o if [A— -By,z] € LR(1)(¢), B— B € P, and y € fi(yx), then
[B— -08,y] € LR(1)(e).
Q@ LR(1)(aY) (x € X*,Y € X) is the least set such that
o if [A = Y ° Y’)’?vw] € LR(].)(O(),
then [A — 7Y - y2,2] € LR(1)(aY) and
o if [A = v - Bys,z] € LR(1)(aY), B— B € P, and y € fi(y2x), then
[B— -0,y] € LR(1)(aY).

4

m Compiler Construction Summer semester 2008 18

Computing LR(1) Sets II
Example 11.13 (cf. Example 11.7)

Grr:8'"—-S S—L=R|R L—*R|a R— L
LR(1)(Grr): [S" — -S,e] € LR(1)(e) [A — -Bv,z] € LR(1)(¢), B — B € P,y € fi(yz
= [B — -B,y] € LR(1)(¢)

Iy == LR(1)(e) : [— .S, €] [S— -L=R,e] [S— -R,e] [L— -*R,=]
[L -, =] [R - 'L>E] [L — *R, 6} [L A 6}

Ii := LR(1)(S) : [S" — S €]

I5:= LR(1)(L) : [S— L-=R,e] [R— L€

I5:= LR(1)(R) : [S — R- €]

L= RO : [L—*Re [L—+Re [R— L [R— L
L—+RH [L—-an [L—*Re [L—ad

I := LR(1)(a) : [L — a-,=] [L — a-,¢€]

Is := LR(1)(L=) : [S— L=-R,e] [R— -L,¢] [L — *R,e] [L — -a,¢]

I; := LR(1)(*R) : [L — *R-, =] [L — *R-, €]

Iy := LR(1)(*L) : [R — L-, =] [R— L-¢]

Iy ;== LR(1)(L=R) : [S — L=R- €]

Il := LR(1)(L=L): [R — L-¢|

It := LR(1)(L=%) : [L —*-Re] [R—-Le] [L — *R,e] [L — -a,¢

12 := LR(1)(L=a) : [
— LRO)(L=+R) : |
=

emester 2008 19

The LR(1) Action Function

Definition 11.14 (LR(1) action function)

The LR(1) action function
act : LR(1)(G) x . — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifr(i)=A—aand [A—a,z]e]
shift — if [A— aq-zag,yl€landz e
accept if [S" — S.,eleTandz=¢

error otherwise

act([,x) :=

For every G € CFGx,, G € LR(1) iff its LR(1) action function is well
defined.

m Compiler Construction Summer semester 2008 20

The LR(1) goto Function

The goto function is defined in analogy to the LR(0) case
(Definition ??). Likewise, it can be obtained using a powerset
construction.

Definition 11.16 (LR(1) goto function)

The function goto : LR(1)(G) x X — LR(1)(G) is determined by

goto(I,Y)=1" iff there exists v € X* such that
I =LR(1)(y) and I’ = LR(1)(7Y).

Again, act and goto form the LR(1) parsing table of G.

m' Compiler Construction Summer semester 2008

The LR(1) Parsing Table

Example 11.17 (cf. Example 11.13)

LR(1)(GLR) act/goto|x. goto| N

* = a e |S L R

7 shift/ T} shift/T7 T I T

0 accept

I shift/ I} red 5

I3 red 2

I shift /I shift /I I

I red 4

I shift/ I/, shift /1., I, I

Il red 3

I red 5

I red 1

Io red 5

I, |shift/I], shift /1., I, Il

Iy red 4

Iig red 3

(empty = error /()

Compiler Construction

Summer semester 2008

The LR(1) Parsing Automaton I

Definition 11.18 (LR(1) parsing automaton)

The LR(1) parsing automaton is defined as in the LR(0) case (see
Definition ??), except for the transition relation:

shift: (aw,al, z) F (w,all’, z) if act(I,a) = shift and
goto(I,a) =1
reduce,: (aw,all ... I, 2)F (aw,all’, zi) if act(I,,a) = red 1,
(i) = A—Y;...Y,, and goto(I, A) =TI’
reduce.: (e,ally...I,,2) F (e,all’, zi) if act([,,e) = red i,
w(i)=A—Y;...Y,, and goto(I,A) =TI’
accept: (e,Ipl,2) F (g,e,20) if act([,e) = accept

errory: (aw,al, z) b (g,¢e, zerror) if act(I,a) = error

errore: (g,al,z) - (e,e, zerror) if act(l,e) = error

m Compiler Construction Summer semester 2008

The LR(1) Parsing Automaton II

Example 11.19 (cf. Example 11.13)

Grr:8"—-S(0) S—L=R|R(1,2) L—*R|a (3,4 R—L (5
LR(1)(GLr) act/goto[s, goto|n
* = a e |[SL R

15 shift/I; shift /17 7715 13| LR(1) parsing of a=x*a:
Ii accept] (a=*a, I} , €)
I shift/I§ red 5 b =*a, Iy1} , €)
I3 red 2 b (=*a, 1)1} .4)
I; shift/I} shift /I Is Ir| + (=a, IjI}14 , 4)
I red 4 F(o oa, INILILE, 4)
I shift /11, shift/ 1, oI5| + (e, ILIGILI T, 4)
I red 3 F(e LI, 44)
Is red 5 B e RILIGIL T, 445)
I red 1 F(e INIGIGT, 4453)
Io red 5 F(e INIGIEL, 44535)
I shift/ 1, shift/ I, Iolis| (& Iyl , 445351)
I, red 4 F(ee , 4453510)
Iis red 3

(empty = error /()

Compiler Construction

Summer semester 2008

24

	Repetition: LR(0) Parsing
	SLR(1) Parsing
	LR(1) Parsing

