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The SLR(1) Action Function

Definition (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) × Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I, x) :=



















red i if π(i) = A → α, [A → α·] ∈ I (i 6= 0),
and x ∈ fo(A)

shift if [A → α1 · xα2] ∈ I and x ∈ Σ
accept if [S′ → S·] ∈ I and x = ε
error otherwise

Definition (SLR(1) grammar)

A grammar G ∈ CFGΣ has the SLR(1) property (notation:
G ∈ SLR(1)) if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition 10.1) form
the SLR(1) parsing table of G.
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LR(1) Items and Sets I

Observation: not every element of fo(A) can follow every occurrence
of A
=⇒ refinement of LR(0) items by adding possible lookahead symbols

Definition (LR(1) items and sets)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated by S′ → S.

If S′ ⇒∗
r αAaw ⇒r αβ1β2aw, then [A → β1 · β2, a] is called an

LR(1) item for αβ1.

If S′ ⇒∗
r αA ⇒r αβ1β2, then [A → β1 · β2, ε] is called an LR(1)

item for αβ1.

Given γ ∈ X∗, LR(1)(γ) denotes the set of all LR(1) items for γ,
called the LR(1) set (or: LR(1) information) of γ.

LR(1)(G) := {LR(1)(γ) | γ ∈ X∗}.

Compiler Construction Summer semester 2008 4



LR(0) vs. LR(1)

Example

GLR : S′ → S S → L=R | R
L → *R | a R → L

LR(0)(GLR) :
I0(ε) : [S′ → ·S] [S → ·L=R]

[S → ·R] [L → ·*R]
[L → ·a] [R → ·L]

I1(S) : [S′ → S·]
I2(L) : [S → L · =R] [R → L·]
I3(R) : [S → R·]
I4(*) : [L → * · R] [R → ·L]

[L → ·*R] [L → ·a]
I5(a) : [L → a·]
I6(L=) : [S → L= · R] [R → ·L]

[L → ·*R] [L → ·a]
I7(*R) : [L → *R·]
I8(*L) : [R → L·]
I9(L=R) : [S → L=R·]

LR(1)(GLR) :
I′0(ε) : [S′ → ·S, ε] [S → ·L=R, ε]

[S → ·R, ε] [L → ·*R, =]
[L → ·a, =] [R → ·L, ε]
[L → ·*R, ε] [L → ·a, ε]

I′1(S) : [S′ → S·, ε]
I′2(L) : [S → L · =R, ε] [R → L·, ε]
I′3(R) : [S → R·, ε]
I′4(*) : [L → * · R, =] [L → * · R, ε]

[R → ·L, =] [R → ·L, ε]
[L → ·*R, =] [L → ·a, =]
[L → ·*R, ε] [L → ·a, ε]

I′5(a) : [L → a·, =] [L → a·, ε]
I′6(L=) : [S → L= · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I′7(*R) : [L → *R·, =] [L → *R·, ε]
I′8(*L) : [R → L·, =] [R → L·, ε]
I′9(L=R) : [S → L=R·, ε]
I′10(L=L) : [R → L·, ε]
I′11(L=*) : [L → * · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I′12(L=a) : [L → a·, ε]
I′13(L=*R) : [L → *R·, ε]
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The LR(1) Action Function

Definition (LR(1) action function)

The LR(1) action function
act : LR(1)(G) × Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I, x) :=











red i if π(i) = A → α and [A → α·, x] ∈ I
shift if [A → α1 · xα2, y] ∈ I and x ∈ Σ
accept if [S′ → S·, ε] ∈ I and x = ε
error otherwise

Corollary

For every G ∈ CFGΣ, G ∈ LR(1) iff its LR(1) action function is well
defined.
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LALR(1) Parsing

Motivation: resolving conflicts using LR(1) too expensive

Example 11.7/11.13: |LR(0)(GLR)| = 11, |LR(1)(GLR)| = 15

A. Johnstone, E. Scott: Generalised Reduction Modified LR

Parsing for Domain Specific Language Prototyping, HICSS ’02,
IEEE, 2002, http://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495:

Grammar |LR(0)(G)| |LR(1)(G)|
Ansi-C 381 1788
Pascal 368 1395

Observation: potential redundancy by containment of LR(0) sets
in LR(1) sets (cf. Corollary 11.9)

Definition 12.1 (LR(0) equivalence)

Let lr0 : LR(1)(G) → LR(0)(G) be defined by
lr0(I) := {[A → β1 · β2] | [A → β1 · β2, x] ∈ I}.

