Compiler Construction

Lecture 12: Syntactic Analysis VIII (LALR(1) Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

Rm Compiler Construction Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

© Repetition: (S)LR(1) Parsing

Rm Compiler Construction Summer semester 2

The SLR(1) Action Function

Definition (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) x . — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifn(i)=A— o, [A—a]el (i#0),
and x € fo(A)
act(I,x) := ¢ shift if [A— oy -zag] €l andz € X
accept if [S'— S:]elandx=c¢
error otherwise

Definition (SLR(1) grammar)

A grammar G € CFGyx, has the SLR(1) property (notation:
G € SLR(1)) if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition 10.1) form
the SLR(1) parsing table of G.

m Compiler Construction Summer semester 2008

LR(1) Items and Sets 1

Observation: not every element of fo(A) can follow every occurrence
of A
— refinement of LR(0) items by adding possible lookahead symbols

Definition (LR(1) items and sets)
Let G = (N, X, P,S) € CFGy, be start separated by S — S.

o If S’ =% adaw =, affraw, then [A — [31 - 52, a] is called an
LR(1) item for of.

o If ' =% aA =, af1fs, then [A — (1 - [a,¢] is called an LR(1)
item for af;.

o Given v € X*, LR(1)(vy) denotes the set of all LR(1) items for ~,
called the LR(1) set (or: LR(1) information) of ~.

° LR(1)(G) :={LR(1)(v) |y € X*}.

m Compiler Construction Summer semester 2008 4

LR(0) vs. LR(1)

GLR : Sl — S S — L=R | R LR(I)(GLR) :
L—*R|a R—L I (e) : S — .S, €] [S — -L=R, €]
S — R, L — %R, =
LR(0)(GLR) : L — -a, =E] {R — -L,¢]]
Io(e) : S' — .5] [S — -L=R] L — *xRe] [L — -a¢]
S— R [L— =R L(S) : 5" = 8- ¢
n): [oog oH ?EJLDL)) SR Al b
1 : — - g — R,
A CInt St B: [L—*Re [L—* R
: — R R— -L,= R — -L,
Iig*)) L—x-R] [R— L] L — *R,= L — -a, =E]
L — *R] [L— -a] L — *R,e] |[L— -a,€]
Is(a) : L — a] IL(a) : L — a,=] L — a,é¢]
R el D(L=): [S— Lt Rl [R—Le]
— -k — -a — -k =
e (I, 1?, el [L— -ace
Ig(*L) 8 R — L’] (-
Ig(L=R) : |S — L=R']

Compiler Construction Summer semester 2008

The LR(1) Action Function

Definition (LR(1) action function)

The LR(1) action function

act : LR(1)(G) x . — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifr(i))=A—aand [A —a,z]e]
_Jshift if[A— o -zag,y €T and x € X
2l) 5= accept if [S"— S, elelTandz=¢
error otherwise

For every G € CFGyx, G € LR(1) iff its LR(1) action function is well
defined.

m Compiler Construction Summer semester 2008 6

© LALR(1) Parsing

Rm Compiler Construction Summer semester 2

LALR(1) Parsing

o Motivation: resolving conflicts using LR(1) too expensive

Rm Compiler Construction Summer semester 2

LALR(1) Parsing

o Motivation: resolving conflicts using LR(1) too expensive
o Example 11.7/11.13: |LR(0)(GLr)| = 11, |LR(1)(GLr)| = 15

Rm Compiler Construction Summer semester 2008 8

LALR(1) Parsing

@ Motivation: resolving conflicts using LR(1) too expensive

o Example 11.7/11.13: |LR(0)(GLr)| = 11, |LR(1)(GLr)| = 15

@ A. Johnstone, E. Scott: Generalised Reduction Modified LR
Parsing for Domain Specific Language Prototyping, HICSS 02,
TEEE, 2002, nttp://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

Grammar | |LR(0)(G)| |LR(1)(G)]

Ansi-C 381 1788

Pascal 368 1395

m' Compiler Construction Summer semester 2008 8

http://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

LALR(1) Parsing

@ Motivation: resolving conflicts using LR(1) too expensive

o Example 11.7/11.13: |LR(0)(GLr)| = 11, |LR(1)(GLr)| = 15

@ A. Johnstone, E. Scott: Generalised Reduction Modified LR
Parsing for Domain Specific Language Prototyping, HICSS 02,
TEEE, 2002, nttp://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

Grammar | |LR(0)(G)| |LR(1)(G)]

Ansi-C 381 1788

Pascal 368 1395

@ Observation: potential redundancy by containment of LR(0) sets
in LR(1) sets (cf. Corollary 11.9)

m' Compiler Construction Summer semester 2008 8

http://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

LALR(1) Parsing

@ Motivation: resolving conflicts using LR(1) too expensive

o Example 11.7/11.13: |LR(0)(Grg)| = 11, [LR(1)(GLR)| = 15

@ A. Johnstone, E. Scott: Generalised Reduction Modified LR
Parsing for Domain Specific Language Prototyping, HICSS 02,
TEEE, 2002, nttp://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

