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The SLR(1) Action Function

Definition (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) x . — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifn(i)=A— o, [A—a]el (i#0),
and x € fo(A)
act(I,x) := ¢ shift  if [A— oy -zag] €l andz € X
accept if [S'— S:]elandx=c¢
error  otherwise

Definition (SLR(1) grammar)

A grammar G € CFGyx, has the SLR(1) property (notation:
G € SLR(1)) if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition 10.1) form
the SLR(1) parsing table of G.
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LR(1) Items and Sets 1

Observation: not every element of fo(A) can follow every occurrence
of A
— refinement of LR(0) items by adding possible lookahead symbols

Definition (LR(1) items and sets)
Let G = (N, X, P,S) € CFGy, be start separated by S — S.

o If S’ =% adaw =, affraw, then [A — [31 - 52, a] is called an
LR(1) item for of.

o If ' =% aA =, af1fs, then [A — (1 - [a,¢] is called an LR(1)
item for af;.

o Given v € X*, LR(1)(vy) denotes the set of all LR(1) items for ~,
called the LR(1) set (or: LR(1) information) of ~.

° LR(1)(G) :={LR(1)(v) |y € X*}.
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LR(0) vs. LR(1)

GLR : Sl — S S — L=R | R LR(I)(GLR) :
L—*R|a R—L I (e) : S — .S, €] [S — -L=R, €]
S — R, L — %R, =
LR(0)(GLR) : L — -a, =E] {R — -L,¢] ]
Io(e) : S' — .5] [S — -L=R] L — *xRe] [L — -a¢]
S— R [L— =R L(S) : 5" = 8- ¢
n): [oog oH ?EJLDL)) SR Al b
1 : — - g — R,
A CInt St B:  [L—*Re [L—* R
: — R R— -L,= R — -L,
Iig*)) L—x-R] [R— L] L — *R,= L — -a, =E]
L — *R] [L— -a] L — *R,e] |[L— -a,€]
Is(a) : L — a] IL(a) : L — a,=] L — a,é¢]
R el D(L=):  [S— Lt Rl [R—Le]
— -k — -a — -k =
e ( I, 1?, el [L— -ace
Ig(*L) 8 R — L’] ( -
Ig(L=R) : |S — L=R']
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The LR(1) Action Function

Definition (LR(1) action function)

The LR(1) action function

act : LR(1)(G) x . — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifr(i))=A—aand [A —a,z]e]
_Jshift  if[A— o -zag,y €T and x € X
2l ) 5= accept if [S"— S, elelTandz=¢
error  otherwise

For every G € CFGyx, G € LR(1) iff its LR(1) action function is well
defined.
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© LALR(1) Parsing
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LALR(1) Parsing

o Motivation: resolving conflicts using LR(1) too expensive
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LALR(1) Parsing

o Motivation: resolving conflicts using LR(1) too expensive
o Example 11.7/11.13: |LR(0)(GLr)| = 11, |LR(1)(GLr)| = 15
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LALR(1) Parsing

@ Motivation: resolving conflicts using LR(1) too expensive

o Example 11.7/11.13: |LR(0)(GLr)| = 11, |LR(1)(GLr)| = 15

@ A. Johnstone, E. Scott: Generalised Reduction Modified LR
Parsing for Domain Specific Language Prototyping, HICSS 02,
TEEE, 2002, nttp://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

Grammar | |LR(0)(G)| |LR(1)(G)]

Ansi-C 381 1788

Pascal 368 1395
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LALR(1) Parsing

@ Motivation: resolving conflicts using LR(1) too expensive

o Example 11.7/11.13: |LR(0)(GLr)| = 11, |LR(1)(GLr)| = 15

@ A. Johnstone, E. Scott: Generalised Reduction Modified LR
Parsing for Domain Specific Language Prototyping, HICSS 02,
TEEE, 2002, nttp://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

Grammar | |LR(0)(G)| |LR(1)(G)]

Ansi-C 381 1788

Pascal 368 1395

@ Observation: potential redundancy by containment of LR(0) sets
in LR(1) sets (cf. Corollary 11.9)
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LALR(1) Parsing

@ Motivation: resolving conflicts using LR(1) too expensive

o Example 11.7/11.13: |LR(0)(Grg)| = 11, [LR(1)(GLR)| = 15

@ A. Johnstone, E. Scott: Generalised Reduction Modified LR
Parsing for Domain Specific Language Prototyping, HICSS 02,
TEEE, 2002, nttp://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

