
Compiler Construction

Lecture 12: Syntactic Analysis VIII (LALR(1) Parsing)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

Compiler Construction Summer semester 2008 1

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Outline

1 Repetition: (S)LR(1) Parsing

2 LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc

5 Expressiveness of LL and LR Grammars

Compiler Construction Summer semester 2008 2

The SLR(1) Action Function

Definition (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) × Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I, x) :=



















red i if π(i) = A → α, [A → α·] ∈ I (i 6= 0),
and x ∈ fo(A)

shift if [A → α1 · xα2] ∈ I and x ∈ Σ
accept if [S′ → S·] ∈ I and x = ε
error otherwise

Definition (SLR(1) grammar)

A grammar G ∈ CFGΣ has the SLR(1) property (notation:
G ∈ SLR(1)) if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition 10.1) form
the SLR(1) parsing table of G.

Compiler Construction Summer semester 2008 3

LR(1) Items and Sets I

Observation: not every element of fo(A) can follow every occurrence
of A
=⇒ refinement of LR(0) items by adding possible lookahead symbols

Definition (LR(1) items and sets)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated by S′ → S.

If S′ ⇒∗
r αAaw ⇒r αβ1β2aw, then [A → β1 · β2, a] is called an

LR(1) item for αβ1.

If S′ ⇒∗
r αA ⇒r αβ1β2, then [A → β1 · β2, ε] is called an LR(1)

item for αβ1.

Given γ ∈ X∗, LR(1)(γ) denotes the set of all LR(1) items for γ,
called the LR(1) set (or: LR(1) information) of γ.

LR(1)(G) := {LR(1)(γ) | γ ∈ X∗}.

Compiler Construction Summer semester 2008 4

LR(0) vs. LR(1)

Example

GLR : S′ → S S → L=R | R
L → *R | a R → L

LR(0)(GLR) :
I0(ε) : [S′ → ·S] [S → ·L=R]

[S → ·R] [L → ·*R]
[L → ·a] [R → ·L]

I1(S) : [S′ → S·]
I2(L) : [S → L · =R] [R → L·]
I3(R) : [S → R·]
I4(*) : [L → * · R] [R → ·L]

[L → ·*R] [L → ·a]
I5(a) : [L → a·]
I6(L=) : [S → L= · R] [R → ·L]

[L → ·*R] [L → ·a]
I7(*R) : [L → *R·]
I8(*L) : [R → L·]
I9(L=R) : [S → L=R·]

LR(1)(GLR) :
I′0(ε) : [S′ → ·S, ε] [S → ·L=R, ε]

[S → ·R, ε] [L → ·*R, =]
[L → ·a, =] [R → ·L, ε]
[L → ·*R, ε] [L → ·a, ε]

I′1(S) : [S′ → S·, ε]
I′2(L) : [S → L · =R, ε] [R → L·, ε]
I′3(R) : [S → R·, ε]
I′4(*) : [L → * · R, =] [L → * · R, ε]

[R → ·L, =] [R → ·L, ε]
[L → ·*R, =] [L → ·a, =]
[L → ·*R, ε] [L → ·a, ε]

I′5(a) : [L → a·, =] [L → a·, ε]
I′6(L=) : [S → L= · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I′7(*R) : [L → *R·, =] [L → *R·, ε]
I′8(*L) : [R → L·, =] [R → L·, ε]
I′9(L=R) : [S → L=R·, ε]
I′10(L=L) : [R → L·, ε]
I′11(L=*) : [L → * · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I′12(L=a) : [L → a·, ε]
I′13(L=*R) : [L → *R·, ε]

Compiler Construction Summer semester 2008 5

The LR(1) Action Function

Definition (LR(1) action function)

The LR(1) action function
act : LR(1)(G) × Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I, x) :=











red i if π(i) = A → α and [A → α·, x] ∈ I
shift if [A → α1 · xα2, y] ∈ I and x ∈ Σ
accept if [S′ → S·, ε] ∈ I and x = ε
error otherwise

Corollary

For every G ∈ CFGΣ, G ∈ LR(1) iff its LR(1) action function is well
defined.

Compiler Construction Summer semester 2008 6

Outline

1 Repetition: (S)LR(1) Parsing

2 LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc

5 Expressiveness of LL and LR Grammars

Compiler Construction Summer semester 2008 7

LALR(1) Parsing

Motivation: resolving conflicts using LR(1) too expensive

Example 11.7/11.13: |LR(0)(GLR)| = 11, |LR(1)(GLR)| = 15

A. Johnstone, E. Scott: Generalised Reduction Modified LR

Parsing for Domain Specific Language Prototyping, HICSS ’02,
IEEE, 2002, http://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495:

Grammar |LR(0)(G)| |LR(1)(G)|
Ansi-C 381 1788
Pascal 368 1395

Observation: potential redundancy by containment of LR(0) sets
in LR(1) sets (cf. Corollary 11.9)

Definition 12.1 (LR(0) equivalence)

Let lr0 : LR(1)(G) → LR(0)(G) be defined by
lr0(I) := {[A → β1 · β2] | [A → β1 · β2, x] ∈ I}.