Grammar | |LR(0)(G)| |LR(1)(G)]

Ansi-C 381 1788

Pascal 368 1395

@ Observation: potential redundancy by containment of LR(0) sets
in LR(1) sets (cf. Corollary 11.9)

Definition 12.1 (LR(0) equivalence)

Let Irg : LR(1)(G) — LR(0)(G) be defined by

Iro(I) :={[A— B1-P] | [A— B1-Po,z] € 1}.
Two sets I1,I5 € LR(1)(G) are called LR(0) equivalent (notation:
Il ~0 IQ) if 11'0(]1) = lI'()(IQ).

m Compiler Construction Summer semester 2008

http://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

LR(0) Equivalence

Example 12.2 (cf. Example 11.7/11.13)

Grr: 8 — 8 S — L=R|R LR(1)(GLR) :
L—*R|a R—L Ij(e) : S — .S, €] [S — -L=R, €]
S — ‘R, €] [L — xR, =]

LR(0)(GLr) : L— -a-= [R— -L,é]
Io(e): [$'—-S] [S—-L=R] L — xR,e] [L— -aé

S — -R] [L — -*R] I/ (S) : S — S-€]

L—-a [R— L] o(@): [S—L-=Re][R— Lé
nes): [§—9] I;(R) : S Re]
I2(L) : S — L-=R] [R — L I (%) : L—*-R,=] [L—* R,
I3(R) : S — R R — -L,=] R — -L,¢]
INOE L—*-R] [R— L] L — %R, = L — a,=]

L — *R] |[L— -a] L — *R,e] [L— -a¢]
I5(a) : L —a] Ié(a) : L — a,=] L — a,eg]
Is(L=): [S— L=-R][R— L] I5(L=) : S — L=-R,e] [R — -L,é]

L— *R] [L— -2 L — *R,e] [L— -a,¢]
I7(*R) : [L — xR oy
Is(xL): [R— L/ i
Ig(L=R) : [S — L=R']

m Compiler Construction Summer semester 2008

LR(0) Equivalence

Example 12.2 (cf. Example 11.7/11.13)

GLR: S, —)S S—>L=R|R LR(I)(GLR)
L —-*R|a R—L Ij(e) - S — .S, ¢] [S — -L=R,¢]
S — R, L — xR, =
LR(0)(GLr) : L — -a, =€] %R — L,]
Io(e) : S’ — ,Si] PS’ — ~L=]R] L — *R,e] |[L— -a,¢]
S— R L — xR 1/(9) : S’ — S el
he. Gy W nE Boppamond
H — O H — N
I;EL)): g—>é]=R] [R— L IZ(*): L—*-R,=] [L— *-R,¢]
I3(R) : — R R— -L,= R— L,
1?(*) L—*-R] [R— L] L—>~*R,]= L—>-a,=€]]
e é — -*]R] [L — -] L — *R,e] [L— -a,¢]
a): — a- I’ : L—a,= L— a,
(L) : [S— L= R][R—I] IZE?:L) . 5ol ~]R, e [R — éL,Es]]
L — *R] [L— -3) L — *R, €] L — -ae]
nGn: R z) e S s]
° — L : — L, = — L, €
Io(L=R) : [S — L=R/] Ig(L=R) TGS
— [,; ~0 [{1 I;O(L=L)' R_>L75]
' (L=%): [L—x-Rye] [R— -L,el
(L
(L

m Compiler Construction Summer semester 2008

LR(0) Equivalence

Example 12.2 (cf. Example 11.7/11.13)

Grr: S' =S S — L=R|R LR(1)(GLR) :
L—*R|a R—L Ij(e) - S — .S, ¢] [S — -L=R,¢]
S — R, L — *R,=
LR(0)(GLR) : L — -a, =€] %R — -L,e]]
Io(e) : S/ — ,Si] PS’ — ~L=]R] L — *R,e] |[L— -a,¢]
S — R L — *R I7(S) S — S ¢l
he. Gy W nE Boppamond
H — O H — N
I;EL)): g—>é]=R] [R— L]Z(*); L—*-R=] [L— *-R,¢]
I3(R) : — R R— .L,= R — L,
IZ(*): L—*-R] [R— L] L—>.*R,]= L—)-a7=€]]
®) é = *]R] [L — 4] L — -xR,e] [L— -a¢]
I5(a) : — a- IL : L — .= L — o
Io(L=): [S— L= R [R— I] AT G S e
L — *xR] [L— -3) L — *R, €] L — -a¢]
nGn: R o) e S s]
: — o o IO = 5 E
Io(L=R) : [S — L=R/] Ig(L=R) TG
— I‘,} ~0 Iil I}O(L=L) : R_>L75]
o 1 I (L=x): [L—x*-Re] [R— Lk
L — *R,e] [L— -a,¢]
(L
(L

m Compiler Construction Summer semester 2008

LR(0) Equivalence

Example 12.2 (cf. Example 11.7/11.13)