Grammar | |LR(0)(G)| |LR(1)(G)]

Ansi-C 381 1788

Pascal 368 1395

@ Observation: potential redundancy by containment of LR(0) sets
in LR(1) sets (cf. Corollary 11.9)

Definition 12.1 (LR(0) equivalence)

Let Irg : LR(1)(G) — LR(0)(G) be defined by

Iro(I) :={[A— B1-P] | [A— B1-Po,z] € 1}.
Two sets I1,I5 € LR(1)(G) are called LR(0) equivalent (notation:
Il ~0 IQ) if 11'0(]1) = lI'()(IQ).
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LR(0) Equivalence

Example 12.2 (cf. Example 11.7/11.13)

Grr: 8 — 8 S — L=R|R LR(1)(GLR) :
L—*R|a R—L Ij(e) : S — .S, €] [S — -L=R, €]
S — ‘R, €] [L — xR, =]

LR(0)(GLr) : L— -a-= [R— -L,é]
Io(e): [$'—-S] [S—-L=R] L — xR,e] [L— -aé

S — -R] [L — -*R] I/ (S) : S — S-€]

L—-a [R— L] o(@): [S—L-=Re][R— Lé
nes): [§—9] I;(R) : S Re]
I2(L) : S — L-=R] [R — L I (%) : L—*-R,=] [L—* R,
I3(R) : S — R R — -L,=] R — -L,¢]
INOE L—*-R] [R— L] L — %R, = L — a,=]

L — *R] |[L— -a] L — *R,e] [L— -a¢]
I5(a) : L —a] Ié(a) : L — a,=] L — a,eg]
Is(L=): [S— L=-R][R— L] I5(L=) : S — L=-R,e] [R — -L,é]

L— *R] [L— -2 L — *R,e] [L— -a,¢]
I7(*R) : [L — xR oy
Is(xL): [R— L/ i
Ig(L=R) : [S — L=R']
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LR(0) Equivalence

Example 12.2 (cf. Example 11.7/11.13)

GLR: S, —)S S—>L=R|R LR(I)(GLR)
L —-*R|a R—L Ij(e) - S — .S, ¢] [S — -L=R,¢]
S — R, L — xR, =
LR(0)(GLr) : L — -a, =€] %R — L, ]
Io(e) : S’ — ,Si] PS’ — ~L=]R] L — *R,e] |[L— -a,¢]
S— R L — xR 1/(9) : S’ — S el
he. Gy W nE Boppamond
H — O H — N
I;EL)): g—>é]=R] [R— L IZ(*): L—*-R,=] [L— *-R,¢]
I3(R) : — R R— -L,= R— L,
1?(*) L—*-R] [R— L] L—>~*R,]= L—>-a,=€]]
e é — -*]R] [L — -] L — *R,e] [L— -a,¢]
a): — a- I’ : L—a,= L— a,
(L) : [S— L= R][R—I] IZE?:L) . 5ol ~]R, e [R — éL,Es]]
L — *R] [L— -3 ) L — *R, €] L — -ae]
nGn: R z) e S s ]
° — L : — L, = — L, €
Io(L=R) : [S — L=R/] Ig(L=R) TGS
— [,; ~0 [{1 I;O(L=L)' R_>L75]
' (L=%): [L—x-Rye] [R— -L,el
(L
(L
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LR(0) Equivalence

Example 12.2 (cf. Example 11.7/11.13)

Grr: S' =S S — L=R|R LR(1)(GLR) :
L—*R|a R—L Ij(e) - S — .S, ¢] [S — -L=R,¢]
S — R, L — *R,=
LR(0)(GLR) : L — -a, =€] %R — -L,e] ]
Io(e) : S/ — ,Si] PS’ — ~L=]R] L — *R,e] |[L— -a,¢]
S — R L — *R I7(S) S — S ¢l
he. Gy W nE Boppamond
H — O H — N
I;EL)): g—>é]=R] [R— L ]Z(*); L—*-R=] [L— *-R,¢]
I3(R) : — R R— .L,= R — L,
IZ(*): L—*-R] [R— L] L—>.*R,]= L—)-a7=€]]
®) é = *]R] [L — 4] L — -xR,e] [L— -a¢]
I5(a) : — a- IL : L — .= L — o
Io(L=): [S— L= R [R— I] AT G S e
L — *xR] [L— -3 ) L — *R, €] L — -a¢]
nGn: R o) e S s ]
: — o o IO = 5 E
Io(L=R) : [S — L=R/] Ig(L=R) TG
— I‘,} ~0 Iil I}O(L=L) : R_>L75]
o 1 I (L=x): [L—x*-Re] [R— Lk
L — *R,e] [L— -a,¢]
(L
(L
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LR(0) Equivalence