Two sets I1, I2 ∈ LR(1)(G) are called LR(0) equivalent (notation:
I1 ∼0 I2) if lr0(I1) = lr0(I2).

Compiler Construction Summer semester 2008 8

http://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495


LR(0) Equivalence

Example 12.2 (cf. Example 11.7/11.13)

GLR : S′ → S S → L=R | R
L → *R | a R → L

LR(0)(GLR) :
I0(ε) : [S′ → ·S] [S → ·L=R]

[S → ·R] [L → ·*R]
[L → ·a] [R → ·L]

I1(S) : [S′ → S·]
I2(L) : [S → L · =R] [R → L·]
I3(R) : [S → R·]
I4(*) : [L → * · R] [R → ·L]

[L → ·*R] [L → ·a]
I5(a) : [L → a·]
I6(L=) : [S → L= · R] [R → ·L]

[L → ·*R] [L → ·a]
I7(*R) : [L → *R·]
I8(*L) : [R → L·]
I9(L=R) : [S → L=R·]

=⇒ I′4 ∼0 I′11
I′5 ∼0 I′12
I′7 ∼0 I′13
I′8 ∼0 I′10

LR(1)(GLR) :
I′0(ε) : [S′ → ·S, ε] [S → ·L=R, ε]

[S → ·R, ε] [L → ·*R, =]
[L → ·a, =] [R → ·L, ε]
[L → ·*R, ε] [L → ·a, ε]

I′1(S) : [S′ → S·, ε]
I′2(L) : [S → L · =R, ε] [R → L·, ε]
I′3(R) : [S → R·, ε]
I′4(*) : [L → * · R, =] [L → * · R, ε]

[R → ·L, =] [R → ·L, ε]
[L → ·*R, =] [L → ·a, =]
[L → ·*R, ε] [L → ·a, ε]

I′5(a) : [L → a·, =] [L → a·, ε]
I′6(L=) : [S → L= · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I′7(*R) : [L → *R·, =] [L → *R·, ε]
I′8(*L) : [R → L·, =] [R → L·, ε]
I′9(L=R) : [S → L=R·, ε]
I′10(L=L) : [R → L·, ε]
I′11(L=*) : [L → * · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I′12(L=a) : [L → a·, ε]
I′13(L=*R) : [L → *R·, ε]
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LALR(1) Sets I

Corollary 12.3

For every G ∈ CFGΣ, |LR(1)(G)/ ∼0 | = |LR(0)(G)|.

Idea: merge LR(0) equivalent LR(1) sets (maintaining the lookahead
information, but possibly introducing conflicts)

Definition 12.4 (LALR(1) sets)

Let G ∈ CFGΣ.

An information I ∈ LR(1)(G) determines the LALR(1) set
⋃

[I]∼0
=

⋃

{I ′ ∈ LR(1)(G) | I ′ ∼0 I}.

The set of all LALR(1) sets of G is denoted by LALR(1)(G).

Remark: by Corollary 12.3, |LALR(1)(G)| = |LR(0)(G)|
(but LALR(1) sets provide additional lookahead information)
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LALR(1) Sets II

Example 12.5 (cf. Example 12.2)

GLR : S′ → S S → L=R | R L→ *R | a R→ L

LR(0)(GLR) :
I0(ε) : [S′ → ·S] [S → ·L=R]

[S → ·R] [L→ ·*R]
[L→ ·a] [R→ ·L]

I1(S) : [S′ → S·]
I2(L) : [S → L · =R] [R→ L·]
I3(R) : [S → R·]
I4(*) : [L→ * · R] [R→ ·L]

[L→ ·*R] [L→ ·a]
I5(a) : [L→ a·]
I6(L=) : [S → L= · R] [R→ ·L]

[L→ ·*R] [L→ ·a]
I7(*R) : [L→ *R·]
I8(*L) : [R→ L·]
I9(L=R) : [S → L=R·]