GLR: S, —)S S—>L=R|R LR(I)(GLR)
L—*R|a R—L Ij(e) - S" — .S, €] [S — -L=R, €]
S — R, L — xR, =
LR(0)(GLr) : L — -a, =€] %R — L,]
Io(e) : g’ — Si] {S — ~L=]R] L — *R,e] |[L— -a,¢]
— R L — xR 1/(9) : S — S €]
wo, [ood) BEE g B s
5 — D : —> N
: —R R— L= [R— L,
L(): [L—*R [R—-I] Lo whn (Lo
e é — -*]R] [L — -] L — *R,e] [L— -a,¢]
: —a It : L —a,= L — a.,
To(L=): [S— L= R] [R— -] IZE?:L) . 5ol ~]R, e [R — éL,Es]]
L — *R] [L— -3 L — *R, €] L — -ae]
rem: (L2 pem: EZars 22
: — L- . — L= — L,
Io(L=R) : [S — L=R/] Ig(L=R) TG
I .

Compiler Construction Summer semester 2008

LR(0) Equivalence

Example 12.2 (cf. Example 11.7/11.13)

GLR: S, — S S—>L=R|R LR(I)(GLR)
L—*R|a R—L Ij(e) - S" — .S, €] [S — -L=R, €]
S — R, L — *R,=
LR(0)(GLR) : L — -a, =€] %R — -L,¢]]
Io(e) : S/ — ,Si] PS’ — ~L=]R] L — *R,e] |[L— -a,¢]
S — R L — *R 1/(9) : S’ — S-,¢€]
he. Gy W nE Boppamond
H — O H — N
I;EL)f s Ry 0): [Lo*Re] [Rl
I3(R) : — R R— .L,= R — L,
Lw: [L—sR [R—-I] Lo whn (Lo
I () é_) *]I%] [L - 'a] L — xR, E] L — -a, E]
a): — a- I’ : L—a,= L— a,
To(L=) S5 e A Bos: o raEo Ty
— % — a = =
B B L *R: el [L— -ac
[g(*L) 5 R — L] =
Io(L=R) : [S — L=R]
— I‘,} ~Q
Iz ~o I
n
L~

m Compiler Construction Summer semester 2008

LALR(1) Sets 1

For every G € CFGy, |[LR(1)(G)/ ~o | = |[LR(0)(G)|.

Rm Compiler Construction Summer semester 2008 10

LALR(1) Sets 1

For every G € CFGy, |[LR(1)(G)/ ~o | = |[LR(0)(G)|.

Idea: merge LR(0) equivalent LR(1) sets (maintaining the lookahead
information, but possibly introducing conflicts)

Rm Compiler Construction Summer semester 2008 10

LALR(1) Sets 1

For every G € CFGy, |[LR(1)(G)/ ~o | = |[LR(0)(G)|.

Idea: merge LR(0) equivalent LR(1) sets (maintaining the lookahead
information, but possibly introducing conflicts)

Definition 12.4 (LALR(1) sets)

Let G € CFGx.

@ An information I € LR(1)(G) determines the LALR(1) set
Ulll~o = U{I" € LR()(G) | I ~o I}
@ The set of all LALR(1) sets of G is denoted by LALR(1)(G).

m Compiler Construction Summer semester 2008 10

LALR(1) Sets 1

For every G € CFGy, |[LR(1)(G)/ ~o | = |[LR(0)(G)|.

Idea: merge LR(0) equivalent LR(1) sets (maintaining the lookahead
information, but possibly introducing conflicts)

Definition 12.4 (LALR(1) sets)

Let G € CFGx.

@ An information I € LR(1)(G) determines the LALR(1) set
Ulll~o = U{I" € LR()(G) | I ~o I}
@ The set of all LALR(1) sets of G is denoted by LALR(1)(G).