Example 12.2 (cf. Example 11.7/11.13)

GLR: S, —)S S—>L=R|R LR(I)(GLR)
L—*R|a R—L Ij(e) - S" — .S, €] [S — -L=R, €]
S — R, L — xR, =
LR(0)(GLr) : L — -a, =€] %R — L, ]
Io(e) : g’ — Si] {S — ~L=]R] L — *R,e] |[L— -a,¢]
— R L — xR 1/(9) : S — S €]
wo, [ood) BEE g B s
5 — D : —> N
: —R R— L= [R— L,
L(): [L—*R [R—-I] Lo whn (Lo
e é — -*]R] [L — -] L — *R,e] [L— -a,¢]
: —a It : L —a,= L — a.,
To(L=): [S— L= R] [R— -] IZE?:L) . 5ol ~]R, e [R — éL,Es]]
L — *R] [L— -3 L — *R, €] L — -ae]
rem: (L2 pem: EZars 22
: — L- . — L= — L,
Io(L=R) : [S — L=R/] Ig(L=R) TG
I .
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LR(0) Equivalence

Example 12.2 (cf. Example 11.7/11.13)

GLR: S, — S S—>L=R|R LR(I)(GLR)
L—*R|a R—L Ij(e) - S" — .S, €] [S — -L=R, €]
S — R, L — *R,=
LR(0)(GLR) : L — -a, =€] %R — -L,¢] ]
Io(e) : S/ — ,Si] PS’ — ~L=]R] L — *R,e] |[L— -a,¢]
S — R L — *R 1/(9) : S’ — S-,¢€]
he. Gy W nE Boppamond
H — O H — N
I;EL)f s Ry 0):  [Lo*Re] [ Rl
I3(R) : — R R— .L,= R — L,
Lw: [L—sR [R—-I] Lo whn (Lo
I ( ) é_) *]I%] [L - 'a] L — xR, E] L — -a, E]
a): — a- I’ : L—a,= L— a,
To(L=) S5 e A Bos: o raEo Ty
— % — a = =
B B L *R: el [L— -ac
[g(*L) 5 R — L] =
Io(L=R) : [S — L=R]
— I‘,} ~Q
Iz ~o I
n
L~
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LALR(1) Sets 1

For every G € CFGy, |[LR(1)(G)/ ~o | = |[LR(0)(G)|.
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LALR(1) Sets 1

For every G € CFGy, |[LR(1)(G)/ ~o | = |[LR(0)(G)|.

Idea: merge LR(0) equivalent LR(1) sets (maintaining the lookahead
information, but possibly introducing conflicts)
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LALR(1) Sets 1

For every G € CFGy, |[LR(1)(G)/ ~o | = |[LR(0)(G)|.

Idea: merge LR(0) equivalent LR(1) sets (maintaining the lookahead
information, but possibly introducing conflicts)

Definition 12.4 (LALR(1) sets)

Let G € CFGx.

@ An information I € LR(1)(G) determines the LALR(1) set
Ulll~o = U{I" € LR()(G) | I ~o I}
@ The set of all LALR(1) sets of G is denoted by LALR(1)(G).
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LALR(1) Sets 1

For every G € CFGy, |[LR(1)(G)/ ~o | = |[LR(0)(G)|.

Idea: merge LR(0) equivalent LR(1) sets (maintaining the lookahead
information, but possibly introducing conflicts)

Definition 12.4 (LALR(1) sets)

Let G € CFGx.

@ An information I € LR(1)(G) determines the LALR(1) set
Ulll~o = U{I" € LR()(G) | I ~o I}
@ The set of all LALR(1) sets of G is denoted by LALR(1)(G).

