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Overview of Grammar Classes

LL(1) G4y (Ex. 7.8)
Moreover:
LL(0) o LL(K) S LL(k+1)
(singletons) for every k € N
® LR(k) & LR(k+1)
LR(0) oG (Ex. 9.15) for every k € N

o LL(k) C LR(k)
for every k € N

SLR(1) eGap (Ex. 11.5)

LALR(1) eGprp (Ex. 12.5)

LR(1) oG (Ex. 12.11)
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Overview of Language Classes

(cf. O. Mayer: Syntaxanalyse, BI-Verlag, 1978, p. 409ff)

L(LL(1))
REC Moreover:
o L(LL(k)) S
L(LL(0)) L(LL(k+1)) S
L(LR(1))
’ _ for every k € N
L(LE(0)) o L(LR(k)) =
L(SLR(1)) = L(LALR(1)) = L(LR(1))
L(LR(1)) = det. CFL for every k > 1
unambiguous CFL
CFL
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© LL and LR Parsing in Practice
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LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)
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LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
o LL parsing technique easier to understand

@ recursive-descent parser easier to debug than LALR
action tables
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LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
Generality : LALR wins
o “almost” LL(1) € LALR(1) (only pathological
counterexamples)

@ LL requires elimination of left recursion and left
factorization
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LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins

@ actions can be placed anywhere in LL parsers without
causing conflicts

o in LALR: implicit e-productions
—> may generate conflicts
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LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins
Error handling : LL wins

@ top-down approach provides context information
= better basis for reporting and/or repairing
errors
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LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins
Error handling : LL wins
Parser size : comparable

o LL: action table
o LALR: action/goto table
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LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins
Error handling : LL wins

Parser size : comparable
Parsing speed : comparable

@ both linear in length of input program

(LL(1): see Lemma 8.7 for e-free case)
o concrete figures tool dependent
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LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins
Error handling : LL wins
Parser size : comparable
Parsing speed : comparable

Conclusion: choose LL when possible
(depending on available grammars and tools)
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© Overview
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Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
Syntactic analysis (Parser))

Y
(Somantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code
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@ Problem Statement
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

@ Are there identifiers that are not declared? Declared but not used?
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

@ Are there identifiers that are not declared? Declared but not used?

o Is x a scalar, an array, or a procedure? Of which type?
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

@ Are there identifiers that are not declared? Declared but not used?
o Is x a scalar, an array, or a procedure? Of which type?

® Which declaration of x is used by each reference?
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

@ Are there identifiers that are not declared? Declared but not used?
o Is x a scalar, an array, or a procedure? Of which type?
© Which declaration of x is used by each reference?

o Is x defined before it is used?
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

¢ & ¢ ¢

Is the expression 3 * x + y type consistent?
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

o Are there identifiers that are not declared? Declared but not used?
o Is x a scalar, an array, or a procedure? Of which type?

® Which declaration of x is used by each reference?

@ Is x defined before it is used?

@ Is the expression 3 * x + y type consistent?

@ Where should the value of x be stored (register/stack/heap)?
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

o Are there identifiers that are not declared? Declared but not used?
o Is x a scalar, an array, or a procedure? Of which type?

® Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

¢ © e ¢ ¢
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

e © e e ¢ ¢

o ...

These cannot be expressed using context-free grammars!
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

o Are there identifiers that are not declared? Declared but not used?
o Is x a scalar, an array, or a procedure? Of which type?

® Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

¢ & ¢ ¢

o ...

These cannot be expressed using context-free grammars!

(e.g., {ww | w e X*} ¢ CFLy)
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Static Semantics

Static semantics refers to properties of program constructs
@ which are true for every occurrence of this construct in every
program execution (static) and
@ can be decided at compile time
@ but are context-sensitive and thus not expressible using
context-free grammars (semantics).
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Static Semantics

Static semantics refers to properties of program constructs
@ which are true for every occurrence of this construct in every
program execution (static) and
@ can be decided at compile time
@ but are context-sensitive and thus not expressible using
context-free grammars (semantics).

Example properties:

Static: type or declaredness of an identifier, number of registers
required to evaluate an expression, ...
Dynamic: value of an expression, size of runtime stack, ...
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Static Semantics

Static semantics refers to properties of program constructs
@ which are true for every occurrence of this construct in every
program execution (static) and
@ can be decided at compile time
@ but are context-sensitive and thus not expressible using
context-free grammars (semantics).