Remark: by Corollary 12.3, |LALR(1)(G)| = |LR(0)(G)]
(but LALR(1) sets provide additional lookahead information)

m Compiler Construction Summer semester 2008

LALR(1) Sets 1I

Example 12.5 (cf. Example 12.2)

Grr:S'"—-S S—L=R|R L—*R|a R—L

LR(O)(GLR) : LALR(l)(GLR) :

Iy(e) : S —-S] [S—-L=R] Ij:=1I: [S" — -S, €] [S — -L=R, €]
S — -R] [L — *R] [S — ‘R, €] [L — *R,=/¢]
L — -a] [R — -L] [L —-a,=/e] [R—-L,¢]

L(S): [9—29] I':=1: [S" — S €]

I(L): [S— L-=R][R— L] I =1 [S— L-=R,e] [R— L-¢]

I3(R): [S— R] Iy =1 [S— R €]

Is(*): [L—*-R] [R— L] I{ =14Vl : [L—>* R=/e] [R—L,=/e
L — *R] [L— -4 L — xR,=/e] [L — -a,=/¢]

Is(a): [L—a] If ==I5U Ly : [L — a,=/e]

Is(L=): [S— L=-R][R — -L] If =1Ig: S — L=-R,e] [R— -L,¢]
L — *R] [L — -4 L — *R, €] [L — -a,¢€]

I(xR) : [L — *xR] If .= Ulls: [L — *R-,=/¢]

Is(xL): [R— L] I =TI ULy : [R— L-,=/e

Is(L=R) : [S — L=R'] IY =15 S — L=R-,¢]

m Compiler Construction Summer semester 2008 11

The LALR(1) Action Function

The LALR(1) action function is defined in analogy to the LR(1) case
(Definition 11.14).

Definition 12.6 (LALR(1) action function)

The LALR(1) action function

act : LALR(1)(G) x Xz — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifr(i)=A—aand [A— a,z]€l
shift if [A— oy -zag,yl€land z € X
accept if [S"— S, elelTandz=¢
error otherwise

act([,z) :=

m Compiler Construction Summer semester 2008 12

The LALR(1) Action Function

The LALR(1) action function is defined in analogy to the LR(1) case
(Definition 11.14).

Definition 12.6 (LALR(1) action function)

The LALR(1) action function

act : LALR(1)(G) x Xz — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifr(i)=A—aand [A— a,z]€l
shift if [A— oy -zag,yl€land z € X
accept if [S"— S, elelTandz=¢
error otherwise

act([,z) :=

Definition 12.7 (LALR(1) grammar)

A grammar G € CFGx, has the LALR(1) property (notation:
G € LALR(1)) if its LALR(1) action function is well defined.

m Compiler Construction Summer semester 2008

The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)
Grr € LALR(1)

Rm Compiler Construction Summer semester 2008 13

The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)

GLRr € LALR(l)

Also the LR(1) goto function (Definition 11.16) carries over to the
LALR(1) case. Reason:

Let G € CFGx, and I1,1s € LR(1)(G) such that Iy ~o Is. Then, for
every Y € X, goto(I1,Y) ~o goto(l2,Y).

m' Compiler Construction Summer semester 2008 13

The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)

GLRr € LALR(l)

Also the LR(1) goto function (Definition 11.16) carries over to the
LALR(1) case. Reason:

Let G € CFGx, and I1,1s € LR(1)(G) such that Iy ~o Is. Then, for
every Y € X, goto(I1,Y) ~o goto(l2,Y).

Again, act and goto form the LALR(1) parsing table of G.

m' Compiler Construction Summer semester 2008

The LALR(1) Parsing Table

Example 12.10 (cf. Example 12.5)

LALR(1)(GLR) act/goto|x, goto| N
* = a e |S L R
17 shift/T7 shift/I7 7 I 10
i accept
I} shift/I{ red 5
I red 2
I shift/ I shift/ 17 I
I red 4 red 4
I shift/ I/ shift/ I I
I red 3 red 3
Iy red 5 red 5
I red 1
(empty = error/0)

m Compiler Construction Summer semester 2008 14

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G:5—S S—aAd|bBd|aBe|bde A—c B—c

Compiler Construction Summer semester 2008 15

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G:5—S S—aAd|bBd|aBe|bde A—c B—c

LR(1)(e) : S’ — -S,e] [S—-adAd,e] [S— -bBd,¢] [S — -aBe,¢]
S — -bAe,¢]

LR(1)(S): [S'— S €]

LR(1)(a) : S —a-Ad,e] [S— a-Be,g] [A— c,d] [B— -c,e]

LR(1)(b) : S —b-Bde| [S—b-Aee] [B— c,d [4A— -c,e]

LR(1)(ad): [S— aA-d,¢] LR(1)(aB): [S — aB-e,¢]

LR(1)(ac): [A— c-,d] [B — ce]

LR(1)(bB): [S —DbB-d,¢] LR(1)(bA): [S —DbA-e,¢]

LR(1)(bc): [B — c-,d] [A — c-, €]

LR(1)(add) : [S — aAd-,€] LR(1)(aBe): [S — aBe-,¢]

LR(1)(bBd) : [S — bBd-,¢] LR(1)(bAe) : [S — bAe-, €]

Compiler Construction Summer semester 2008 15

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G:5—S S—aAd|bBd|aBe|bde A—c B—c