Remark: by Corollary 12.3, |LALR(1)(G)| = |LR(0)(G)]
(but LALR(1) sets provide additional lookahead information)
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LALR(1) Sets 1I

Example 12.5 (cf. Example 12.2)

Grr:S'"—-S S—L=R|R L—*R|a R—L

LR(O)(GLR) : LALR(l)(GLR) :

Iy(e) : S —-S]  [S—-L=R] Ij:=1I: [S" — -S, €] [S — -L=R, €]
S — -R] [L — *R] [S — ‘R, €] [L — *R,=/¢]
L — -a] [R — -L] [L —-a,=/e] [R—-L,¢]

L(S): [9—29] I':=1: [S" — S €]

I(L): [S— L-=R][R— L] I =1 [S— L-=R,e] [R— L-¢]

I3(R): [S— R] Iy =1 [S— R €]

Is(*):  [L—*-R] [R— L] I{ =14Vl : [L—>* R=/e] [R—L,=/e
L — *R] [L— -4 L — xR,=/e] [L — -a,=/¢]

Is(a): [L—a] If ==I5U Ly : [L — a,=/e]

Is(L=): [S— L=-R][R — -L] If =1Ig: S — L=-R,e] [R— -L,¢]
L — *R] [L — -4 L — *R, €] [L — -a,¢€]

I(xR) : [L — *xR] If .= Ulls: [L — *R-,=/¢]

Is(xL): [R— L] I =TI ULy : [R— L-,=/e

Is(L=R) : [S — L=R'] IY =15 S — L=R-,¢]
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The LALR(1) Action Function

The LALR(1) action function is defined in analogy to the LR(1) case
(Definition 11.14).

Definition 12.6 (LALR(1) action function)

The LALR(1) action function

act : LALR(1)(G) x Xz — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifr(i)=A—aand [A— a,z]€l
shift  if [A— oy -zag,yl€land z € X
accept if [S"— S, elelTandz=¢
error  otherwise

act([,z) :=
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The LALR(1) Action Function

The LALR(1) action function is defined in analogy to the LR(1) case
(Definition 11.14).

Definition 12.6 (LALR(1) action function)

The LALR(1) action function

act : LALR(1)(G) x Xz — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifr(i)=A—aand [A— a,z]€l
shift  if [A— oy -zag,yl€land z € X
accept if [S"— S, elelTandz=¢
error  otherwise

act([,z) :=

Definition 12.7 (LALR(1) grammar)

A grammar G € CFGx, has the LALR(1) property (notation:
G € LALR(1)) if its LALR(1) action function is well defined.
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The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)
Grr € LALR(1)
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The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)

GLRr € LALR(l)

Also the LR(1) goto function (Definition 11.16) carries over to the
LALR(1) case. Reason:

Let G € CFGx, and I1,1s € LR(1)(G) such that Iy ~o Is. Then, for
every Y € X, goto(I1,Y) ~o goto(l2,Y).

m' Compiler Construction Summer semester 2008 13



The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)

GLRr € LALR(l)

Also the LR(1) goto function (Definition 11.16) carries over to the
LALR(1) case. Reason:

Let G € CFGx, and I1,1s € LR(1)(G) such that Iy ~o Is. Then, for
every Y € X, goto(I1,Y) ~o goto(l2,Y).

Again, act and goto form the LALR(1) parsing table of G.
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The LALR(1) Parsing Table

Example 12.10 (cf. Example 12.5)

LALR(1)(GLR) act/goto|x, goto| N
* = a e |S L R
17 shift/T7 shift/I7 7 I 10
i accept
I} shift/I{ red 5
I red 2
I shift/ I shift/ 17 I
I red 4 red 4
I shift/ I/ shift/ I I
I red 3 red 3
Iy red 5 red 5
I red 1
(empty = error/0)
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LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G:5—S S—aAd|bBd|aBe|bde A—c B—c
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LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G:5—S S—aAd|bBd|aBe|bde A—c B—c

LR(1)(e) : S’ — -S,e] [S—-adAd,e] [S— -bBd,¢] [S — -aBe,¢]
S — -bAe,¢]

LR(1)(S): [S'— S €]

LR(1)(a) : S —a-Ad,e] [S— a-Be,g] [A— c,d] [B— -c,e]

LR(1)(b) : S —b-Bde| [S—b-Aee] [B— c,d [4A— -c,e]

LR(1)(ad): [S— aA-d,¢] LR(1)(aB): [S — aB-e,¢]

LR(1)(ac): [A— c-,d] [B — ce]

LR(1)(bB): [S —DbB-d,¢] LR(1)(bA): [S —DbA-e,¢]

LR(1)(bc): [B — c-,d] [A — c-, €]

