Compiler Construction

Lecture 13: Semantic Analysis I
(Definition of Attribute Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc08/

Summer semester 2008

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc08/

@ Repetition: Expressiveness of LL and LR Grammars

Rm Compiler Construction Summer semester 2

Overview of Grammar Classes

LL(1) G4y (Ex. 7.8)
Moreover:
LL(0) o LL(K) S LL(k+1)
(singletons) for every k € N
® LR(k) & LR(k+1)
LR(0) oG (Ex. 9.15) for every k € N

o LL(k) C LR(k)
for every k € N

SLR(1) eGap (Ex. 11.5)

LALR(1) eGprp (Ex. 12.5)

LR(1) oG (Ex. 12.11)

Rm Compiler Construction Summer semester 2008 3

Overview of Language Classes

(cf. O. Mayer: Syntaxanalyse, BI-Verlag, 1978, p. 409ff)

L(LL(1))
REC Moreover:
o L(LL(k)) S
L(LL(0)) L(LL(k+1)) S
L(LR(1))
’ _ for every k € N
L(LE(0)) o L(LR(k)) =
L(SLR(1)) = L(LALR(1)) = L(LR(1))
L(LR(1)) = det. CFL for every k > 1
unambiguous CFL
CFL

Rm Compiler Construction Summer semester 2008 4

© LL and LR Parsing in Practice

Rm Compiler Construction Summer semester 2

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Rm Compiler Construction Summer semester 2008

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
o LL parsing technique easier to understand

@ recursive-descent parser easier to debug than LALR
action tables

Rm Compiler Construction Summer semester 2008 6

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
Generality : LALR wins
o “almost” LL(1) € LALR(1) (only pathological
counterexamples)

@ LL requires elimination of left recursion and left
factorization

Rm Compiler Construction Summer semester 2008 6

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins

@ actions can be placed anywhere in LL parsers without
causing conflicts

o in LALR: implicit e-productions
—> may generate conflicts

Rm Compiler Construction Summer semester 2008 6

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins
Error handling : LL wins

@ top-down approach provides context information
= better basis for reporting and/or repairing
errors

Rm Compiler Construction Summer semester 2008 6

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins
Error handling : LL wins
Parser size : comparable

o LL: action table
o LALR: action/goto table

Rm Compiler Construction Summer semester 2008 6

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins
Error handling : LL wins

Parser size : comparable
Parsing speed : comparable

@ both linear in length of input program

(LL(1): see Lemma 8.7 for e-free case)
o concrete figures tool dependent

Rm Compiler Construction Summer semester 2008 6

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins
Error handling : LL wins
Parser size : comparable
Parsing speed : comparable

Conclusion: choose LL when possible
(depending on available grammars and tools)

Rm Compiler Construction Summer semester 2008 6

© Overview

Rm iler Construction Summer semester

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
Syntactic analysis (Parser))

Y
(Somantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Summer semester 2008

@ Problem Statement

Rm Compiler nstruction Summer semester 2

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

@ Are there identifiers that are not declared? Declared but not used?

Rm Compiler Construction Summer semester 2008 10

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

@ Are there identifiers that are not declared? Declared but not used?

o Is x a scalar, an array, or a procedure? Of which type?

Rm Compiler Construction Summer semester 2008 10

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

@ Are there identifiers that are not declared? Declared but not used?
o Is x a scalar, an array, or a procedure? Of which type?

® Which declaration of x is used by each reference?

Rm Compiler Construction Summer semester 2008 10

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

@ Are there identifiers that are not declared? Declared but not used?
o Is x a scalar, an array, or a procedure? Of which type?
© Which declaration of x is used by each reference?

o Is x defined before it is used?

Rm Compiler Construction Summer semester 2008 10

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

¢ & ¢ ¢

Is the expression 3 * x + y type consistent?

Rm Compiler Construction Summer semester 2008 10

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

o Are there identifiers that are not declared? Declared but not used?
o Is x a scalar, an array, or a procedure? Of which type?

® Which declaration of x is used by each reference?

@ Is x defined before it is used?

@ Is the expression 3 * x + y type consistent?