Example properties:
Static: type or declaredness of an identifier, number of registers
required to evaluate an expression, ...
Dynamic: value of an expression, size of runtime stack, ...

These properties are determined by

Scope rules: defines part of program where a declaration is valid

Visibility rules: defines part of scope where a declaration is visible
(overlapping of global and local declarations)

Typing rules: defines type consistency of expressions, statements, ...
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© Attribute Grammars
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Attribute Grammars 1

Goal:

Idea:

—
Result:

compute context-dependent but runtime-independent
properties of a given program

enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

Semantic analysis = attribute evaluation

attributed syntax tree
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Attribute Grammars 1

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

—> Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:
o With every nonterminal a set of attributes is associated.
o Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leafs to the root)
Inherited: top-down computation (from the root to the leafs)

o With every production a set of semantic rules is associated.
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Attribute Grammars 11

Advantage: attribute grammars provide a very flexible and broadly
applicable mechanism for transporting information throught the syntax
tree (“syntax-directed translation”)

o Attribute values: symbol tables, data types, code, error flags, ...
o Application in Compiler Construction:

o static semantics

@ program analysis for optimization

e code generation

e error handling
o Automatic attribute evaluation by compiler generators

(cf. yacc’s synthesized attributes)

@ Originally designed by D. Knuth for defining the semantics of
context-free languages (Math. Syst. Theory 2 (1968), pp. 127-145)
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Example: Knuth’s Binary Numbers I

Example 13.1 (only synthesized attributes)

Binary numbers (with fraction):

Ggp: Numbers N — L

N —L.L
Lists L — B

L — LB
Bits B —0
Bits B—1
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Example: Knuth’s Binary Numbers I

Example 13.1 (only synthesized attributes)

Binary numbers (with fraction):

Ggp: Numbers N — L v.0 = v.1
N—-L.L v0 = v.1+v.3/2"3
Lists L— B v.0 = v.l
[0 =1
L—-LB v.0 = 2x%xv.1l+wv.2
[0 =1011+1
Bits B —0 v.0 = 0
Bits B—1 v.0 =1

Synthesized attributes of N,L,B: v (value; domain: V¥ := Q)
of L: I (length; domain: V!:=N)

Semantic rules: equations with attribute variables
(index = position of symbol; 0 = left-hand side)
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Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Syntax tree for 1101.01: N
P TN
e i o
L = L
e \\ // N N
/// \\\ /// \\\
L B L B
) \ ] ] I
e \ I I I
SN i i i
e '\ 1 1 ]
O T - i
& B | |
L B 0 0
i i
I I
| i
B 1
i
i
]
1
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Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

" R

ooty
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Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

B—0:0.0=0

ooty
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Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

B—1:00=1

ooty
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Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

L— B:v.0=wv.1

ooty
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Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

L—B:l0=1

ooty
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Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

L —-LB:v.0=2%xv.1+0v.2

ooty
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Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

L —-LB:v.0=2%xv.1+0v.2

ooty
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Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

L —-LB:v.0=2%xv.1+0v.2

ooty
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Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

L—LB:l0=101+1

ooty
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Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

ooty

N—>L.L:v0=vl+v3/2"3
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Adding Inherited Attributes I

Example 13.2 (synthesized + inherited attributes)

Binary numbers (with fraction):
G5 : Numbers N — L
N —-L.L
Lists L — B
L — LB
Bits B —o0
Bits B—1
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Adding Inherited Attributes I

Example 13.2 (synthesized + inherited attributes)

Binary numbers (with fraction):
G5 : Numbers N — L v.0 = v.1
p.l =0
N—L.L v0 = v.1+0v.3
p.l =0
p3 = —1.3
Lists L— B v.0 = v.1
1.0 =1
p.l = p.0
L—-LB v0 = vl+wv2
.0 =11+1
p.l = p0+1
p.2 = p0
Bits B —o0 0=0
Bits B—1 v.0 = 2P0
Synthesized attributes of N, L, B: v (value; domain: V' := Q)
of L: I (length; domain: V! :=N)
Inherited attribute of L,B:  p (position; domain: V? :=7Z)
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Adding Inherited Attributes 11

Example 13.2 (continued)

Syntax tree for 10.1:

o -t
s e
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Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:
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Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:
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Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—LB:l0=101+1
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Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

N—-L.L:p1=0
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Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:
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Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:
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Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:
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Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:
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Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:
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Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:
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Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L— B:v.0=wv.1
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Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—LB:v0=v1+v2
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Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

N—L.L:v0=v1+2.3
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© Formal Definition of Attribute Grammars
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Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G = (N, %, P,S) € CFGy with X := Ny X.
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Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G = (N, %, P,S) € CFGy with X := Ny X.

® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.
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Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G=(N,%,P,S) € CFGyx with X := NWX.
® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y") := att(Y) N Inh for every ¥ € X.

m Compiler Construction Summer semester 2008 20



Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G = (N, %, P,S) € CFGy with X := Ny X.

® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m = Yy — Y;...Y, € P determines the set
Vary = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of m with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, := Vary \ In,
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Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G = (N, %, P,S) € CFGy with X := Ny X.

® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m = Yy — Y;...Y, € P determines the set
Vary = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of m with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, := Vary \ In,
@ A semantic rule of 7 is an equation of the form
ot = fag.i1, ..., 0pn.ip)
where n € N, a.i € Ing, 0.1 € Outr, and f: V1 x ... x VO — Ve,
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Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G = (N, %, P,S) € CFGy with X := Ny X.

® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m = Yy — Y;...Y, € P determines the set
Vary = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of w with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, := Vary \ In,
@ A semantic rule of 7 is an equation of the form
ot = fag.i1, ..., 0pn.ip)
where n € N, a.i € Ing, 0.1 € Outr, and f: V1 x ... x VO — Ve,
@ For each m € P, let E, be a set with exactly one semantic rule for every
inner variable of 7, and let £ := (E, | m € P).
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Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G = (N, %, P,S) € CFGy with X := Ny X.

® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m = Yy — Y;...Y, € P determines the set
Vary = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of w with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, := Vary \ In,
@ A semantic rule of 7 is an equation of the form
ot = fag.i1, ..., 0pn.ip)
where n € N, a.i € Ing, 0.1 € Outr, and f: V1 x ... x VO — Ve,
@ For each m € P, let E, be a set with exactly one semantic rule for every
inner variable of 7, and let £ := (E, | m € P).

Then A := (G, E, V) is called an attribute grammar: 2 € AG.
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Formal Definition of Attribute Grammars II

Example 13.4 (cf. Example 13.2)

Ap € AG for binary numbers:
o Attributes: Att = Syn W Inh with Syn = {v,l} and Inh = {p}
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Formal Definition of Attribute Grammars II

Example 13.4 (cf. Example 13.2)

Ap € AG for binary numbers:
o Attributes: Att = Syn W Inh with Syn = {v,l} and Inh = {p}
@ Value sets: Vv=Q, VI=N, VP =7
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Formal Definition of Attribute Grammars II

Example 13.4 (cf. Example 13.2)

Ap € AG for binary numbers:
o Attributes: Att = Syn W Inh with Syn = {v,l} and Inh = {p}
o Value sets: V?'=Q, VI=N, VP =7
o Attribute assignment: | Y € X | N L B

0 1
syn(Y) [ {v} {v,0} {o} 0 0
inh(Y) | 0 {p} {p} 0 0
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Formal Definition of Attribute Grammars II

Example 13.4 (cf. Example 13.2)

Ap € AG for binary numbers:
o Attributes: Att = Syn W Inh with Syn = {v,l} and Inh = {p}

o Value sets: V?'=Q, VI=N, VP =7
@ Attribute assignment: | Y € X | N L B 01
syn(Y) [ {v} {v, i} {v} 0 0
inh(Y) | 0 {p} {p} 0 0

o Attribute variables:

meP N — L N —L.L L— B
Ing {v.0,p.1} {v.0,p.1,p.3}  {v.0,1.0,p.1}
Out, {v.1,1.1} {v.1,1.1,0.3,1.3}  {v.1,p.0}
meP L— LB B—0 B—1
Ing {v.0,1.0,p.1,p.2} {v.0} {v.0}
Out, | {v.1,v.2,1.1,p.0} {p.0} {p.0}
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Formal Definition of Attribute Grammars II

Example 13.4 (cf. Example 13.2)