Two sets I1, I2 ∈ LR(1)(G) are called LR(0) equivalent (notation:
I1 ∼0 I2) if lr0(I1) = lr0(I2).

Compiler Construction Summer semester 2008 8

http://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

LR(0) Equivalence

Example 12.2 (cf. Example 11.7/11.13)

GLR : S′ → S S → L=R | R
L → *R | a R → L

LR(0)(GLR) :
I0(ε) : [S′ → ·S] [S → ·L=R]

[S → ·R] [L → ·*R]
[L → ·a] [R → ·L]

I1(S) : [S′ → S·]
I2(L) : [S → L · =R] [R → L·]
I3(R) : [S → R·]
I4(*) : [L → * · R] [R → ·L]

[L → ·*R] [L → ·a]
I5(a) : [L → a·]
I6(L=) : [S → L= · R] [R → ·L]

[L → ·*R] [L → ·a]
I7(*R) : [L → *R·]
I8(*L) : [R → L·]
I9(L=R) : [S → L=R·]

=⇒ I′4 ∼0 I′11
I′5 ∼0 I′12
I′7 ∼0 I′13
I′8 ∼0 I′10

LR(1)(GLR) :
I′0(ε) : [S′ → ·S, ε] [S → ·L=R, ε]

[S → ·R, ε] [L → ·*R, =]
[L → ·a, =] [R → ·L, ε]
[L → ·*R, ε] [L → ·a, ε]

I′1(S) : [S′ → S·, ε]
I′2(L) : [S → L · =R, ε] [R → L·, ε]
I′3(R) : [S → R·, ε]
I′4(*) : [L → * · R, =] [L → * · R, ε]

[R → ·L, =] [R → ·L, ε]
[L → ·*R, =] [L → ·a, =]
[L → ·*R, ε] [L → ·a, ε]

I′5(a) : [L → a·, =] [L → a·, ε]
I′6(L=) : [S → L= · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I′7(*R) : [L → *R·, =] [L → *R·, ε]
I′8(*L) : [R → L·, =] [R → L·, ε]
I′9(L=R) : [S → L=R·, ε]
I′10(L=L) : [R → L·, ε]
I′11(L=*) : [L → * · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I′12(L=a) : [L → a·, ε]
I′13(L=*R) : [L → *R·, ε]

Compiler Construction Summer semester 2008 9

LALR(1) Sets I

Corollary 12.3

For every G ∈ CFGΣ, |LR(1)(G)/ ∼0 | = |LR(0)(G)|.

Idea: merge LR(0) equivalent LR(1) sets (maintaining the lookahead
information, but possibly introducing conflicts)

Definition 12.4 (LALR(1) sets)

Let G ∈ CFGΣ.

An information I ∈ LR(1)(G) determines the LALR(1) set
⋃

[I]∼0
=

⋃

{I ′ ∈ LR(1)(G) | I ′ ∼0 I}.

The set of all LALR(1) sets of G is denoted by LALR(1)(G).

Remark: by Corollary 12.3, |LALR(1)(G)| = |LR(0)(G)|
(but LALR(1) sets provide additional lookahead information)

Compiler Construction Summer semester 2008 10

LALR(1) Sets II

Example 12.5 (cf. Example 12.2)

GLR : S′ → S S → L=R | R L→ *R | a R→ L

LR(0)(GLR) :
I0(ε) : [S′ → ·S] [S → ·L=R]

[S → ·R] [L→ ·*R]
[L→ ·a] [R→ ·L]

I1(S) : [S′ → S·]
I2(L) : [S → L · =R] [R→ L·]
I3(R) : [S → R·]
I4(*) : [L→ * · R] [R→ ·L]

[L→ ·*R] [L→ ·a]
I5(a) : [L→ a·]
I6(L=) : [S → L= · R] [R→ ·L]

[L→ ·*R] [L→ ·a]
I7(*R) : [L→ *R·]
I8(*L) : [R→ L·]
I9(L=R) : [S → L=R·]

LALR(1)(GLR) :
I ′′

0 := I ′

0 : [S′ → ·S, ε] [S → ·L=R, ε]
[S → ·R, ε] [L→ ·*R, =/ε]
[L→ ·a, =/ε] [R→ ·L, ε]