LR(1)(add) : [S — aAd-,€] LR(1)(aBe): [S — aBe-,¢]

LR(1)(bBd) : [S — bBd-,¢] LR(1)(bAe) : [S — bAe-, €]

Compiler Construction Summer semester 2008 15



LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G:5—S S—aAd|bBd|aBe|bde A—c B—c

LR(1)(e) : S’ — -S,e] [S—-adAd,e] [S— -bBd,¢] [S — -aBe,¢]
S — -bAe,¢]

LR(1)(S): [S'— S €]

LR(1)(a) : S —a-Ad,e] [S— a-Be,g] [A— c,d] [B— -c,e]

LR(1)(b) : S —b-Bde| [S—b-Aee] [B— c,d [4A— -c,e]

LR(1)(ad): [S— aA-d,¢] LR(1)(aB): [S — aB-e,¢]

LR(1)(ac): [A— c-,d] [B — ce]

LR(1)(bB): [S —DbB-d,¢] LR(1)(bA): [S —DbA-e,¢]

LR(1)(bc): [B — c-,d] [A — c-, €]

LR(1)(add) : [S — aAd-,€] LR(1)(aBe): [S — aBe-,¢]

LR(1)(bBd) : [S — bBd-,¢] LR(1)(bAe) : [S — bAe-, €]

no conflicts = G € LR(1)
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LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G:5—S S—aAd|bBd|aBe|bde A—c B—c

LR(1)(e) : S’ — -S,e] [S—-adAd,e] [S— -bBd,¢] [S — -aBe,¢]
S — -bAe,¢]

LR(1)(S): [S'— S €]

LR(1)(a) : S —a-Ad,e] [S— a-Be,g] [A— c,d] [B— -c,e]

LR(1)(b) : S —b-Bde| [S—b-Aee] [B— c,d [4A— -c,e]

LR(1)(ad): [S— aA-d,¢] LR(1)(aB): [S — aB-e,¢]

LR(1)(ac): [A— c-,d] [B — c-e]

LR(1)(bB): [S —DbB-d,¢] LR(1)(bA): [S —DbA-e,¢]

LR(1)(bc): [B — c-,d] [A — c-, €]

LR(1)(add) : [S — aAd-,€] LR(1)(aBe) : [S — aBe-,¢]

LR(1)(bBd) : [S — bBd-,¢] LR(1)(bAe) : [S — bAe-, €]

no conflicts = G € LR(1)

LR(1)(ac) ~o LR(1)(bc), but LR(1)(ac)U LR(1)(bc) has conflicts
= G ¢ LALR(1)
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Efficient Construction of LALR(1) Parsers

Naive algorithm to construct LALR(1) parser for G € CFGx:
@ Construct LR(1)(G)
© Determine and merge LR(0) equivalent LR(1) sets

Problem: no reduction of peak space requirement
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Efficient Construction of LALR(1) Parsers

Naive algorithm to construct LALR(1) parser for G € CFGx:
@ Construct LR(1)(G)
© Determine and merge LR(0) equivalent LR(1) sets

Problem: no reduction of peak space requirement

Idea of improved algorithm (see Aho/Lam/Sethi/Ullman: Compilers:
Principles, Techniques, and Tools, 2nd ed., p. 270ff):

@ Represent each set of items by its kernel, i.e., by the items of the
form [S" — -S,e] or [A — (1 - B2, x| where 31 # ¢

@ Construct LALR(1) kernels from LR(0) kernels similarly to LR(1)
items

© Compute LALR(1) sets by taking the e-closure

(applied in yacc parser generator)
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© Bottom-Up Parsing of Ambiguous Grammars
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Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

Rm Compiler Construction Summer semester 2008 18



Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGx is ambiguous, then G ¢ J,,cn LR(K).
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Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGsx is ambiguous, then G & oy LR(K).

Proof.
Assume that there exist ¥ € N and G € LR(k) such that G is ambiguous.
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Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGsx is ambiguous, then G & oy LR(K).

Proof.

Assume that there exist ¥ € N and G € LR(k) such that G is ambiguous.
Hence there exists w € L(G) with different right derivations. Let cAv be the
last common sentence of the two derivations (i.e., 5 # §'):

=, afv =5 w
* T T
S =F adv {:>T aBlv =+ w
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Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGsx is ambiguous, then G & oy LR(K).

Proof.