LR(1)(e) : S’ — -S,e] [S—-adAd,e] [S— -bBd,¢] [S — -aBe,¢]
S — -bAe,¢]

LR(1)(S): [S'— S €]

LR(1)(a) : S —a-Ad,e] [S— a-Be,g] [A— c,d] [B— -c,e]

LR(1)(b) : S —b-Bde| [S—b-Aee] [B— c,d [4A— -c,e]

LR(1)(ad): [S— aA-d,¢] LR(1)(aB): [S — aB-e,¢]

LR(1)(ac): [A— c-,d] [B — ce]

LR(1)(bB): [S —DbB-d,¢] LR(1)(bA): [S —DbA-e,¢]

LR(1)(bc): [B — c-,d] [A — c-, €]

LR(1)(add) : [S — aAd-,€] LR(1)(aBe): [S — aBe-,¢]

LR(1)(bBd) : [S — bBd-,¢] LR(1)(bAe) : [S — bAe-, €]

no conflicts = G € LR(1)

Compiler Construction Summer semester 2008 15

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G:5—S S—aAd|bBd|aBe|bde A—c B—c

LR(1)(e) : S’ — -S,e] [S—-adAd,e] [S— -bBd,¢] [S — -aBe,¢]
S — -bAe,¢]

LR(1)(S): [S'— S €]

LR(1)(a) : S —a-Ad,e] [S— a-Be,g] [A— c,d] [B— -c,e]

LR(1)(b) : S —b-Bde| [S—b-Aee] [B— c,d [4A— -c,e]

LR(1)(ad): [S— aA-d,¢] LR(1)(aB): [S — aB-e,¢]

LR(1)(ac): [A— c-,d] [B — c-e]

LR(1)(bB): [S —DbB-d,¢] LR(1)(bA): [S —DbA-e,¢]

LR(1)(bc): [B — c-,d] [A — c-, €]

LR(1)(add) : [S — aAd-,€] LR(1)(aBe) : [S — aBe-,¢]

LR(1)(bBd) : [S — bBd-,¢] LR(1)(bAe) : [S — bAe-, €]

no conflicts = G € LR(1)

LR(1)(ac) ~o LR(1)(bc), but LR(1)(ac)U LR(1)(bc) has conflicts
= G ¢ LALR(1)

Compiler Construction Summer semester 2008

Efficient Construction of LALR(1) Parsers

Naive algorithm to construct LALR(1) parser for G € CFGx:
@ Construct LR(1)(G)
© Determine and merge LR(0) equivalent LR(1) sets

Problem: no reduction of peak space requirement

Rm Compiler Construction Summer semester 2008 16

Efficient Construction of LALR(1) Parsers

Naive algorithm to construct LALR(1) parser for G € CFGx:
@ Construct LR(1)(G)
© Determine and merge LR(0) equivalent LR(1) sets

Problem: no reduction of peak space requirement

Idea of improved algorithm (see Aho/Lam/Sethi/Ullman: Compilers:
Principles, Techniques, and Tools, 2nd ed., p. 270ff):

@ Represent each set of items by its kernel, i.e., by the items of the
form [S" — -S,e] or [A — (1 - B2, x| where 31 # ¢

@ Construct LALR(1) kernels from LR(0) kernels similarly to LR(1)
items

© Compute LALR(1) sets by taking the e-closure

(applied in yacc parser generator)

Rm Compiler Construction Summer semester 2008 16

© Bottom-Up Parsing of Ambiguous Grammars

Rm Compiler Construction Summer semester 2

Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

Rm Compiler Construction Summer semester 2008 18

Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGx is ambiguous, then G ¢ J,,cn LR(K).

Rm Compiler Construction Summer semester 2008 18

Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGsx is ambiguous, then G & oy LR(K).

Proof.
Assume that there exist ¥ € N and G € LR(k) such that G is ambiguous.

m Compiler Construction Summer semester 2008 18

Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGsx is ambiguous, then G & oy LR(K).

Proof.

Assume that there exist ¥ € N and G € LR(k) such that G is ambiguous.
Hence there exists w € L(G) with different right derivations. Let cAv be the
last common sentence of the two derivations (i.e., 5 # §'):

=, afv =5 w
* T T
S =F adv {:>T aBlv =+ w

m Compiler Construction Summer semester 2008 18

Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGsx is ambiguous, then G & oy LR(K).

Proof.

Assume that there exist ¥ € N and G € LR(k) such that G is ambiguous.
Hence there exists w € L(G) with different right derivations. Let cAv be the
last common sentence of the two derivations (i.e., 5 # §'):

=, afv =>Fw

=, af'v=;w

But since firsty (v) = firsty(v) for every v € ¥*, Definition 9.8 yields that

B = 3. Contradiction O

S = aAv

4

m Compiler Construction Summer semester 2008 18

Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGy is ambiguous, then G & |J,cny LR(K).