I ′′

1 := I ′

1 : [S′ → S·, ε]
I ′′

2 := I ′

2 : [S → L · =R, ε] [R→ L·, ε]
I ′′

3 := I ′

3 : [S → R·, ε]
I ′′

4 := I ′

4 ∪ I ′

11 : [L→ * · R, =/ε] [R→ ·L, =/ε]
[L→ ·*R,=/ε] [L→ ·a, =/ε]

I ′′

5 := I ′

5 ∪ I ′

12 : [L→ a·, =/ε]
I ′′

6 := I ′

6 : [S → L= ·R, ε] [R→ ·L, ε]
[L→ ·*R, ε] [L→ ·a, ε]

I ′′

7 := I ′

7 ∪ I ′

13 : [L→ *R·, =/ε]
I ′′

8 := I ′

8 ∪ I ′

10 : [R→ L·, =/ε]
I ′′

9 := I ′

9 : [S → L=R·, ε]

Compiler Construction Summer semester 2008 11

The LALR(1) Action Function

The LALR(1) action function is defined in analogy to the LR(1) case
(Definition 11.14).

Definition 12.6 (LALR(1) action function)

The LALR(1) action function
act : LALR(1)(G) × Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I, x) :=











red i if π(i) = A → α and [A → α·, x] ∈ I
shift if [A → α1 · xα2, y] ∈ I and x ∈ Σ
accept if [S′ → S·, ε] ∈ I and x = ε
error otherwise

Definition 12.7 (LALR(1) grammar)

A grammar G ∈ CFGΣ has the LALR(1) property (notation:
G ∈ LALR(1)) if its LALR(1) action function is well defined.

Compiler Construction Summer semester 2008 12

The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)

GLR ∈ LALR(1)

Also the LR(1) goto function (Definition 11.16) carries over to the
LALR(1) case. Reason:

Lemma 12.9

Let G ∈ CFGΣ and I1, I2 ∈ LR(1)(G) such that I1 ∼0 I2. Then, for
every Y ∈ X, goto(I1, Y) ∼0 goto(I2, Y).

Again, act and goto form the LALR(1) parsing table of G.

Compiler Construction Summer semester 2008 13

The LALR(1) Parsing Table

Example 12.10 (cf. Example 12.5)

LALR(1)(GLR) act/goto|Σε
goto|N

* = a ε S L R
I ′′0 shift/I ′′4 shift/I ′′5 I ′′1 I ′′2 I ′′3
I ′′1 accept
I ′′2 shift/I ′′6 red 5
I ′′3 red 2
I ′′4 shift/I ′′4 shift/I ′′5 I ′′8 I ′′7
I ′′5 red 4 red 4
I ′′6 shift/I ′′4 shift/I ′′5 I ′′8 I ′′9
I ′′7 red 3 red 3
I ′′8 red 5 red 5
I ′′9 red 1

(empty = error/∅)

Compiler Construction Summer semester 2008 14

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G : S′ → S S → aAd | bBd | aBe | bAe A → c B → c

LR(1)(ε) : [S′ → ·S, ε] [S → ·aAd, ε] [S → ·bBd, ε] [S → ·aBe, ε]
[S → ·bAe, ε]

LR(1)(S) : [S′ → S·, ε]
LR(1)(a) : [S → a · Ad, ε] [S → a · Be, ε] [A → ·c, d] [B → ·c, e]
LR(1)(b) : [S → b · Bd, ε] [S → b · Ae, ε] [B → ·c, d] [A → ·c, e]
LR(1)(aA) : [S → aA · d, ε] LR(1)(aB) : [S → aB · e, ε]
LR(1)(ac) : [A → c·, d] [B → c·, e]
LR(1)(bB) : [S → bB · d, ε] LR(1)(bA) : [S → bA · e, ε]
LR(1)(bc) : [B → c·, d] [A → c·, e]
LR(1)(aAd) : [S → aAd·, ε] LR(1)(aBe) : [S → aBe·, ε]
LR(1)(bBd) : [S → bBd·, ε] LR(1)(bAe) : [S → bAe·, ε]

no conflicts =⇒ G ∈ LR(1)

LR(1)(ac) ∼0 LR(1)(bc), but LR(1)(ac) ∪ LR(1)(bc) has conflicts
=⇒ G /∈ LALR(1)

Compiler Construction Summer semester 2008 15

Efficient Construction of LALR(1) Parsers

Naive algorithm to construct LALR(1) parser for G ∈ CFGΣ:

1 Construct LR(1)(G)

2 Determine and merge LR(0) equivalent LR(1) sets

Problem: no reduction of peak space requirement

Idea of improved algorithm (see Aho/Lam/Sethi/Ullman: Compilers:

Principles, Techniques, and Tools, 2nd ed., p. 270ff):

1 Represent each set of items by its kernel, i.e., by the items of the
form [S′ → ·S, ε] or [A → β1 · β2, x] where β1 6= ε

2 Construct LALR(1) kernels from LR(0) kernels similarly to LR(1)
items

3 Compute LALR(1) sets by taking the ε-closure

(applied in yacc parser generator)

Compiler Construction Summer semester 2008 16

Outline

1 Repetition: (S)LR(1) Parsing

2 LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc

5 Expressiveness of LL and LR Grammars

Compiler Construction Summer semester 2008 17

Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

Lemma 12.12

If G ∈ CFGΣ is ambiguous, then G /∈
⋃

k∈N
LR(k).

Proof.

Assume that there exist k ∈ N and G ∈ LR(k) such that G is ambiguous.
Hence there exists w ∈ L(G) with different right derivations. Let αAv be the
last common sentence of the two derivations (i.e., β 6= β′):

S ⇒∗

r
αAv

{

⇒r αβv ⇒∗

r w
⇒r αβ′v ⇒∗

r
w

But since firstk(v) = firstk(v) for every v ∈ Σ∗, Definition 9.8 yields that
β = β′. Contradiction

However ambiguity is a natural specification method which generally avoids

involved syntactic constructs.
Compiler Construction Summer semester 2008 18

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)

G : E′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

LR(0)(G):
I0 := LR(0)(ε) : [E′ → ·E] [E → ·E+E] [E → ·E*E] [E → ·a]
I1 := LR(0)(E) : [E′ → E·] [E → E · +E] [E → E · *E]
I2 := LR(0)(a) : [E → a·]
I3 := LR(0)(E+) : [E → E+ · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I4 := LR(0)(E*) : [E → E* · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I5 := LR(0)(E+E) : [E → E+E·] [E → E · +E] [E → E · *E]
I6 := LR(0)(E*E) : [E → E*E·] [E → E · +E] [E → E · *E]

Conflicts: I1: SLR(1)-solvable (reduce on ε, shift on +/*)
I5, I6: not SLR(1)-solvable (+, * ∈ fo(E))

Solution:
I5: * > + =⇒ act(I5, *) := shift, + left assoc. =⇒ act(I5, +) := red 1
I6: * > + =⇒ act(I6, +) := red 2, * left assoc. =⇒ act(I6, *) := red 2

Compiler Construction Summer semester 2008 19

Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)

G : S′ → S S → iSeS | iS | a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):
I0 := LR(0)(ε) : [S′ → ·S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I1 := LR(0)(S) : [S′ → S·]
I2 := LR(0)(i) : [S → i · SeS] [S → i · S] [S → ·iSeS]

[S → ·iS] [S → ·a]
I3 := LR(0)(a) : [S → a·]
I4 := LR(0)(iS) : [S → iS · eS] [S → iS·]
I5 := LR(0)(iSe) : [S → iSe · S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I6 := LR(0)(iSeS) : [S → iSeS·]

Conflict in I4: e ∈ fo(S) =⇒ not SLR(1)-solvable

Solution (1): act(I4, e) := shift

Compiler Construction Summer semester 2008 20

Outline

1 Repetition: (S)LR(1) Parsing

2 LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc

5 Expressiveness of LL and LR Grammars

Compiler Construction Summer semester 2008 21

The yacc Tool

Usage of yacc (“yet another compiler compiler”):

spec.y
yacc
−→ y.tab.c lex.yy.c

[f]lex
←− spec.l

yacc specification Parser source Scanner source [f]lex specification
↓ cc ↓
a.out

Executable LALR(1) parser

Like for [f]lex, a yacc specification is of the form

Declarations (optional)
%%

Rules
%%

Auxiliary procedures (optional)

Compiler Construction Summer semester 2008 22

yacc Specifications

Declarations: Token definitions: %token Tokens
Not every token needs to be declared (’+’, ’=’, ...)
Start symbol: %start Symbol (optional)
C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

A → α1 | α2 | . . . | αn represented as
A : α1 {Action1}

| α2 {Action2}
...
| αn {Actionn};

Semantic actions = C statements for computing attribute
values
$$ = attribute value of A
$i = attribute value of ith symbol on right-hand side
Default action: $$ = $1

Auxiliary procedures: scanner (if not [f]lex), error routines, ...