Ap € AG for binary numbers:
o Attributes: Att = Syn W Inh with Syn = {v,l} and Inh = {p}

o Value sets: V?'=Q, VI=N, VP =7
@ Attribute assignment: | Y € X | N L B 01
syn(Y) [ {v} {v, i} {v} 0 0
inh(Y) | 0 {p} {p} 0 0

o Attribute variables:

meP N — L N —L.L L— B
Ing {v.0,p.1} {v.0,p.1,p.3}  {v.0,1.0,p.1}
Out, {v.1,1.1} {v.1,1.1,0.3,1.3}  {v.1,p.0}
meP L— LB B—0 B—1
Ing {v.0,1.0,p.1,p.2} {v.0} {v.0}
Out, | {v.1,v.2,1.1,p.0} {p.0} {p.0}

o Semantic rules: see Example 13.2
(e.g., EN—op, = {v.0 =v.1,p.1 =0})
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Attribution of Syntax Trees I

Definition 13.5 (Attribution of syntax trees)

Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set
of nodes K.

o K determines the set of attribute variables of ¢:
Vary == {a.k | k € K labelled with Y € X, o € att(Y)}.
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Attribution of Syntax Trees I

Definition 13.5 (Attribution of syntax trees)

Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set
of nodes K.

o K determines the set of attribute variables of ¢:
Vary == {a.k | k € K labelled with Y € X, o € att(Y)}.

o Let kp € K be an (inner) node where production
m=Yy—Y;...Y, € Pis applied, and let k;,...,k. € K be the
corresponding successor nodes. The attribute equation system Ej,
of kg is obtained from FE, by substituting every attribute index
i€{0,...,r} by k;.
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Attribution of Syntax Trees I

Definition 13.5 (Attribution of syntax trees)

Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set
of nodes K.

o K determines the set of attribute variables of ¢:
Vary == {a.k | k € K labelled with Y € X, o € att(Y)}.

o Let kp € K be an (inner) node where production
m=Yy—Y;...Y, € Pis applied, and let k;,...,k. € K be the
corresponding successor nodes. The attribute equation system Ej,
of kg is obtained from FE, by substituting every attribute index
i€{0,...,r} by k;.

o The attribute equation system of ¢ is given by

E; :=|J{Ek | k inner node of t}.
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Attribution of Syntax Trees II

For each a.k € Var; except the inherited attribute variables at the root
and the synthesized attribute variables at the leafs of t, E; contains
exactly one equation with left-hand side o.k.
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Attribution of Syntax Trees II

For each a.k € Var; except the inherited attribute variables at the root
and the synthesized attribute variables at the leafs of t, E; contains
exactly one equation with left-hand side o.k.

Assumptions:
@ The start symbol does not have inherited attributes: inh(S) = 0.

@ Synthesized attributes of terminal symbols are provided by the
scanner.
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Attribution of Syntax Trees 111

Example 13.7 (cf. Example 13.2)

@5:1[:@@ k7. @kgl:L@@
/// \\\ |
//// \\\\ i
@k:gI:L@@ @kg,l:B@ ® ko I: B®
l l l
| | |
®ks : B@® ke : 0 kig: 1
|
l
|

kg1
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Attribution of Syntax Trees 111

Example 13.7 (cf. Example 13.2)

|
@5:1[:@@ k7. @kgl:L@@
/// \\\ |
//// \\\\ i
@k:gI:L@@ @kg,l:B@ ® ko I: B®
l l l
| | |
@kg:B@ kG:O ]{1021
|
i
kg1
En_r.r: v.0=v14+v.3 1 Ey, : v.ky =v.ky +v.kg
pl1=0 Subsf pki1 =0
p3 = —[.3 p.kg = —l.k‘g

m Compiler Construction Summer semester 2008 24



Attribution of Syntax Trees 111

Example 13.7 (cf. Example 13.2)

|
|
@Zﬁ [:@@ k7. @kgl:L@@
/// \\\ |
//// \\\\ i
@k:gI:L@@ @kg,l:B@ ® ko I: B®
l l l
| | |
@ks : BO ke : O ko @ 1
|
i
kqg: 1
Er rg: v.0=v.1+4v.2 B, vk = vk +v.ks
.0=101+1 subst l.ky =Lk +1
pl=p0+1 p.ko = p.k1 +1
0.2 = p.0 Js = p.ky
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