Assume that there exist ¥ € N and G € LR(k) such that G is ambiguous.
Hence there exists w € L(G) with different right derivations. Let cAv be the
last common sentence of the two derivations (i.e., 5 # §'):

=, afv =>Fw

=, af'v=;w

But since firsty (v) = firsty(v) for every v € ¥*, Definition 9.8 yields that

B = 3. Contradiction O

S = aAv

4
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Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGy is ambiguous, then G & |J,cny LR(K).

Proof.

Assume that there exist ¥ € N and G € LR(k) such that G is ambiguous.
Hence there exists w € L(G) with different right derivations. Let cAv be the
last common sentence of the two derivations (i.e., 5 # §'):

=, afv =>Fw

=, af'v=;w

But since firsty (v) = firsty(v) for every v € ¥*, Definition 9.8 yields that

B = 3. Contradiction O

S = aAv

4

However ambiguity is a natural specification method which generally avoids

involved syntactic constructs.
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Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)
G:E - E E— E+E|E*E|a
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Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)

G:E -E E— E+E|E*E|a
Precedence: * > + Associativity: left
(thus: ataxa+a :=(a+(a*a))+a)

m Compiler Construction Summer semester 2008



Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)
G:E - FE E — E+E | E*E | a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E| [E — -a]
I :=LR(O)(E): |[E'—E] [E—E +E|[E— E-*E]

I := LR(0)(a) : [E — a‘]

I := LR(0)(E+): [E — E+-E|] [E — -E+E| [E — -E+E] [E — -3
I, := LR(0)(E*): [E — E*x-E|[E — -E+E] [E — -ExE]| [E — -2
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]
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Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)
G:E - FE E — E+E | E*E | a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E| [E — -a]
I .= LR(0)(E) : [E' — E] [E — E-+E] [E — E -*E]
L=IR(0)a): [E—al

I3:=LR(0)(E+): |[E — E+-E|[E— -E+E| [E — -E*E] [E — -a]
Iy := LR(0)(E*): [E — Ex-E] [E — E+E] [E — ExE] [E — -]
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]

Conflicts: I1: SLR(1)-solvable (reduce on e, shift on +/*)
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Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)
G:E - FE E — E+E | E*E | a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E| [E — -a]
I :=LR(O)(E): |[E'—E] [E—E +E|[E— E-*E]
L=IR(0)a): [E—al

I .= LR(0)(E+): |E — E+-E| [E — -E+E| [E — -E+E] [E — -3
I,:= LR(0)(E*): [E — E*x-E][E — E+E] [E — -E*E] [E — -a]
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]

Conflicts: I1: SLR(1)-solvable (reduce on ¢, shift on +/*)
I5, Is: not SLR(1)-solvable (+, * € fo(FE))
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Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)
G:E - FE E — E+E | E*E | a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E| [E — -a]
I ;= LR(0)(E) : [E' — E] [E - E-+E| [E — E -*E]
L=IR(0)a): [E—al

I .= LR(0)(E+): |E — E+-E| [E — -E+E| [E — -E+E] [E — -3
I,:= LR(0)(E*): [E — E*x-E][E — E+E] [E — -E*E] [E — -a]
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - *E]

Conflicts: I1: SLR(1)-solvable (reduce on e, shift on +/*)
I5, Is: not SLR(1)-solvable (+,* € fo(FE))
Solution:
Is: * >+ = act([5, *) := shift, + left assoc. = act(l5,+) :=red1
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Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)
G:E - FE E — E+E | E*E | a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E| [E — -a]
I ;= LR(0)(E) : [E' — E] [E - E-+E| [E — E -*E]
L=IR(0)a): [E—al

I .= LR(0)(E+): |E — E+-E| [E — -E+E| [E — -E+E] [E — -3
I,:= LR(0)(E*): [E — E*x-E][E — E+E] [E — -E*E] [E — -a]
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]

Conflicts: I1: SLR(1)-solvable (reduce on ¢, shift on +/*)
I5, Is: not SLR(1)-solvable (+,* € fo(FE))

Solution:

Is: x>+ = act([5,*) :

Is: * >+ = act(lg, +) :

shift, + left assoc. == act([5,+) :
red 2, * left assoc. = act([g, *) :
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Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)
G:5—>8 S—iSeS|iS|a
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Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)
G:5—>8 S—iSeS|iS|a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea
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Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)
G:5—>8 S—iSeS|iS|a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(O)(G)
Iy := LR(0)(¢) : S’ — .9] [S — -iSeS] [S — i8]
S — -a
I := LR(0)(S) : S — S]]
I:=LR(0)(i): [S—i-SeS][S—i-S] [S — -iSeS]