Compiler Construction Summer semester 2008 23

Example: Simple Desk Calculator I

%{/* SLR(1) grammar for arithmetic expressions (Example 11.1) */
#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ term { $$ = $1 + $3; }

| term { $$ = $1; };
term : term ’*’ factor { $$ = $1 * $3; }

| factor { $$ = $1; };
factor : ’(’ expr ’)’ { $$ = $2; }

| DIGIT { $$ = $1; };
%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) yylval = c - ’0’; return DIGIT;
return c;

}

Compiler Construction Summer semester 2008 24

Example: Simple Desk Calculator II

> yacc calc.y

> cc y.tab.c -ly

> a.out

2+3

5

> a.out

2+3*5

17

Compiler Construction Summer semester 2008 25

An Ambiguous Grammar I

%{/* Ambiguous grammar for arithm. expressions (Ex. 12.13) */
#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { $$ = $1 + $3; }

| expr ’*’ expr { $$ = $1 * $3; }
| DIGIT { $$ = $1; };

%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = c - ’0’; return DIGIT;}
return c;

}

Compiler Construction Summer semester 2008 26

An Ambiguous Grammar II

Invoking yacc with the option -v produces a report y.output:

...
State 8

2 expr: expr . ’+’ expr
2 | expr ’+’ expr .
3 | expr . ’*’ expr

’+’ shift and goto state 6
’*’ shift and goto state 7

’+’ [reduce with rule 2 (expr)]
’*’ [reduce with rule 2 (expr)]

State 9

2 expr: expr . ’+’ expr
3 | expr . ’*’ expr
3 | expr ’*’ expr .

’+’ shift and goto state 6
’*’ shift and goto state 7

’+’ [reduce with rule 3 (expr)]
’*’ [reduce with rule 3 (expr)]

Compiler Construction Summer semester 2008 27

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification

shift/reduce: prefer shift

resolves dangling-else ambiguity (Example 12.14) correctly
also adequate for * after sum (Example 12.13) and for
right-associative binary operators
not appropriate for left-associative binary operators
(=⇒ reduce; see Example 12.13)

For ambiguous grammar:

> yacc ambig.y
conflicts: 4 shift/reduce
> cc y.tab.c -ly
> a.out
2+3*5
17
> a.out
2*3+5
16

Compiler Construction Summer semester 2008 28

Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

%[left|right] Operators1
...

%[left|right] Operatorsn

operators in one line have given associativity and same precedence

precedence increases over lines

Example 12.15

%left ’+’ ’-’

%left ’*’ ’/’

%right ’^’

^ (right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)

Compiler Construction Summer semester 2008 29

Precedences and Associativities in yacc II

%{/* Ambiguous grammar for arithmetic expressions
with precedences and associativities */

#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%left ’+’
%left ’*’
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { $$ = $1 + $3; }

| expr ’*’ expr { $$ = $1 * $3; }
| DIGIT { $$ = $1; };

%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = c - ’0’; return DIGIT;}
return c;

}

Compiler Construction Summer semester 2008 30

Precedences and Associativities in yacc III

> yacc nonambig.y

> cc y.tab.c -ly

> a.out

2*3+5

11

> a.out

2+3*5

17

Compiler Construction Summer semester 2008 31

Outline

1 Repetition: (S)LR(1) Parsing

2 LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc

5 Expressiveness of LL and LR Grammars

Compiler Construction Summer semester 2008 32

Overview of Grammar Classes

LR(0) •G (Ex. 9.15)

SLR(1) •GAE (Ex. 11.5)

LL(1) •G′
AE (Ex. 7.8)

LR(1) •G (Ex. 12.11)

LALR(1) •GLR (Ex. 12.5)

LL(0)

(singletons)

Moreover:

LL(k) $ LL(k +1)
for every k ∈ N

LR(k) $ LR(k+1)
for every k ∈ N

LL(k) ⊆ LR(k)
for every k ∈ N

Compiler Construction Summer semester 2008 33

Overview of Language Classes

(cf. O. Mayer: Syntaxanalyse, BI-Verlag, 1978, p. 409ff)

REG

L(LL(0))

L(LR(0))

L(LL(1))

CFL

L(SLR(1)) = L(LALR(1)) =

unambiguous CFL

L(LR(1)) = det . CFL

Moreover:

L(LL(k)) $
L(LL(k + 1)) $
L(LR(1))
for every k ∈ N

L(LR(k)) =
L(LR(1))
for every k ≥ 1

Compiler Construction Summer semester 2008 34

	Repetition: (S)LR(1) Parsing
	LALR(1) Parsing
	Bottom-Up Parsing of Ambiguous Grammars
	Generating Parsers Using yacc
	Expressiveness of LL and LR Grammars