LALR(1)(GLR) :
I ′′

0 := I ′

0 : [S′ → ·S, ε] [S → ·L=R, ε]
[S → ·R, ε] [L→ ·*R, =/ε]
[L→ ·a, =/ε] [R→ ·L, ε]

I ′′

1 := I ′

1 : [S′ → S·, ε]
I ′′

2 := I ′

2 : [S → L · =R, ε] [R→ L·, ε]
I ′′

3 := I ′

3 : [S → R·, ε]
I ′′

4 := I ′

4 ∪ I ′

11 : [L→ * · R, =/ε] [R→ ·L, =/ε]
[L→ ·*R,=/ε] [L→ ·a, =/ε]

I ′′

5 := I ′

5 ∪ I ′

12 : [L→ a·, =/ε]
I ′′

6 := I ′

6 : [S → L= ·R, ε] [R→ ·L, ε]
[L→ ·*R, ε] [L→ ·a, ε]

I ′′

7 := I ′

7 ∪ I ′

13 : [L→ *R·, =/ε]
I ′′

8 := I ′

8 ∪ I ′

10 : [R→ L·, =/ε]
I ′′

9 := I ′

9 : [S → L=R·, ε]
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The LALR(1) Action Function

The LALR(1) action function is defined in analogy to the LR(1) case
(Definition 11.14).

Definition 12.6 (LALR(1) action function)

The LALR(1) action function
act : LALR(1)(G) × Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I, x) :=











red i if π(i) = A → α and [A → α·, x] ∈ I
shift if [A → α1 · xα2, y] ∈ I and x ∈ Σ
accept if [S′ → S·, ε] ∈ I and x = ε
error otherwise

Definition 12.7 (LALR(1) grammar)

A grammar G ∈ CFGΣ has the LALR(1) property (notation:
G ∈ LALR(1)) if its LALR(1) action function is well defined.
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The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)

GLR ∈ LALR(1)

Also the LR(1) goto function (Definition 11.16) carries over to the
LALR(1) case. Reason:

Lemma 12.9

Let G ∈ CFGΣ and I1, I2 ∈ LR(1)(G) such that I1 ∼0 I2. Then, for
every Y ∈ X, goto(I1, Y ) ∼0 goto(I2, Y ).

Again, act and goto form the LALR(1) parsing table of G.
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The LALR(1) Parsing Table

Example 12.10 (cf. Example 12.5)

LALR(1)(GLR) act/goto|Σε
goto|N

* = a ε S L R
I ′′0 shift/I ′′4 shift/I ′′5 I ′′1 I ′′2 I ′′3
I ′′1 accept
I ′′2 shift/I ′′6 red 5
I ′′3 red 2
I ′′4 shift/I ′′4 shift/I ′′5 I ′′8 I ′′7
I ′′5 red 4 red 4
I ′′6 shift/I ′′4 shift/I ′′5 I ′′8 I ′′9
I ′′7 red 3 red 3
I ′′8 red 5 red 5
I ′′9 red 1

(empty = error/∅)
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LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G : S′ → S S → aAd | bBd | aBe | bAe A → c B → c

LR(1)(ε) : [S′ → ·S, ε] [S → ·aAd, ε] [S → ·bBd, ε] [S → ·aBe, ε]
[S → ·bAe, ε]

LR(1)(S) : [S′ → S·, ε]
LR(1)(a) : [S → a · Ad, ε] [S → a · Be, ε] [A → ·c, d] [B → ·c, e]
LR(1)(b) : [S → b · Bd, ε] [S → b · Ae, ε] [B → ·c, d] [A → ·c, e]
LR(1)(aA) : [S → aA · d, ε] LR(1)(aB) : [S → aB · e, ε]
LR(1)(ac) : [A → c·, d] [B → c·, e]
LR(1)(bB) : [S → bB · d, ε] LR(1)(bA) : [S → bA · e, ε]
LR(1)(bc) : [B → c·, d] [A → c·, e]
LR(1)(aAd) : [S → aAd·, ε] LR(1)(aBe) : [S → aBe·, ε]
LR(1)(bBd) : [S → bBd·, ε] LR(1)(bAe) : [S → bAe·, ε]

no conflicts =⇒ G ∈ LR(1)