[
[
|
[S — -iS] [S — -a]
I3 := LR(0)(a) : [S — a
Iy ;= LR(0)(iS): [S— iS-eS][S — i5]
I5 := LR(0)(iSe): [S — iSe-S][S — -iSeS] [S — -i5]
[S — -]
[

Is := LR(0)(iSeS) : [S — iSeS"]
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Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)
G:5—>8 S—iSeS|iS|a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):

Iy := LR(0)(¢) : {S’ — 5] [S — -iSeS] [S — i8]

I := LR(0)(S) : [

I = LR(0)(1): [S—1-8eS|[S—1-9] [S— -iSeS]
[S — -iS] [S — -a]

I3 := LR(0)(a) : [S — a]

I, := LR(0)(iS): [S—1iS5-eS][S — iS]

I5 := LR(0)(iSe): [S — iSe-S][S — -iSeS] [S — -i5]
[
[
(

Is := LR(0)(iSeS) : [S — iSeS']
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Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)
G:5—>8 S—iSeS|iS|a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):

Iy := LR(0)(¢) : {S’ — 5] [S — -iSeS] [S — i8]

I := LR(0)(S) : [

I = LR(0)(1): [S—1-8eS|[S—1-9] [S— -iSeS]
[S — -iS] [S — -a]

I3 := LR(0)(a) : [S — a]

I, := LR(0)(iS): [S—1iS5-eS][S — iS]

I5 := LR(0)(iSe): [S — iSe-S][S — -iSeS] [S — -i5]
[
[
(

Is := LR(0)(iSeS) : [S — iSeS']

Solution (1): act(ly,e) := shift
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@ Generating Parsers Using yacc
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The yacc Tool

Usage of yacc (“yet another compiler compiler”):

yacc [f11lex
spec.y — y.tab.c lex.yy.c — spec.1l
yacc specification Parser source  Scanner source [£f]11lex specification
Leel
a.out

Executable LALR(1) parser
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The yacc Tool

Usage of yacc (“yet another compiler compiler”):

yacc [f11lex
spec.y — y.tab.c lex.yy.c — spec.1l
yacc specification Parser source  Scanner source [£f]11lex specification
Leel
a.out

Executable LALR(1) parser

Like for [£]lex, a yacc specification is of the form

Declarations (optional)
il

Rules

il

Augziliary procedures (optional)
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yacc Specifications

Declarations:

@ Token definitions: %token Tokens

@ Not every token needs to be declared (°+’, ’=?, ...)
@ Start symbol: %start Symbol (optional)

@ C code for declarations etc.: %{ Code %}
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yacc Specifications

Declarations: @ Token definitions: %token Tokens
@ Not every token needs to be declared (°+’, ’=?, ...)
@ Start symbol: %start Symbol (optional)
@ C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

@ A—ay|ag]...|a, represented as
A : a1 {Action;}
| as {Actions}

| a, {Action,};
@ Semantic actions = C statements for computing attribute
values
@ $$ = attribute value of A
@ $i = attribute value of ith symbol on right-hand side
@ Default action: $$ = $1
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yacc Specifications

Declarations: @ Token definitions: %token Tokens
@ Not every token needs to be declared (°+’, ’=?, ...)
@ Start symbol: %start Symbol (optional)
@ C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

@ A—ay|ag]...|a, represented as
A : a1 {Action;}
| as {Actions}

| a, {Action,};
@ Semantic actions = C statements for computing attribute
values
@ $$ = attribute value of A
@ $i = attribute value of ith symbol on right-hand side
@ Default action: $$ = $1

Auxiliary procedures: scanner (if not [£f]1lex), error routines, ...
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Example: Simple Desk Calculator 1

%{/* SLR(1) grammar for arithmetic expressions (Example 11.1) */
#include <stdio.h>
#include <ctype.h>

3

%token DIGIT

Dot

line : expr ’\n’ { prlntf("yd\n" $1); };
expr : expr ’+’ term {$$ =91+ $3; }
| term {$$ =81, };
term : term ’*’ factor { $$ = $1 * $3; }
| factor { $$ = $1; };
factor : ’(’ expr ’)’ { $$ = $2; }
| DIGIT { 88 = $1; };
h
yylex() {
int c;
= getchar();
if (isdigit(c)) yylval = ¢ - ’0’; return DIGIT;
return c;
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Example: Simple Desk Calculator 11