@ Where should the value of x be stored (register/stack/heap)?

m' Compiler Construction Summer semester 2008

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

o Are there identifiers that are not declared? Declared but not used?
o Is x a scalar, an array, or a procedure? Of which type?

® Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

¢ © e ¢ ¢

m' Compiler Construction Summer semester 2008

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

e © e e ¢ ¢

o ...

These cannot be expressed using context-free grammars!

Rm Compiler Construction Summer semester 2008 10

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

o Are there identifiers that are not declared? Declared but not used?
o Is x a scalar, an array, or a procedure? Of which type?

® Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

¢ & ¢ ¢

o ...

These cannot be expressed using context-free grammars!

(e.g., {ww | w e X*} ¢ CFLy)

Rm Compiler Construction Summer semester 2008 10

Static Semantics

Static semantics refers to properties of program constructs
@ which are true for every occurrence of this construct in every
program execution (static) and
@ can be decided at compile time
@ but are context-sensitive and thus not expressible using
context-free grammars (semantics).

Rm Compiler Construction Summer semester 2

Static Semantics

Static semantics refers to properties of program constructs
@ which are true for every occurrence of this construct in every
program execution (static) and
@ can be decided at compile time
@ but are context-sensitive and thus not expressible using
context-free grammars (semantics).

Example properties:

Static: type or declaredness of an identifier, number of registers
required to evaluate an expression, ...
Dynamic: value of an expression, size of runtime stack, ...

m' Compiler Construction Summer semester 2008 11

Static Semantics

Static semantics refers to properties of program constructs
@ which are true for every occurrence of this construct in every
program execution (static) and
@ can be decided at compile time
@ but are context-sensitive and thus not expressible using
context-free grammars (semantics).

Example properties:
Static: type or declaredness of an identifier, number of registers
required to evaluate an expression, ...
Dynamic: value of an expression, size of runtime stack, ...

These properties are determined by

Scope rules: defines part of program where a declaration is valid

Visibility rules: defines part of scope where a declaration is visible
(overlapping of global and local declarations)

Typing rules: defines type consistency of expressions, statements, ...

m' Compiler Construction Summer semester 2008

© Attribute Grammars

Rm Compiler Construction Summer semester 2

Attribute Grammars 1

Goal:

Idea:

—
Result:

compute context-dependent but runtime-independent
properties of a given program

enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

Semantic analysis = attribute evaluation

attributed syntax tree

Rm Compiler Construction Summer semester 2008 13

Attribute Grammars 1

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

—> Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:
o With every nonterminal a set of attributes is associated.
o Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leafs to the root)
Inherited: top-down computation (from the root to the leafs)

o With every production a set of semantic rules is associated.

Rm Compiler Construction Summer semester 2008 13

Attribute Grammars 11

Advantage: attribute grammars provide a very flexible and broadly
applicable mechanism for transporting information throught the syntax
tree (“syntax-directed translation”)

o Attribute values: symbol tables, data types, code, error flags, ...
o Application in Compiler Construction:

o static semantics

@ program analysis for optimization

e code generation

e error handling
o Automatic attribute evaluation by compiler generators

(cf. yacc’s synthesized attributes)

@ Originally designed by D. Knuth for defining the semantics of
context-free languages (Math. Syst. Theory 2 (1968), pp. 127-145)

m' Compiler Construction Summer semester 2008 14

Example: Knuth’s Binary Numbers I

Example 13.1 (only synthesized attributes)

Binary numbers (with fraction):

Ggp: Numbers N — L

N —L.L
Lists L — B

L — LB
Bits B —0
Bits B—1

m Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I

Example 13.1 (only synthesized attributes)

Binary numbers (with fraction):

Ggp: Numbers N — L v.0 = v.1
N—-L.L v0 = v.1+v.3/2"3
Lists L— B v.0 = v.l
[0 =1
L—-LB v.0 = 2x%xv.1l+wv.2
[0 =1011+1
Bits B —0 v.0 = 0
Bits B—1 v.0 =1

Synthesized attributes of N,L,B: v (value; domain: V¥ := Q)
of L: I (length; domain: V!:=N)