LR(1)(ac) ∼0 LR(1)(bc), but LR(1)(ac) ∪ LR(1)(bc) has conflicts
=⇒ G /∈ LALR(1)
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Efficient Construction of LALR(1) Parsers

Naive algorithm to construct LALR(1) parser for G ∈ CFGΣ:

1 Construct LR(1)(G)

2 Determine and merge LR(0) equivalent LR(1) sets

Problem: no reduction of peak space requirement

Idea of improved algorithm (see Aho/Lam/Sethi/Ullman: Compilers:

Principles, Techniques, and Tools, 2nd ed., p. 270ff):

1 Represent each set of items by its kernel, i.e., by the items of the
form [S′ → ·S, ε] or [A → β1 · β2, x] where β1 6= ε

2 Construct LALR(1) kernels from LR(0) kernels similarly to LR(1)
items

3 Compute LALR(1) sets by taking the ε-closure

(applied in yacc parser generator)
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Ambiguous Grammars

Reminder (Definition 5.6): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

Lemma 12.12

If G ∈ CFGΣ is ambiguous, then G /∈
⋃

k∈N
LR(k).

Proof.

Assume that there exist k ∈ N and G ∈ LR(k) such that G is ambiguous.
Hence there exists w ∈ L(G) with different right derivations. Let αAv be the
last common sentence of the two derivations (i.e., β 6= β′):

S ⇒∗

r
αAv

{

⇒r αβv ⇒∗

r w
⇒r αβ′v ⇒∗

r
w

But since firstk(v) = firstk(v) for every v ∈ Σ∗, Definition 9.8 yields that
β = β′. Contradiction

However ambiguity is a natural specification method which generally avoids

involved syntactic constructs.
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Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)

G : E′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

LR(0)(G):
I0 := LR(0)(ε) : [E′ → ·E] [E → ·E+E] [E → ·E*E] [E → ·a]
I1 := LR(0)(E) : [E′ → E·] [E → E · +E] [E → E · *E]
I2 := LR(0)(a) : [E → a·]
I3 := LR(0)(E+) : [E → E+ · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I4 := LR(0)(E*) : [E → E* · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I5 := LR(0)(E+E) : [E → E+E·] [E → E · +E] [E → E · *E]
I6 := LR(0)(E*E) : [E → E*E·] [E → E · +E] [E → E · *E]

Conflicts: I1: SLR(1)-solvable (reduce on ε, shift on +/*)
I5, I6: not SLR(1)-solvable (+, * ∈ fo(E))

Solution:
I5: * > + =⇒ act(I5, *) := shift, + left assoc. =⇒ act(I5, +) := red 1
I6: * > + =⇒ act(I6, +) := red 2, * left assoc. =⇒ act(I6, *) := red 2
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Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)

G : S′ → S S → iSeS | iS | a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):
I0 := LR(0)(ε) : [S′ → ·S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I1 := LR(0)(S) : [S′ → S·]
I2 := LR(0)(i) : [S → i · SeS] [S → i · S] [S → ·iSeS]

[S → ·iS] [S → ·a]
I3 := LR(0)(a) : [S → a·]
I4 := LR(0)(iS) : [S → iS · eS] [S → iS·]
I5 := LR(0)(iSe) : [S → iSe · S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I6 := LR(0)(iSeS) : [S → iSeS·]

Conflict in I4: e ∈ fo(S) =⇒ not SLR(1)-solvable

Solution (1): act(I4, e) := shift
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The yacc Tool

Usage of yacc (“yet another compiler compiler”):

spec.y
yacc
−→ y.tab.c lex.yy.c

[f]lex
←− spec.l

yacc specification Parser source Scanner source [f]lex specification
↓ cc ↓
a.out

Executable LALR(1) parser

Like for [f]lex, a yacc specification is of the form

Declarations (optional)
%%

Rules
%%

Auxiliary procedures (optional)
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yacc Specifications

Declarations: Token definitions: %token Tokens
Not every token needs to be declared (’+’, ’=’, ...)
Start symbol: %start Symbol (optional)
C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

A → α1 | α2 | . . . | αn represented as
A : α1 {Action1}

| α2 {Action2}
...
| αn {Actionn};