> yacc calc.y

> cc y.tab.c -1y
> a.out

2+3

5

> a.out

2+3%*5

17
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An Ambiguous Grammar I

%{/* Ambiguous grammar for arithm. expressions (Ex. 12.13) */
#include <stdio.h>
#include <ctype.h>

h}

%token DIGIT

ho

line : expr ’\n’ { printf ("%d\n", $1); };
expr : expr ’+’ expr {83 =981+ 93; }
| expr ’*’ expr { $8 = $1 * $3; }
| DIGIT {$$=91; };
he
yylex(O {
int c;

c = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}
return c;
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An Ambiguous Grammar II

Invoking yacc with the option -v produces a report y.output:

State 8

2 expr: expr . ’+’ expr
2 | expr ’+’ expr .
3 | expr . ’*’ expr

’+’> shift and goto state 6
’*’  shift and goto state 7

Y42 [reduce with rule 2 (expr)]

%2 [reduce with rule 2 (expr)]
State 9

2 expr: expr . ’+’ expr

3 | expr . ’*’ expr

3 | expr ’*’ expr .

’+’>  shift and goto state 6
’*’  shift and goto state 7

Y42 [reduce with rule 3 (expr)]
%2 [reduce with rule 3 (expr)]
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Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification
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Conflict Handling in yacc

Default conflict resolving strategy in yacc:
reduce/reduce: choose first conflicting production in specification

shift /reduce: prefer shift

@ resolves dangling-else ambiguity (Example 12.14) correctly
@ also adequate for * after sum (Example 12.13) and for
right-associative binary operators
@ not appropriate for left-associative binary operators
(= reduce; see Example 12.13)
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Conflict Handling in yacc

Default conflict resolving strategy in yacc:
reduce/reduce: choose first conflicting production in specification
shift /reduce: prefer shift

@ resolves dangling-else ambiguity (Example 12.14) correctly
@ also adequate for * after sum (Example 12.13) and for
right-associative binary operators
@ not appropriate for left-associative binary operators
(= reduce; see Example 12.13)

For ambiguous grammar:

> yacc ambig.y

conflicts: 4 shift/reduce
> cc y.tab.c -1y

> a.out

2+3%5

17

> a.out

2%3+5

16
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Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

hlleft|right] Operators;
hlleft|right] Operators,

@ operators in one line have given associativity and same precedence

@ precedence increases over lines
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Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

hlleft|right] Operators;
hlleft|right] Operators,

@ operators in one line have given associativity and same precedence

@ precedence increases over lines

Example 12.15
hleft 47 =2
%1eft )% )/}
hright °°°

-~

(right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)
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Precedences and Associativities in yacc 11

%{/* Ambiguous grammar for arithmetic expressions
with precedences and associativities */
#include <stdio.h>
#include <ctype.h>
h}
%token DIGIT
%hleft >+’
%hleft %’
i
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { 8% =81+ 9$3; }
| expr ’*’ expr {$$ =81 % $3; }
| DIGIT { 8% = 81; };

Tt
yylex() {
int c;
¢ = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}
return c;
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Precedences and Associativities in yacc 111

> yacc nonambig.y
> cc y.tab.c -1y
> a.out

2%3+5

11

> a.out

2+3%*5

17
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© Expressiveness of LL and LR Grammars
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Overview of Grammar Classes

LL(1) G4y (Ex. 7.8)
Moreover:
LL(0) o LL(K) S LL(k+1)
(singletons) for every k € N
® LR(k) & LR(k+1)
LR(0) oG (Ex. 9.15) for every k € N

o LL(k) C LR(k)
for every k € N

SLR(1) eGap (Ex. 11.5)

LALR(1) eGprp (Ex. 12.5)

LR(1) oG (Ex. 12.11)
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Overview of Language Classes

(cf. O. Mayer: Syntaxanalyse, BI-Verlag, 1978, p. 409ff)

L(LL(1))
REC Moreover:
o L(LL(k)) S
L(LL(0)) L(LL(k+1)) S
L(LR(1))
’ _ for every k € N
L(LE(0)) o L(LR(k)) =
L(SLR(1)) = L(LALR(1)) = L(LR(1))
L(LR(1)) = det. CFL for every k > 1
unambiguous CFL
CFL
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