Proof.

Assume that there exist ¥ € N and G € LR(k) such that G is ambiguous.
Hence there exists w € L(G) with different right derivations. Let cAv be the
last common sentence of the two derivations (i.e., 5 # §'):

=, afv =>Fw

=, af'v=;w

But since firsty (v) = firsty(v) for every v € ¥*, Definition 9.8 yields that

B = 3. Contradiction O

S = aAv

4

However ambiguity is a natural specification method which generally avoids

involved syntactic constructs.
m Compiler Construction Summer semester 2008 18

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)
G:E - E E— E+E|E*E|a

m Compiler Construction Summer semester 2008 19

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)

G:E -E E— E+E|E*E|a
Precedence: * > + Associativity: left
(thus: ataxa+a :=(a+(a*a))+a)

m Compiler Construction Summer semester 2008

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)
G:E - FE E — E+E | E*E | a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E| [E — -a]
I :=LR(O)(E): |[E'—E] [E—E +E|[E— E-*E]

I := LR(0)(a) : [E — a‘]

I := LR(0)(E+): [E — E+-E|] [E — -E+E| [E — -E+E] [E — -3
I, := LR(0)(E*): [E — E*x-E|[E — -E+E] [E — -ExE]| [E — -2
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]

m Compiler Construction Summer semester 2008 19

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)
G:E - FE E — E+E | E*E | a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E| [E — -a]
I .= LR(0)(E) : [E' — E] [E — E-+E] [E — E -*E]
L=IR(0)a): [E—al

I3:=LR(0)(E+): |[E — E+-E|[E— -E+E| [E — -E*E] [E — -a]
Iy := LR(0)(E*): [E — Ex-E] [E — E+E] [E — ExE] [E — -]
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]

Conflicts: I1: SLR(1)-solvable (reduce on e, shift on +/*)

m Compiler Construction Summer semester 2008 19

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)
G:E - FE E — E+E | E*E | a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E| [E — -a]
I :=LR(O)(E): |[E'—E] [E—E +E|[E— E-*E]
L=IR(0)a): [E—al

I .= LR(0)(E+): |E — E+-E| [E — -E+E| [E — -E+E] [E — -3
I,:= LR(0)(E*): [E — E*x-E][E — E+E] [E — -E*E] [E — -a]
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]

Conflicts: I1: SLR(1)-solvable (reduce on ¢, shift on +/*)
I5, Is: not SLR(1)-solvable (+, * € fo(FE))

m Compiler Construction Summer semester 2008 19

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)
G:E - FE E — E+E | E*E | a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E| [E — -a]
I ;= LR(0)(E) : [E' — E] [E - E-+E| [E — E -*E]
L=IR(0)a): [E—al

I .= LR(0)(E+): |E — E+-E| [E — -E+E| [E — -E+E] [E — -3
I,:= LR(0)(E*): [E — E*x-E][E — E+E] [E — -E*E] [E — -a]
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - *E]

Conflicts: I1: SLR(1)-solvable (reduce on e, shift on +/*)
I5, Is: not SLR(1)-solvable (+,* € fo(FE))
Solution:
Is: * >+ = act([5, *) := shift, + left assoc. = act(l5,+) :=red1

m Compiler Construction Summer semester 2008 19

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)
G:E - FE E — E+E | E*E | a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E| [E — -a]
I ;= LR(0)(E) : [E' — E] [E - E-+E| [E — E -*E]
L=IR(0)a): [E—al

I .= LR(0)(E+): |E — E+-E| [E — -E+E| [E — -E+E] [E — -3
I,:= LR(0)(E*): [E — E*x-E][E — E+E] [E — -E*E] [E — -a]
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]

Conflicts: I1: SLR(1)-solvable (reduce on ¢, shift on +/*)
I5, Is: not SLR(1)-solvable (+,* € fo(FE))

Solution:

Is: x>+ = act([5,*) :

Is: * >+ = act(lg, +) :

shift, + left assoc. == act([5,+) :
red 2, * left assoc. = act([g, *) :

m' Compiler Construction

Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)
G:5—>8 S—iSeS|iS|a

m Compiler Construction Summer semester 2008 20

Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)
G:5—>8 S—iSeS|iS|a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

m Compiler Construction Summer semester 2008

Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)
G:5—>8 S—iSeS|iS|a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(O)(G)
Iy := LR(0)(¢) : S’ — .9] [S — -iSeS] [S — i8]
S — -a
I := LR(0)(S) : S — S]]
I:=LR(0)(i): [S—i-SeS][S—i-S] [S — -iSeS]

[
[
|
[S — -iS] [S — -a]
I3 := LR(0)(a) : [S — a
Iy ;= LR(0)(iS): [S— iS-eS][S — i5]
I5 := LR(0)(iSe): [S — iSe-S][S — -iSeS] [S — -i5]
[S — -]
[