Semantic rules: equations with attribute variables
(index = position of symbol; 0 = left-hand side)

m Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Syntax tree for 1101.01: N
P TN
e i o
L = L
e \\ // N N
/// \\\ /// \\\
L B L B
) \]] I
e \ I I I
SN i i i
e '\ 1 1]
O T - i
& B | |
L B 0 0
i i
I I
| i
B 1
i
i
]
1

Compiler Construction Summer semester 2008 16

Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

" R

ooty

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

B—0:0.0=0

ooty

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

B—1:00=1

ooty

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

L— B:v.0=wv.1

ooty

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

L—B:l0=1

ooty

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

L —-LB:v.0=2%xv.1+0v.2

ooty

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

L —-LB:v.0=2%xv.1+0v.2

ooty

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

L —-LB:v.0=2%xv.1+0v.2

ooty

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

Attributed syntax tree for 1101.01:

L—LB:l0=101+1

ooty

Compiler Construction Summer semester 2008

Example: Knuth’s Binary Numbers I1

Example 13.1 (continued)

ooty

N—>L.L:v0=vl+v3/2"3

Compiler Construction Summer semester 2008

Adding Inherited Attributes I

Example 13.2 (synthesized + inherited attributes)

Binary numbers (with fraction):
G5 : Numbers N — L
N —-L.L
Lists L — B
L — LB
Bits B —o0
Bits B—1

m Compiler Construction Summer semester 2008

Adding Inherited Attributes I

Example 13.2 (synthesized + inherited attributes)

Binary numbers (with fraction):
G5 : Numbers N — L v.0 = v.1
p.l =0
N—L.L v0 = v.1+0v.3
p.l =0
p3 = —1.3
Lists L— B v.0 = v.1
1.0 =1
p.l = p.0
L—-LB v0 = vl+wv2
.0 =11+1
p.l = p0+1
p.2 = p0
Bits B —o0 0=0
Bits B—1 v.0 = 2P0
Synthesized attributes of N, L, B: v (value; domain: V' := Q)
of L: I (length; domain: V! :=N)
Inherited attribute of L,B: p (position; domain: V? :=7Z)

m Compiler Construction Summer semester 2008

Adding Inherited Attributes 11

Example 13.2 (continued)

Syntax tree for 10.1:

o -t
s e

m Compiler Construction Summer semester 2008

Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008 18

Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008 18

Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—LB:l0=101+1

m Compiler Construction Summer semester 2008 18

Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

N—-L.L:p1=0

m Compiler Construction Summer semester 2008 18

Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008 18

Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008 18

Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008 18

Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008 18

Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008 18

Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

Compiler Construction Summer semester 2008 18

Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L— B:v.0=wv.1

m Compiler Construction Summer semester 2008 18

Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—LB:v0=v1+v2

m Compiler Construction Summer semester 2008 18

Adding Inherited Attributes 11

Example 13.2 (continued)
Attributed syntax tree for 10.1:

N—L.L:v0=v1+2.3

m Compiler Construction Summer semester 2008 18

© Formal Definition of Attribute Grammars

Rm Compiler Construction Summer semester 2

Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G = (N, %, P,S) € CFGy with X := Ny X.

m Compiler Construction Summer semester 2008 20

Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G = (N, %, P,S) € CFGy with X := Ny X.

® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

m Compiler Construction Summer semester 2008 20

Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G=(N,%,P,S) € CFGyx with X := NWX.
® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y") := att(Y) N Inh for every ¥ € X.

m Compiler Construction Summer semester 2008 20

Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G = (N, %, P,S) € CFGy with X := Ny X.

® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m = Yy — Y;...Y, € P determines the set
Vary = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of m with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, := Vary \ In,

m Compiler Construction Summer semester 2008 20

Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G = (N, %, P,S) € CFGy with X := Ny X.

® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m = Yy — Y;...Y, € P determines the set
Vary = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of m with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, := Vary \ In,
@ A semantic rule of 7 is an equation of the form
ot = fag.i1, ..., 0pn.ip)
where n € N, a.i € Ing, 0.1 € Outr, and f: V1 x ... x VO — Ve,

m Compiler Construction Summer semester 2008 20

Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G = (N, %, P,S) € CFGy with X := Ny X.

® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m = Yy — Y;...Y, € P determines the set
Vary = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of w with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, := Vary \ In,
@ A semantic rule of 7 is an equation of the form
ot = fag.i1, ..., 0pn.ip)
where n € N, a.i € Ing, 0.1 € Outr, and f: V1 x ... x VO — Ve,
@ For each m € P, let E, be a set with exactly one semantic rule for every
inner variable of 7, and let £ := (E, | m € P).

m Compiler Construction Summer semester 2008 20

Formal Definition of Attribute Grammars 1

Definition 13.3 (Attribute grammar)

Let G = (N, %, P,S) € CFGy with X := Ny X.

® Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m = Yy — Y;...Y, € P determines the set
Vary = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of w with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, := Vary \ In,
@ A semantic rule of 7 is an equation of the form
ot = fag.i1, ..., 0pn.ip)
where n € N, a.i € Ing, 0.1 € Outr, and f: V1 x ... x VO — Ve,
@ For each m € P, let E, be a set with exactly one semantic rule for every
inner variable of 7, and let £ := (E, | m € P).

Then A := (G, E, V) is called an attribute grammar: 2 € AG.

m Compiler Construction Summer semester 2008 20

Formal Definition of Attribute Grammars II

Example 13.4 (cf. Example 13.2)

Ap € AG for binary numbers:
o Attributes: Att = Syn W Inh with Syn = {v,l} and Inh = {p}

m Compiler Construction Summer semester 2008 21

Formal Definition of Attribute Grammars II

Example 13.4 (cf. Example 13.2)

Ap € AG for binary numbers:
o Attributes: Att = Syn W Inh with Syn = {v,l} and Inh = {p}
@ Value sets: Vv=Q, VI=N, VP =7

m Compiler Construction Summer semester 2008 21

Formal Definition of Attribute Grammars II

Example 13.4 (cf. Example 13.2)

Ap € AG for binary numbers:
o Attributes: Att = Syn W Inh with Syn = {v,l} and Inh = {p}
o Value sets: V?'=Q, VI=N, VP =7
o Attribute assignment: | Y € X | N L B

0 1
syn(Y) [{v} {v,0} {o} 0 0
inh(Y) | 0 {p} {p} 0 0

m Compiler Construction Summer semester 2008 21

Formal Definition of Attribute Grammars II

Example 13.4 (cf. Example 13.2)

Ap € AG for binary numbers:
o Attributes: Att = Syn W Inh with Syn = {v,l} and Inh = {p}

o Value sets: V?'=Q, VI=N, VP =7
@ Attribute assignment: | Y € X | N L B 01
syn(Y) [{v} {v, i} {v} 0 0
inh(Y) | 0 {p} {p} 0 0

o Attribute variables:

meP N — L N —L.L L— B
Ing {v.0,p.1} {v.0,p.1,p.3} {v.0,1.0,p.1}
Out, {v.1,1.1} {v.1,1.1,0.3,1.3} {v.1,p.0}
meP L— LB B—0 B—1
Ing {v.0,1.0,p.1,p.2} {v.0} {v.0}
Out, | {v.1,v.2,1.1,p.0} {p.0} {p.0}

m Compiler Construction Summer semester 2008 21

Formal Definition of Attribute Grammars II

Example 13.4 (cf. Example 13.2)

Ap € AG for binary numbers:
o Attributes: Att = Syn W Inh with Syn = {v,l} and Inh = {p}

o Value sets: V?'=Q, VI=N, VP =7
@ Attribute assignment: | Y € X | N L B 01
syn(Y) [{v} {v, i} {v} 0 0
inh(Y) | 0 {p} {p} 0 0

o Attribute variables:

meP N — L N —L.L L— B
Ing {v.0,p.1} {v.0,p.1,p.3} {v.0,1.0,p.1}
Out, {v.1,1.1} {v.1,1.1,0.3,1.3} {v.1,p.0}
meP L— LB B—0 B—1
Ing {v.0,1.0,p.1,p.2} {v.0} {v.0}
Out, | {v.1,v.2,1.1,p.0} {p.0} {p.0}

o Semantic rules: see Example 13.2
(e.g., EN—op, = {v.0 =v.1,p.1 =0})

m Compiler Construction Summer semester 2008 21

Attribution of Syntax Trees I

Definition 13.5 (Attribution of syntax trees)

Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set
of nodes K.

o K determines the set of attribute variables of ¢:
Vary == {a.k | k € K labelled with Y € X, o € att(Y)}.

m Compiler Construction Summer semester 2008

Attribution of Syntax Trees I

Definition 13.5 (Attribution of syntax trees)

Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set
of nodes K.

o K determines the set of attribute variables of ¢:
Vary == {a.k | k € K labelled with Y € X, o € att(Y)}.

o Let kp € K be an (inner) node where production
m=Yy—Y;...Y, € Pis applied, and let k;,...,k. € K be the
corresponding successor nodes. The attribute equation system Ej,
of kg is obtained from FE, by substituting every attribute index
i€{0,...,r} by k;.

m Compiler Construction Summer semester 2008

Attribution of Syntax Trees I

Definition 13.5 (Attribution of syntax trees)

Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set
of nodes K.

o K determines the set of attribute variables of ¢:
Vary == {a.k | k € K labelled with Y € X, o € att(Y)}.

o Let kp € K be an (inner) node where production
m=Yy—Y;...Y, € Pis applied, and let k;,...,k. € K be the
corresponding successor nodes. The attribute equation system Ej,
of kg is obtained from FE, by substituting every attribute index
i€{0,...,r} by k;.

o The attribute equation system of ¢ is given by

E; :=|J{Ek | k inner node of t}.

m Compiler Construction Summer semester 2008

Attribution of Syntax Trees II

For each a.k € Var; except the inherited attribute variables at the root
and the synthesized attribute variables at the leafs of t, E; contains
exactly one equation with left-hand side o.k.

m' Compiler Construction Summer semester 2008 23

Attribution of Syntax Trees II

For each a.k € Var; except the inherited attribute variables at the root
and the synthesized attribute variables at the leafs of t, E; contains
exactly one equation with left-hand side o.k.

Assumptions:
@ The start symbol does not have inherited attributes: inh(S) = 0.

@ Synthesized attributes of terminal symbols are provided by the
scanner.

m' Compiler Construction Summer semester 2008 23

Attribution of Syntax Trees 111

Example 13.7 (cf. Example 13.2)

@5:1[:@@ k7. @kgl:L@@
/// \\\ |
//// \\\\ i
@k:gI:L@@ @kg,l:B@ ® ko I: B®
l l l
| | |
®ks : B@® ke : 0 kig: 1
|
l
|

kg1

m Compiler Construction Summer semester 2008 24

Attribution of Syntax Trees 111

Example 13.7 (cf. Example 13.2)

|
@5:1[:@@ k7. @kgl:L@@
/// \\\ |
//// \\\\ i
@k:gI:L@@ @kg,l:B@ ® ko I: B®
l l l
| | |
@kg:B@ kG:O]{1021
|
i
kg1
En_r.r: v.0=v14+v.3 1 Ey, : v.ky =v.ky +v.kg
pl1=0 Subsf pki1 =0
p3 = —[.3 p.kg = —l.k‘g

m Compiler Construction Summer semester 2008 24

Attribution of Syntax Trees 111

Example 13.7 (cf. Example 13.2)

|
|
@Zﬁ [:@@ k7. @kgl:L@@
/// \\\ |
//// \\\\ i
@k:gI:L@@ @kg,l:B@ ® ko I: B®
l l l
| | |
@ks : BO ke : O ko @ 1
|
i
kqg: 1
Er rg: v.0=v.1+4v.2 B, vk = vk +v.ks
.0=101+1 subst l.ky =Lk +1
pl=p0+1 p.ko = p.k1 +1
0.2 = p.0 Js = p.ky

m Compiler Construction Summer semester 2008 24

	Repetition: Expressiveness of LL and LR Grammars
	LL and LR Parsing in Practice
	Overview
	Problem Statement
	Attribute Grammars
	Formal Definition of Attribute Grammars