Semantic actions = C statements for computing attribute
values
$$ = attribute value of A
$i = attribute value of ith symbol on right-hand side
Default action: $$ = $1

Auxiliary procedures: scanner (if not [f]lex), error routines, ...
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Example: Simple Desk Calculator I

%{/* SLR(1) grammar for arithmetic expressions (Example 11.1) */
#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ term { $$ = $1 + $3; }

| term { $$ = $1; };
term : term ’*’ factor { $$ = $1 * $3; }

| factor { $$ = $1; };
factor : ’(’ expr ’)’ { $$ = $2; }

| DIGIT { $$ = $1; };
%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) yylval = c - ’0’; return DIGIT;
return c;

}
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Example: Simple Desk Calculator II

> yacc calc.y

> cc y.tab.c -ly

> a.out

2+3

5

> a.out

2+3*5

17
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An Ambiguous Grammar I

%{/* Ambiguous grammar for arithm. expressions (Ex. 12.13) */
#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { $$ = $1 + $3; }

| expr ’*’ expr { $$ = $1 * $3; }
| DIGIT { $$ = $1; };

%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = c - ’0’; return DIGIT;}
return c;

}

Compiler Construction Summer semester 2008 26



An Ambiguous Grammar II

Invoking yacc with the option -v produces a report y.output:

...
State 8

2 expr: expr . ’+’ expr
2 | expr ’+’ expr .
3 | expr . ’*’ expr

’+’ shift and goto state 6
’*’ shift and goto state 7

’+’ [reduce with rule 2 (expr)]
’*’ [reduce with rule 2 (expr)]

State 9

2 expr: expr . ’+’ expr
3 | expr . ’*’ expr
3 | expr ’*’ expr .

’+’ shift and goto state 6
’*’ shift and goto state 7

’+’ [reduce with rule 3 (expr)]
’*’ [reduce with rule 3 (expr)]
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Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification

shift/reduce: prefer shift

resolves dangling-else ambiguity (Example 12.14) correctly
also adequate for * after sum (Example 12.13) and for
right-associative binary operators
not appropriate for left-associative binary operators
( =⇒ reduce; see Example 12.13)

For ambiguous grammar:

> yacc ambig.y
conflicts: 4 shift/reduce
> cc y.tab.c -ly
> a.out
2+3*5
17
> a.out
2*3+5
16
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Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

%[left|right] Operators1
...

%[left|right] Operatorsn

operators in one line have given associativity and same precedence

precedence increases over lines

Example 12.15

%left ’+’ ’-’

%left ’*’ ’/’

%right ’^’

^ (right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)
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Precedences and Associativities in yacc II

%{/* Ambiguous grammar for arithmetic expressions
with precedences and associativities */

#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%left ’+’
%left ’*’
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { $$ = $1 + $3; }

| expr ’*’ expr { $$ = $1 * $3; }
| DIGIT { $$ = $1; };

%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = c - ’0’; return DIGIT;}
return c;

}
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Precedences and Associativities in yacc III

> yacc nonambig.y

> cc y.tab.c -ly

> a.out

2*3+5

11

> a.out

2+3*5

17
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Outline

1 Repetition: (S )LR(1) Parsing

2 LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc

5 Expressiveness of LL and LR Grammars
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Overview of Grammar Classes

LR(0) •G (Ex. 9.15)

SLR(1) •GAE (Ex. 11.5)

LL(1) •G′
AE (Ex. 7.8)

LR(1) •G (Ex. 12.11)

LALR(1) •GLR (Ex. 12.5)

LL(0)

(singletons)

Moreover:

LL(k) $ LL(k +1)
for every k ∈ N

LR(k) $ LR(k+1)
for every k ∈ N

LL(k) ⊆ LR(k)
for every k ∈ N
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Overview of Language Classes

(cf. O. Mayer: Syntaxanalyse, BI-Verlag, 1978, p. 409ff)

REG

L(LL(0 ))

L(LR(0 ))

L(LL(1 ))

CFL

L(SLR(1 )) = L(LALR(1 )) =

unambiguous CFL

L(LR(1 )) = det . CFL

Moreover:

L(LL(k)) $
L(LL(k + 1)) $
L(LR(1))
for every k ∈ N

L(LR(k)) =
L(LR(1))
for every k ≥ 1
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