Is := LR(0)(iSeS) : [S — iSeS"]

m Compiler Construction Summer semester 2008

Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)
G:5—>8 S—iSeS|iS|a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):

Iy := LR(0)(¢) : {S’ — 5] [S — -iSeS] [S — i8]

I := LR(0)(S) : [

I = LR(0)(1): [S—1-8eS|[S—1-9] [S— -iSeS]
[S — -iS] [S — -a]

I3 := LR(0)(a) : [S — a]

I, := LR(0)(iS): [S—1iS5-eS][S — iS]

I5 := LR(0)(iSe): [S — iSe-S][S — -iSeS] [S — -i5]
[
[
(

Is := LR(0)(iSeS) : [S — iSeS']

Compiler Construction Summer semester 2008 20

Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)
G:5—>8 S—iSeS|iS|a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):

Iy := LR(0)(¢) : {S’ — 5] [S — -iSeS] [S — i8]

I := LR(0)(S) : [

I = LR(0)(1): [S—1-8eS|[S—1-9] [S— -iSeS]
[S — -iS] [S — -a]

I3 := LR(0)(a) : [S — a]

I, := LR(0)(iS): [S—1iS5-eS][S — iS]

I5 := LR(0)(iSe): [S — iSe-S][S — -iSeS] [S — -i5]
[
[
(

Is := LR(0)(iSeS) : [S — iSeS']

Solution (1): act(ly,e) := shift

m Compiler Construction Summer semester 2008 20

@ Generating Parsers Using yacc

Rm Compiler Construction Summer semester 2

The yacc Tool

Usage of yacc (“yet another compiler compiler”):

yacc [f11lex
spec.y — y.tab.c lex.yy.c — spec.1l
yacc specification Parser source Scanner source [£f]11lex specification
Leel
a.out

Executable LALR(1) parser

Rm Compiler Construction Summer semester 2008 22

The yacc Tool

Usage of yacc (“yet another compiler compiler”):

yacc [f11lex
spec.y — y.tab.c lex.yy.c — spec.1l
yacc specification Parser source Scanner source [£f]11lex specification
Leel
a.out

Executable LALR(1) parser

Like for [£]lex, a yacc specification is of the form

Declarations (optional)
il

Rules

il

Augziliary procedures (optional)

Rm Compiler Construction Summer semester 2008 22

yacc Specifications

Declarations:

@ Token definitions: %token Tokens

@ Not every token needs to be declared (°+’, ’=?, ...)
@ Start symbol: %start Symbol (optional)

@ C code for declarations etc.: %{ Code %}

Compiler Construction Summer semester 2008 23

yacc Specifications

Declarations: @ Token definitions: %token Tokens
@ Not every token needs to be declared (°+’, ’=?, ...)
@ Start symbol: %start Symbol (optional)
@ C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

@ A—ay|ag]...|a, represented as
A : a1 {Action;}
| as {Actions}

| a, {Action,};
@ Semantic actions = C statements for computing attribute
values
@ $$ = attribute value of A
@ $i = attribute value of ith symbol on right-hand side
@ Default action: $$ = $1

Rm Compiler Construction Summer semester 2008 23

yacc Specifications

Declarations: @ Token definitions: %token Tokens
@ Not every token needs to be declared (°+’, ’=?, ...)
@ Start symbol: %start Symbol (optional)
@ C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

@ A—ay|ag]...|a, represented as
A : a1 {Action;}
| as {Actions}

| a, {Action,};
@ Semantic actions = C statements for computing attribute
values
@ $$ = attribute value of A
@ $i = attribute value of ith symbol on right-hand side
@ Default action: $$ = $1

Auxiliary procedures: scanner (if not [£f]1lex), error routines, ...

Rm Compiler Construction Summer semester 2008 23

Example: Simple Desk Calculator 1

%{/* SLR(1) grammar for arithmetic expressions (Example 11.1) */
#include <stdio.h>
#include <ctype.h>

3

%token DIGIT

Dot

line : expr ’\n’ { prlntf("yd\n" $1); };
expr : expr ’+’ term {$$ =91+ $3; }
| term {$$ =81, };
term : term ’*’ factor { $$ = $1 * $3; }
| factor { $$ = $1; };
factor : ’(’ expr ’)’ { $$ = $2; }
| DIGIT { 88 = $1; };
h
yylex() {
int c;
= getchar();
if (isdigit(c)) yylval = ¢ - ’0’; return DIGIT;
return c;

m' Compiler Construction Summer semester 2008

Example: Simple Desk Calculator 11

> yacc calc.y

> cc y.tab.c -1y
> a.out

2+3

5

> a.out

2+3%*5

17

Rm Compiler Construction Summer semester 2008 25

An Ambiguous Grammar I

%{/* Ambiguous grammar for arithm. expressions (Ex. 12.13) */
#include <stdio.h>
#include <ctype.h>

h}

%token DIGIT

ho

line : expr ’\n’ { printf ("%d\n", $1); };
expr : expr ’+’ expr {83 =981+ 93; }
| expr ’*’ expr { $8 = $1 * $3; }
| DIGIT {$$=91; };
he
yylex(O {
int c;

c = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}
return c;

m' Compiler Construction Summer semester 2008

An Ambiguous Grammar II

Invoking yacc with the option -v produces a report y.output:

State 8

2 expr: expr . ’+’ expr
2 | expr ’+’ expr .
3 | expr . ’*’ expr

’+’> shift and goto state 6
’*’ shift and goto state 7

Y42 [reduce with rule 2 (expr)]

%2 [reduce with rule 2 (expr)]
State 9

2 expr: expr . ’+’ expr

3 | expr . ’*’ expr

3 | expr ’*’ expr .

’+’> shift and goto state 6
’*’ shift and goto state 7

Y42 [reduce with rule 3 (expr)]
%2 [reduce with rule 3 (expr)]

m' Compiler Construction Summer semester 2008

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification

Rm Compiler Construction Summer semester 2008 28

Conflict Handling in yacc

Default conflict resolving strategy in yacc:
reduce/reduce: choose first conflicting production in specification

shift /reduce: prefer shift

@ resolves dangling-else ambiguity (Example 12.14) correctly
@ also adequate for * after sum (Example 12.13) and for
right-associative binary operators
@ not appropriate for left-associative binary operators
(= reduce; see Example 12.13)

Rm Compiler Construction Summer semester 2008 28

Conflict Handling in yacc

Default conflict resolving strategy in yacc:
reduce/reduce: choose first conflicting production in specification
shift /reduce: prefer shift

@ resolves dangling-else ambiguity (Example 12.14) correctly
@ also adequate for * after sum (Example 12.13) and for
right-associative binary operators
@ not appropriate for left-associative binary operators
(= reduce; see Example 12.13)

For ambiguous grammar:

> yacc ambig.y

conflicts: 4 shift/reduce
> cc y.tab.c -1y

> a.out

2+3%5

17

> a.out

2%3+5

16

Rm Compiler Construction Summer semester 2008 28

Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

hlleft|right] Operators;
hlleft|right] Operators,

@ operators in one line have given associativity and same precedence

@ precedence increases over lines

Rm Compiler Construction Summer semester 2008 29

Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

hlleft|right] Operators;
hlleft|right] Operators,

@ operators in one line have given associativity and same precedence

@ precedence increases over lines

Example 12.15
hleft 47 =2
%1eft)%)/}
hright °°°

-~

(right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)

Compiler Construction Summer semester 2008 29

Precedences and Associativities in yacc 11

%{/* Ambiguous grammar for arithmetic expressions
with precedences and associativities */
#include <stdio.h>
#include <ctype.h>
h}
%token DIGIT
%hleft >+’
%hleft %’
i
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { 8% =81+ 9$3; }
| expr ’*’ expr {$$ =81 % $3; }
| DIGIT { 8% = 81; };

Tt
yylex() {
int c;
¢ = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}
return c;

m' Compiler Construction Summer semester 2008

Precedences and Associativities in yacc 111

> yacc nonambig.y
> cc y.tab.c -1y
> a.out

2%3+5

11

> a.out

2+3%*5

17

Rm Compiler Construction Summer semester 2008 31

© Expressiveness of LL and LR Grammars

Rm Compiler Construction Summer semester 2

Overview of Grammar Classes

LL(1) G4y (Ex. 7.8)
Moreover:
LL(0) o LL(K) S LL(k+1)
(singletons) for every k € N
® LR(k) & LR(k+1)
LR(0) oG (Ex. 9.15) for every k € N

o LL(k) C LR(k)
for every k € N

SLR(1) eGap (Ex. 11.5)

LALR(1) eGprp (Ex. 12.5)

LR(1) oG (Ex. 12.11)

Rm Compiler Construction Summer semester 2008 33

Overview of Language Classes

(cf. O. Mayer: Syntaxanalyse, BI-Verlag, 1978, p. 409ff)

L(LL(1))
REC Moreover:
o L(LL(k)) S
L(LL(0)) L(LL(k+1)) S
L(LR(1))
’ _ for every k € N
L(LE(0)) o L(LR(k)) =
L(SLR(1)) = L(LALR(1)) = L(LR(1))
L(LR(1)) = det. CFL for every k > 1
unambiguous CFL
CFL

Rm Compiler Construction Summer semester 2008 34

	Repetition: (S)LR(1) Parsing
	LALR(1) Parsing
	Bottom-Up Parsing of Ambiguous Grammars
	Generating Parsers Using yacc
	Expressiveness of LL and LR Grammars

